随机过程习题答案A
《应用随机过程》A卷及其参考答案

,求
E
X
X
c;
2、(15 分,选做一题)(1)设 Xi E i , i 1, 2 ,且 X1, X 2 独立,试
由条件数学期望的一般定义以及初等条件概率定义的极限分别求
E IX1X2 X1 X 2 t P X1 X 2 X1 X 2 t ,t 0 ;(2)设 X1, X 2 , , X n 独
T 2 t dt 0
,令
Z
t
exp
t
0
u
dW
u
1 2
t 0
2
u
du
,则
dZ
t
t
Z
t
dW
t
,
从而Z t ,0 t T 是一个连续鞅。
1
三、计算证明题(共 60 分)
得分
1、(13 分)假设 X~E ,给定 c 0 ,试分别由指数分布的无记忆性、
条件密度和 E X
A
E
P
XI A
A
x
0
,且
q
x
dx
1
;(b)存在
a
0
,使得
p q
x x
a(当
p
x
0
时),令 r x a qpxx(当 p x 0 时,规定 r x 0 );又记 M U r X ,
3
试证明:
P
X
z
M
z
q
x dx
,即
X
在
M
发生的条件下的条件密度
函数恰是 q x ;(2)设有 SDE:dXt (aXt b
(2) ___________________________________________________;
随机过程课后习题答案

随机过程课后习题答案随机过程课后习题答案随机过程是概率论和数理统计中的一个重要分支,研究的是随机事件在时间上的演变规律。
在学习随机过程的过程中,习题是不可或缺的一部分。
通过解习题,我们可以更好地理解和掌握随机过程的基本概念和性质。
下面是一些随机过程课后习题的答案,希望对大家的学习有所帮助。
1. 假设随机过程X(t)是一个平稳过程,其自协方差函数为Cov[X(t), X(t+h)] =e^(-2|h|),求该过程的自相关函数。
解:首先,自协方差函数Cov[X(t), X(t+h)]可以通过自相关函数R(t, h)来表示,即Cov[X(t), X(t+h)] = R(t, h) - E[X(t)]E[X(t+h)]。
由于该过程是平稳过程,所以E[X(t)]和E[X(t+h)]是常数,可以将其记为μ。
因此,Cov[X(t), X(t+h)] = R(t, h) - μ^2。
根据题目中给出的自协方差函数,我们有e^(-2|h|) = R(t, h) - μ^2。
将μ^2移到等式左边,得到R(t, h) = e^(-2|h|) + μ^2。
所以,该过程的自相关函数为R(t, h) = e^(-2|h|) + μ^2。
2. 假设随机过程X(t)是一个平稳过程,其自相关函数为R(t, h) = e^(-3|h|),求该过程的均值和方差。
解:由于该过程是平稳过程,所以均值和方差是常数,可以将均值记为μ,方差记为σ^2。
根据平稳过程的性质,自相关函数R(t, h)可以表示为R(h) = E[X(t)X(t+h)] =E[X(0)X(h)]。
根据题目中给出的自相关函数,我们有R(h) = e^(-3|h|)。
将t取为0,得到R(h) = E[X(0)X(h)] = μ^2。
所以,该过程的均值为μ。
根据平稳过程的性质,方差可以表示为Var[X(t)] = R(0) - μ^2。
将t取为0,得到Var[X(t)] = R(0) - μ^2 = e^(-3*0) - μ^2 = 1 - μ^2。
随机过程课后题答案

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(完整word版)随机过程试题带答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
1.为it(e-1)e λ。
2. 1(sin(t+1)-sin t)2ωω。
3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.(n)nP P =。
随机过程第三版课后答案

随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。
(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。
答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。
假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。
(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。
电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。
因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。
均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。
随机过程试题及答案

随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
随机过程试题及答案

随机过程试题及答案一、选择题1. 关于随机过程的描述,错误的是:A. 随机过程是一种由随机变量组成的集合B. 随机过程是一种在时间上有序排列的随机变量序列C. 随机过程可以是离散的,也可以是连续的D. 随机过程是一种确定性的数学模型答案:D2. 以下哪种过程不是随机过程?A. 白噪声过程B. 马尔可夫过程C. 布朗运动D. 正态分布答案:D3. 随机过程的一阶矩描述的是:A. 均值B. 方差C. 偏度D. 峰度答案:A4. 当随机过程的各个时间点上的随机变量是独立同分布时,该随机过程为:A. 马尔可夫过程B. 马尔可夫链C. 平稳随机过程D. 白噪声过程答案:B5. 下列关于马尔可夫过程的说法中,正确的是:A. 当前状态只与上一状态有关,与历史状态无关B. 当前状态只与历史状态有关,与上一状态无关C. 当前状态只与上一状态和历史状态有关D. 当前状态与所有历史状态均无关答案:A二、填空题1. 随机过程中,时域函数常用的表示方法是__________。
答案:概率分布函数或概率密度函数2. 马尔可夫过程的状态转移概率只与__________相关。
答案:当前状态和下一状态3. 随机过程的时间参数称为__________。
答案:时刻或时间点4. 白噪声过程的自相关函数是一个__________函数。
答案:冲激函数5. 平稳随机过程的自相关函数只与__________相关。
答案:时间差三、解答题1. 请简要解释随机过程的概念。
随机过程是一种由随机变量组成的集合,表示一个在时间上有序排列的随机变量序列。
它可以是离散的,也可以是连续的。
随机过程的描述通常包括概率分布函数或概率密度函数,以及相关的统计特征,如均值、方差等。
随机过程可以用于对随机现象进行建模和分析。
2. 请简要说明马尔可夫过程的特点及应用。
马尔可夫过程是一种具有马尔可夫性质的随机过程,即当前状态只与上一状态有关,与历史状态无关。
其状态转移概率只与当前状态和下一状态相关。
随机过程试题及解答

2016随机过程(A )解答1、(15分)设随机过程V t U t X +⋅=)(,),0(∞∈t ,U ,V 是相互独立服从正态分布(2,9)N 的随机变量。
1) 求)(t X 的一维概率密度函数;2) 求)(t X 的均值函数、相关函数和协方差函数。
3) 求)(t X 的二维概率密度函数; 解:由于U ,V 是相互独立服从正态分布(2,9)N 的随机变量,所以V t U t X +⋅=)(也服从正态分布,且: {}{}{}{}()()22m t E X t E U t V t E U E V t ==⋅+=⋅+=+{}{}{}{}22()()99D t D X t D U t V t D U D V t ==⋅+=+=+故: (1) )(t X的一维概率密度函数为:()222218(1)(),x t t t f x ex ---+=-∞≤≤∞(2) )(t X 的均值函数为:()22m t t =+;相关函数为:{}{}(,)()()()()R s t E X s X t E U s V U t V =⋅=⋅+⋅⋅+{}{}{}22()13()413st E U s t E U V E V st s t =⋅++⋅⋅+=⋅++⋅+协方差函数为:(,)(,)()()99B s t R s t m s m t st =-⋅=+(3)相关系数:(,)s t ρρ====)(t X 的二维概率密度函数为:2212222(22)(22)12(1)9(1)4(1),12(,)x s x t s t s t f x x eρ⎧⎫⎡⎤-----⎪⎪+⎢⎥⎨⎬-++⎢⎥⎪⎪⎣⎦⎩⎭=2、(12分)某商店8时开始营业,在8时顾客平均到达率为每小时4人,在12时顾客的平均到达率线性增长到最高峰每小时80人,从12时到15时顾客平均到达率维持不变为每小时80人。
问在10:00—14:00之间无顾客到达商店的概率是多少?在10:00-14:00之间到达商店顾客数的数学期望和方差是多少? 解:到达商店顾客数服从非齐次泊松过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机过程习题解答(一)第一讲作业:1、设随机向量的两个分量相互独立,且均服从标准正态分布。
(a)分别写出随机变量和的分布密度(b)试问:与是否独立?说明理由。
解:(a)(b)由于:因此是服从正态分布的二维随机向量,其协方差矩阵为:因此与独立。
2、设和为独立的随机变量,期望和方差分别为和。
(a)试求和的相关系数;(b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。
解:(a)利用的独立性,由计算有:(b)当的时候,和线性相关,即3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为,且是一个周期为T的函数,即,试求方差函数。
解:由定义,有:4、考察两个谐波随机信号和,其中:式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。
(a)求的均值、方差和相关函数;(b)若与独立,求与Y的互相关函数。
解:(a)(b)第二讲作业:P33/2.解:其中为整数,为脉宽从而有一维分布密度:P33/3.解:由周期性及三角关系,有:反函数,因此有一维分布:P35/4. 解:(1) 其中由题意可知,的联合概率密度为:利用变换:,及雅克比行列式:我们有的联合分布密度为:因此有:且V和相互独立独立。
(2)典型样本函数是一条正弦曲线。
(3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且所以。
(4)由于:所以因此当时,当时,由(1)中的结论,有:P36/7.证明:(1)(2) 由协方差函数的定义,有:P37/10. 解:(1)当i =j 时;否则令,则有第三讲作业:P111/7.解:(1)是齐次马氏链。
经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。
(2)由题意,我们有一步转移矩阵:P111/8.解:(1)由马氏链的马氏性,我们有:(2)由齐次马氏链的性质,有:(2),因此:P112/9.解:(2)由(1)的结论,当为偶数时,递推可得:;计算有:,递推得到,因此有:P112/11.解:矩阵 的特征多项式为:由此可得特征值为:,及特征向量:,则有:因此有:(1)令矩阵P112/12.解:设一次观察今天及前两天的天气状况,将连续三天的天气状况定义为马氏链的状态,则此问题就是一个马氏链,它有8个状态。
记每天天晴为0,下雨为1,则此链的状态可以由三位二进制数表示。
如三天晴为000,为状态0;第一天晴,第二天晴,第三天雨为001,为状态1;第一天晴,第二天雨,第三天晴为010,为状态2;第一天晴,后两天阴为011,为状态3,等等。
根据题目条件,得到一步转移矩阵如下:第四讲作业:P113/13.解:画出状态转移图,有:P113/14. 解:画出状态转移图,有:P113/16.解:画出状态转移图,有:(1)由于三个状态都是相通的,所以三个状态都是常返态。
(3)状态3、4无法和其他状态相通,组成一个闭集,且,所以状态3、4为常返态;另外状态0、2相通组成一个闭集,且,故状态0、2是常返态;因为,故,所以状态1为非常返态。
(4)0、1相通作成一闭集,且,故0、1为常返态;又,因此,故2为常返态;,故3、4为非常返态。
第六讲作业:P115/17.解:(1)一步转移矩阵为:(2)当时,由计算可得,因此可由以下方程组计算极限分布:解得极限分布即可。
P115/18.解:由第七题的结果,计算可得:,因此可计算极限分布如下:解以上方程,得极限分布:P115/19.解:见课上讲稿。
P116/21.解:记,则有:(1)因为:(A)当时,有:由(A)可得:当且时,有:由(A)可得:当且时,有:由(A)可得:另外:下列等式是明显的因此我们有:即{是一齐次马氏链。
一步转移矩阵为:(2)画出转移矩阵图,可得:由:及,并且取,由递归可得:(3)由于:因此,零状态是正常返的,由相通性,故所有状态都是正常返的,即此马氏链是不可约的。
(4)由马氏链的无后效性,可知此时的T 就是零状态到零状态的首达时间。
因此我们有:随机过程习题解答(二)P228/1。
证明:由于t s <,有{}{}{}{}{}n t N P k n s t N P k s N P n t N P n t N k s N P n t N k s N P =-=-⋅=========)(})({)()()(,)()(/)(其中{})()!())((!)(})({)(s t k n s k e k n s t e k s k n s t N P k s N P ------⋅=-=-⋅=λλλλ{}tn e n t n t N P λλ-==!)()(所以{}kn k k n k n k k tn s t k n s k k s k s k n k n k n t s t t s e n t e k n s t e k s n t N k s N P --------⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=--=--⋅===1)!(!!)(!)()!())((!)()(/)()(λλλλλλ证毕。
P229/3. 解:(1)因为}0),({≥t t N 是一Poission 过程,由母函数的定义,有:()()()()()())()(})({})({})({})({})({})({})({})({})({})({})({)()()(00000000)(s s s j t N P sl t N P s l k t N P sl t N P s l k t N P s l t N P s l k t N P s l t N P s l k t N P l t N P s k t N P s t N t N j jl ll k lk l ll lk l k l k kl l k l k k k l k kt t N ∆∞=∞=∞=-∞=∞=∞=-∞==-∞==∞=∆+ψ⋅ψ=⋅=∆⋅==⋅-=∆⋅==⎥⎦⎤⎢⎣⎡⋅-=∆⋅⋅==⎥⎦⎤⎢⎣⎡⋅-=∆⋅⋅==⋅⎥⎦⎤⎢⎣⎡-=∆⋅==⋅==ψ∑∑∑∑∑∑∑∑∑∑∑ (2)有上面(1)的结果,可得:ts s t s s s ts s ts t N t t N t N t N t N t t N t t N t t N ∆-ψ⋅ψ=∆ψ-ψ⋅ψ=∆ψ-ψ=∂ψ∂∆→∆∆→∆∆+→∆1)()()()()()()(ˆ)()(0)()()()(0)()(0)(limlimlim(3)当t ∆充分小时,由于:[][]∑∑∞=∞=∆⋅∆+⋅∆+∆+⋅∆+∆-=⋅=∆=ψ2100)()()()(1})({)(k kk kt N s t s t t s t t s s t N P s οολολ因此,当1<s 时,有:)1()()(1)(20)(0lim lim-=⋅∆∆+∆∆+∆+∆-=∆-ψ∑∞=→∆∆→∆s s tt t t s t t ts kk t t N t λοολλ由(2)的结果,我们有:)()1()()()(s s ts t N t N ψ-=∂ψ∂λP229/4. 解:(1)由上面3题的结果(3),我们有:t s t N N t N t N e s s s s t s )1()()0()()()(1)()()1()(-=ψ⇒⎪⎩⎪⎨⎧=ψψ-=∂ψ∂λλ (2)由于)()(s t N ψ是随机过程)(t N 的母函数,且t s t N e s )1()()(-=ψλ,将函数t s e )1(-λ关于)1(<s s 展开成级数形式,我们可得:∑∞=--⋅⋅==ψ0)1()(!)()(k kt k ts t N s e k t es λλλ由母函数与分布函数的唯一性定理,可得:2,1,0,!)(})({=⋅==-k e k t k t N P tk λλP230/8. 解:由特征函数的定义,我们有:{}{}[]{}{}()nY u i n tn Y Y Y u i n tn t X u i n t X u i t X e E e n t e E e n t n t N e E n t N P e E u n 1210)(0)()(!)(!)()(})({)(⋅⋅=⋅⋅==⋅===Φ∑∑∑∞=-++∞=-∞=λλλλ令{})(11u e E Y Y u i φ=,则有:[]{}1)(exp !))(()(110)(-=⋅=Φ∑∞=-u t e n u t u Y n t nY t X φλφλλ (*)若),2,1( =n Y n 的概率分布为:212211}1{,}1{λλλλλλ+=-=+==n n Y P Y P则{}u i u i Y u i Y e e e E u nn-⋅++⋅+==212211)(λλλλλλφ (**)将(**)代入(*),我们有:{}te t e t e e t u u i u i ui u i t X )(exp 1)(exp )(212121221121)(λλλλλλλλλλλλ+-+=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-⋅++⋅++=Φ--P230/7. 解:先求}0),({0≥t t N 的特征函数:{}{}{}{}{}{}{}t et e t e e t e e t e m e t e n e t ee m t e e n t eE eE e E e E u ui u i tu i t u i m tmu i n t nu i mu i m t m n u i n t n t N u i t N u i t N t N u i t N u i t N )(exp exp exp !)(!)(!)(!)()(2121)(210)(201)(0201)()()())()(()()(212121212100λλλλλλλλλλλλλλλλ+-+=⋅⋅⋅=⋅⋅⋅=⋅⋅⋅⋅⋅=⋅===Φ----∞=--∞=--∞=-∞=---∑∑∑∑由上面8题的结果,根据特征函数与分布函数的唯一性定理,可知}0),({0≥t t N 是复合Poission 过程。
P231/10. 解:由于{}{}{}n t X t X t X P n t X t X t X j t X k t X P n t X t X t X j t X k t X P =++=++=====++==)()()()()()(,)(,)()()()()(,)(3213212132121因为)(t X i 的母函数为:{}t s s i t N )1(ex p )()(-=ψλ,由独立性,可知)()()(321t X t X t X ++的母函数为:()(){}∏=-++=ψ=ψ31321)()(1ex p )()(i t Xt X t s s s λλλ,所以)()()()(321t X t X t X t X ++=是参数为321λλλ++的泊松过程,即{}()()()tn en t n t X t X t X P 321!)()()(321321λλλλλλ++-++==++因此我们有:{}()()()()()()njk n j k tn tkj n tjtkj k n j k n en t ek j n t ej t ek t n t X t X t X j t X k t X P )()!(!!!!)!(!!)()()()(,)(32132132111132121321321λλλλλλλλλλλλλλλλλλ++⋅--=++--⋅⋅===++==--++------P231/12. 解:(1)由{}())(}1)({1})({}1)(,1)({}0)(,)({)(t o t P k t X P t P k t X P t X k t X P t X k t X P k t t X P r r ∆+∆-=+∆-==+=∆-=+=∆====∆+λλ 令0→∆t ,有)()()(1t P P t P P dtt dP k r k r k -=+λλ 解得{}tP k r r e k t P k t X P λλ-==!)()((2)由(1)知,)(t X 服从参数为r P λ的泊松分布。