随机过程习题答案
(完整word版)随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
随机过程课后题答案

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
随机过程习题及部分解答【直接打印】

随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。
2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。
习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。
3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。
4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。
习题三1. 试证3.1节均方收敛的性质。
2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。
(完整版)随机过程习题答案

(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
随机过程习题答案

1 X ( )与 X (1)的联合分布律为 2 1 X( ) 0 1 2 X (1) −1 +2 1 2 0 0 1 2
0, 0, 1 1 , ⇒ F ( x1 , x2 ; ,1) = 2 2 1 , 2 1,
x1 < 0, −∞ < x2 < +∞ x1 ≥ 0, x2 < −1 0 ≤ x1 < 1, x2 ≥ −1 x1 ≥ 1, −1 ≤ x2 < 2 x1 ≥ 1, x2 ≥ 2
假定 Z (t ) = X + Yt , t ∈ R.若已知二维随机变量 例3 σ 12 ( X , Y )的协方差矩阵为 ρσ 1σ 2 的协方差函数.
ρσ 1σ 2 ,试求 Z (t ) 2 σ2
解 CZ (t1 , t2 ) = E[( X + Yt1 − ( µ X + µY t1 ))( X + Yt2 − ( µ X + µY t2 ))] = E[(( X − µ X ) + (Yt1 − µY t1 ))(( X − µ X ) + (Yt2 − µY t2 ))] = E[( X − µ X )( X − µ X )] + t2 E[( X − µ X )(Y − µY )] +t1 E[(Y − µY )( X − µ X )] + t1t2 E[(Y − µY )(Y − µY )]
(3)、令 Z (t ) = aW ( t a 2 ) ⇒ µ Z (t ) = aE[W ( t a 2 )] = 0 C Z (t1 , t 2 ) = E[ aW ( t1 a 2 ) aW ( t2 a 2 )] = a 2 E[W ( t1 a 2 )W ( t2 a 2 )] = a 2σ 2 min{ t1 a 2 , t2 a 2 } = σ 2 min{t1 , t 2 }, t1 , t 2 ≥ 0
《随机过程》课后习题解答

( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2
i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)
x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )
f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt
3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E[(W (t1) At1 At1)(W (t2 ) At2 At2 )]
E[W (t1)W (t2 )] 2 min{t1, t2}, t1, t2 0
例 2 已知随机过程 {X (t),t T}的均值函数X (t)和协 方差函数CX (t1,t2 ),(t)是普通函数.试求随机过程Y ( t) X (t) (t)的均值函数和协方差函数.
解 Y (t) E[ X (t) (t)] X (t) (t)
CY (t1, t2 ) E[(Y (t1) Y (t1))(Y (t2 ) Y (t2 ))] E[( X (t1) (t1) X (t1) (t1))
且P[ X (1) 0] P[ X (1) 1] 1
2
2
2
P[ X (1) 0] P[ X ( 1) 1] 1
2
2
2
0, x 0
F
( x;
1) 2
1 2
,
1,
0 x 1 x 1
1,
X
(1)
2,
出现H 出现T
P[ X
(1)
1]
P[ X
2 min{t1, t2} t1t2 , t1, t2 0
(3)、令Z (t) aW ( t )a2 Z (t) aE[W ( t a2)] 0
CZ (t1, t2 ) E[aW (t1 a2 )aW (t2 a2 )]
a2 E[W ( t1 a2 )W (t2 a2 )] a2 2 min{t1 a2 , t2 } a2 2 min{t1, t2}, t1, t2 0
( X (t2 ) (t2 ) X (t2 ) (t2 ))] E[( X (t1) X (t1))( X (t2 ) X (t2 ))]
CX (t1, t2 )
例 3 假定Z (t) X Yt,t R.若已知二维随机变量
(
X
,
Y
)的协方差矩阵为
12 1
2
的协方差函数.
1
2 2
X (t),Y (t)相互独立
P{S (t) S (t0 ) k} P{X (t) Y (t) X (t0 ) Y (t0 ) k}
k
P{X (t) X (t0 ) i,Y (t) Y (t0 ) k i} i0
k
P{X (t) X (t0 ) i}P{Y (t) Y (t0 ) k i} i0
解 (1)、X (t),Y (t){t (0, )}是独立增量过程,X (t)和 Y (t)相互独立 {S(t),t (0, )}是独立增量过程
(2)、S(0) X (0) Y (0) 0
(3)、t t0 0, X (t) X (t0 ) ((t t0 )) Y (t) Y (t0 ) ((t t0 ))
P{X (t) x} FX (x,t)
RY (t1,t2 ) E[Y (t1)Y (t2 )] 1 PY (t1)Y (t2 ) 1 0 PY (t1)Y (t2 ) 0 PY (t1)Y (t2 ) 1 PX (t1) x1, X (t2 ) x2 FX (x1, x2;t1,t2 )
t1E[(Y Y )( X X )] t1t2E[(Y Y )(Y Y )]
CXX
t2CXY
t1CYX
t1t2CYY
12
(t1 t2 )1 2
t1t2
2 2
例4 设X (t)和Y (t){t (0, )}是两个相互独立的、分
别具有强度和的泊松过程.试证明S(t) X (t) Y (t) 是具有强度为 的泊松过程.
2
,试求Z
(t
)
解
CZ (t1,t2 ) E[( X Yt1 (X Yt1))( X Yt2 (X Yt2 ))]
E[(( X X ) (Yt1 Yt1))(( X X ) (Yt2 Yt2 ))]
E[( X X )( X X )] t2E[( X X )(Y Y )]
例6 利用抛掷硬币的试验定义一随机过程:
X
(t
)
cos
Байду номын сангаас
2t,
t,
出现H 出现T
,
t
,
假设P(H )
P(T )
1 2
,
试确定X
(t)的(1)一维分布函数F
( x;
1 ), 2
F
(
x;1);
(2)二维分布函数F
(
x1,
x2
;
1 2
,1);
解
由X (t)的定义
X (1) 2
0, 1,
出现H 出现T ,
k [ (t t0 )]i e (tt0 ) [ (t t0 )]ki e (tt0 )
i0
i!
(k i)!
e( )(tt0 ) k!
k
Cki [ (t t0 )]i
i0
[ (t t0 )]ki
[(
)(t
k!
t0 )]k
e( )(tt0 )
S (t) S (t0 )
[( )(t t0 )]
{S (t), t 0}是强度为 的泊松过程
例5 设{W (t),t 0}是以 2为参数的维纳过程,求下列
过程的协方差函数: (1)W (t) At, ( A为常数); (2)W (t) Xt, X为与{W (t),t 0}相互独立的标准正态变量;
(3)aW ( t a2 ), a为正常数;
(2)、令Z (t) W (t) Xt Z (t) E[W (t) Xt] 0
CZ (t1, t2 ) E[Z (t1)Z (t2 )] E[(W (t1) Xt1)(W (t2 ) Xt2 )] E[W (t1)W (t2 )] E[W (t1) Xt2 ] E[ Xt1W (t2 )] E[ Xt1Xt2 ]
随机过程补充例题
例 1 随机过程 {X (t),t T}, x是任一实数,定义另一随机
过程Y
(t)
1, 0
X (t) x ,t T.试将Y (t)的均值函数和自 X (t) x
相关函数用X (t)的一维和二维分布函数表示.
解 Y (t) E[Y (t)] 1 P{Y (t) 1} 0 P{Y (t) 0}