(全国通用版)201X版高考数学一轮复习 高考达标检测(三十八)圆锥曲线的综合问题——直线与圆锥曲线

合集下载

2024届高考一轮复习数学课件(新教材人教A版强基版):圆锥曲线中的综合问题全文

2024届高考一轮复习数学课件(新教材人教A版强基版):圆锥曲线中的综合问题全文

所以B→D=(x1-2,y1),B→E=(x2-2,y2),
则(x1-2)(x2-2)+y1y2=0,
将x1=ky1+m,x2=ky2+m代入上式得
(k2+1)y1y2+k(m-2)(y1+y2)+(m-2)2=0,







(k2+
1)
m2-4 k2+4

k(m

2)
-k2+2km4 +
(m
x1+x2=-8 267m,x1x2=4m227-3, y1y2=6x1x2+ 6m(x1+x2)+m2=24m2-3-2748m2+27m2, ∵O→A·O→B=0,∴x1x2+y1y2=0, 代入根与系数的关系得 m2=12,m=±2 3,满足 Δ>0, ∴直线 l 的方程为 y= 6x±2 3.
4k2+1
又直线 OP 的斜率为--12--00=12,且直线 OP 与 MQ 不重合,
所以MQ∥OP.
题型二 定点与定值
例 2 (2022·济南模拟)已知椭圆 C:ax22+by22=1(a>b>0)的左、右顶点分别为 A,B,点 P(0,2),连接 PA,PB 交椭圆 C 于点 M,N,△PAB 为直角三角 形,且|MN|=35|AB|. (1)求椭圆的标准方程;
设经过点F且斜率为k(k≠0)的直线的方程为y=kx+1,与曲线C的方 程联立得 y=kx+1, x32+y42=1, 消去 y 整理得(4+3k2)x2+6kx-9=0, Δ=36k2+4×9×(4+3k2)=144(1+k2)>0恒成立, 设M(x1,y1),N(x2,y2),
则|MN|= 1+k2|x1-x2|= 1+k2×4+Δ3k2=124+1+3kk22, x1+x2=-4+6k3k2,

高三数学一轮复习高考总复习测评卷 圆锥曲线方程 章末质量检测 理 试题

高三数学一轮复习高考总复习测评卷 圆锥曲线方程 章末质量检测 理 试题

金版新学案?高考总复习配套测评卷制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日——高三一轮数学『理科』卷(八)圆锥曲线方程————————————————————————————————————— 【说明】 本套试卷分为第Ⅰ、Ⅱ卷两局部,请将第一卷选择题之答案填入答题格内,第二卷可在各题后直接答题,一共150分,考试时间是是120分钟.第一卷 (选择题 一共60分)个选项里面,只有一项是哪一项符合题目要求的)1.双曲线x 216-y 29=1的焦点坐标为( )A .(-7,0)、(7,0)B .(0,-7)、(0,7)C .(-5,0)、(5,0)D .(0,-5)、(0,5)2.假设拋物线y 2=2px (p >0)的焦点到准线的间隔 为4,那么其焦点坐标为( )A .(4,0)B .(2,0)C .(0,2)D .(1,0)3.双曲线x 24-y 212=1的离心率为e ,拋物线x =2py 2的焦点为(e,0),那么p 的值是( )A .2B .1C.14D.1164.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2,线段P 1P 2的中点为P .设直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,那么k 1k 2等于( )A .-2B .2 C.12D .-125.假设点P (2,0)到双曲线x 2a 2-y 2b2=1的一条渐近线的间隔 为2,那么该双曲线的离心率为( )A. 2B. 3 C .2 2D .2 36.椭圆x 2a 2+y 2b 2=1(a >0,b >0)的离心率为22,假设直线y =kx 与椭圆的一个交点的横坐标为b ,那么k 的值是( )A.22B .±22C.12D .±127.如下图,设椭圆x 2a 2+y 2b2=1(a >b >0)的面积为ab π,过坐标原点的直线l 、x 轴正半轴及椭圆围成两区域面积分别设为s 、t ,那么s 关于t 的函数图象大致形状为图中的( )8.椭圆x225+y216=1的右焦点为F ,P 是椭圆上一点,点M 满足|M |=1,·=0,那么|M |的最小值为( )A .3 B. 3 C .2D. 29.两个正数a ,b 的等差中项是5,等比中项是4.假设a >b ,那么双曲线x 2a -y 2b=1的渐近线方程是( )A .y =±2xB .y =±12xC .y =±24xD .y =±22x10.椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.假设P 、F 1、F 2是一个直角三角形的三个顶点,那么点P 到x 轴的间隔 为( )A.95B .3 C.977D.9411.直线l 过抛物线C ∶y 2=2px (p >0)的焦点F ,且交抛物线C 于A ,B 两点,分别从A ,B 两点向抛物线的准线引垂线,垂足分别为A 1,B 1,那么∠A 1FB 1是( )A .锐角B .直角C .钝角D .直角或者钝角12.点F 为双曲线x 216-y 29=1的右焦点,M 是双曲线右支上一动点,定点A 的坐标是(5,1),那么4|MF |+5|MA |的最小值为( )A .12B .20C .9D .16第二卷 (非选择题 一共90分)13.点F (1,0),直线l :x =-1,点P 为平面上的动点,过点P 作直线l 的垂线,垂足为点Q ,且·=·,那么动点P 的轨迹C 的方程是________.14.以双曲线x 24-y 25=1的中心为顶点,且以该双曲线的右焦点为焦点的拋物线方程是____________.15.椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点是F 1(-c,0)、F 2(c,0),M 是椭圆上一点,且F 1M ·=0,那么离心率e 的取值范围是________.16.给出如下四个命题:①方程x 2+y 2-2x +1=0表示的图形是圆; ②假设椭圆的离心率为22,那么两个焦点与短轴的两个端点构成正方形; ③抛物线x =2y 2的焦点坐标为⎝ ⎛⎭⎪⎫18,0;④双曲线y 249-x 225=1的渐近线方程为y =±57x .其中正确命题的序号是________.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤)17.(本小题满分是10分)离心率为45的椭圆的中心在原点,焦点在x 轴上.双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为234.求椭圆及双曲线的方程.18.(本小题满分是12分)假设一动点M 与定直线l :x =165及定点A (5,0)的间隔 比是4∶5.(1)求动点M 的轨迹C 的方程;(2)设所求轨迹C 上有点P 与两定点A 和B (-5,0)的连线互相垂直,求|PA |·|PB |的值. 19.(本小题满分是12分)抛物线的顶点在原点,焦点在x 轴的正半轴上,直线x +y -1=0与抛物线相交于A 、B 两点,且|AB |=8611.(1)求抛物线的方程;(2)在x 轴上是否存在一点C ,使△ABC 为正三角形?假设存在,求出C 点的坐标;假设不存在,请说明理由.20.(本小题满分是12分)如图,点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且·=·.(1)求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A ,B 两点,交直线l 于点M ,=λ1,=λ2,求λ1+λ2的值.21.(本小题满分是12分)如下图,椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的3倍且经过点M (3,1).平行于OM 的直线l 在y 轴上的截距为m (m ≠0),且交椭圆于A ,B 两不同点.(1)求椭圆的方程; (2)求m 的取值范围;(3)求证;直线MA ,MB 与x 轴始终围成一个等腰三角形.22.(本小题满分是12分)如下图,椭圆C 的方程为y 2a2+x 2b2=1(a >b >0),A 是椭圆C 的短轴左顶点,过A 点作斜率为-1的直线交椭圆于B 点,点P (1,0),且BP ∥y 轴,△APB 的面积为92.(1)求椭圆C 的方程;(2)在直线AB 上求一点M ,使得以椭圆C 的焦点为焦点,且过M 的双曲线E 的实轴最长,并求此双曲线E 的方程.答案: 一、选择题1.C c 2=a 2+b 2=16+9=25,c =5.2.B 根据p 的几何意义可知p =4,故焦点为(2,0).3.D 依题意得e =2,拋物线方程为y 2=12p x ,故18p =2,得p =116,选D.4.D 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,所以x 1+x 2=-8k 211+2k 21,而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21,所以OP 的斜率k 2 =y 1+y 22x 1+x 22=-12k 1, 所以k 1k 2=-12.5.A 由于双曲线渐近线方程为bx ±ay =0,故点P 到直线的间隔 d =2ba 2+b2=2⇒a=b ,即双曲线为等轴双曲线,故其离心率e =1+⎝ ⎛⎭⎪⎫b a2= 2.6.B 由e =c a =a 2-b 2a =22得a 2=2b 2,设交点的纵坐标为y 0,那么y 0=kb ,代入椭圆方程得b 22b 2+k 2b 2b2=1,解得k =±22,选B. 7.B 根据椭圆的对称性,知s +t =12ab π,因此选B.8.B 依题意得F (3,0),MF ⊥MP ,故|M |=|P F →|2-|M F →|2=|P F →|2-1,要使|M |最小,那么需|P |最小,当P 为右顶点时,|P |取最小值2,故|M |的最小值为3,选B.9.B 由得⎩⎪⎨⎪⎧a +b =10ab =16⇒⎩⎪⎨⎪⎧a =8b =2(a >b ).故双曲线的渐近线方程为y =±bax =±12x (在这里注意a ,b 与双曲线HY 方程中的a ,b 的区别,易由思维定势而混淆).10.D 设椭圆短轴的一个端点为M . 由于a =4,b =3,∴c =7<b . ∴∠F 1MF 2<90°,∴只能∠PF 1F 2=90°或者∠PF 2F 1=90°.令x =±7得 y 2=9⎝ ⎛⎭⎪⎫1-716=9216, ∴|y |=94.即P 到x 轴的间隔 为94.11.B 如图,由抛物线定义可知AA 1=AF ,故∠1=∠2,又AA 1∥x 轴,故∠1=∠3,从而∠2=∠3,同理可证得∠4=∠6,故∠A 1FB 1=∠3+∠6=12×π=π2, 应选B.12.C 由题意可知,a =4,b =3,c =5,∴e =54,右准线方程为x =165,且点A 在双曲线张口内.那么|MF |=e ·d =54d (d 为点M 到右准线的间隔 ).∴4|MF |+5|MA | =5(d +|MA |), 当MA 垂直于右准线时,d +|MA |获得最小值,最小值为5-165=95,故4|MF |+5|MA |的最小值为9. 二、填空题13..【解析】 设点P (x ,y )那么Q (-1,y ),由·=·,得(x +1,0)·(2,-y ) =(x -1,y )·(-2,y ),化简得y 2=4x .故填y 2=4x .【答案】 y 2=4x14.【解析】 双曲线x 24-y 25=1的中心为O (0,0),该双曲线的右焦点为F (3,0),那么拋物线的顶点为(0,0),焦点为(3,0),所以p =6,所以拋物线方程是y 2=12x .【答案】 y 2=12x15.【解析】 设点M 的坐标为(x ,y ),那么=(x +c ,y ),=(x -c ,y ). 由·=0,得x 2-c 2+y 2=0.①又由点M 在椭圆上,得y 2=b -b 2x 2a2,代入①,解得x 2=a 2-a 2b 2c2.∵0≤x 2≤a 2,∴0≤a 2-a 2b 2c2≤a 2,即0≤2c 2-a 2c2≤1, 0≤2-1e2≤1.∵e >0,解得22≤e ≤1.又∵e <1, ∴22≤e <1. 【答案】 [22,1) 16.【解析】 对①,(x -1)2+y 2=0,∴x =1,y =0, 即表示点(1,0). 对②,假设e =ca =22,那么b =c . ∴两焦点与短轴两端点构成正方形.对③,抛物线方程为y 2=12x ,其焦点坐标为⎝ ⎛⎭⎪⎫18,0.对④,双曲线y 249-x 225=1的渐近线方程为y 7±x5=0,即y =±75x .【答案】 ②③ 三、解答题17.【解析】 设椭圆方程为x 2a 2+y 2b2=1(a >b >0)那么根据题意,双曲线的方程为x 2a 2-y 2b 2=1且满足 ⎩⎪⎨⎪⎧a 2-b 2a=452a 2+b 2=234解方程组得⎩⎪⎨⎪⎧a 2=25b 2=9∴椭圆的方程为x 225+y 29=1,双曲线的方程x 225-y 29=118.【解析】 (1)设动点M (x ,y ),根据题意得⎪⎪⎪⎪⎪⎪x -165(x -5)2+y2=45, 化简得9x 2-16y 2=144, 即x 216-y 29=1.(2)由(1)知轨迹C 为双曲线,A 、B 即为C 的两个焦点, ∴|PA |-|PB |=±8.①又PA ⊥PB ,∴|PA |2+|PB |2=|AB |2=100.② 由②-①2得|PA |·|PB |=18.19.【解析】 (1)设所求抛物线的方程为y 2=2px (p >0),由⎩⎪⎨⎪⎧ y 2=2px ,x +y -1=0,消去y , 得x 2-2(1+p )x +1=0.设A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=2(1+p ),x 1·x 2=1.∵|AB |=8611, ∴(1+k 2)[(x 1+x 2)2-4x 1x 2] =8611,∴121p 2+242p -48=0, ∴p =211或者-2411(舍). ∴抛物线的方程为y 2=411x . (2)设AB 的中点为D ,那么D ⎝ ⎛⎭⎪⎫1311,-211. 假设x 轴上存在满足条件的点C (x 0,0),∵△ABC 为正三角形,∴CD ⊥AB ,∴x 0=1511. ∴C ⎝ ⎛⎭⎪⎫1511,0,∴|CD |=2211. 又∵|CD |=32|AB |=12211, 故矛盾,∴x 轴上不存在点C ,使△ABC 为正三角形.20.【解析】 (1)设点P (x ,y ),那么Q (-1,y ),由·=·,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得C :y 2=4x .(2)设直线AB 的方程为x =my +1(m ≠0).设A (x 1,y 1),B (x 2,y 2),又M ⎝ ⎛⎭⎪⎫-1,-2m ,联立方程组⎩⎪⎨⎪⎧ y 2=4x ,x =my +1, 消去x ,得y 2-4my -4=0,Δ=(-4m )2+16>0,故⎩⎪⎨⎪⎧ y 1+y 2=4m ,y 1y 2=-4.由=λ1,=λ2,得y 1+2m =-λ1y 1,y 2+2m=-λ2y 2,整理,得λ1=-1-2my 1, λ2=-1-2my 2,∴λ1+λ2=-2-2m ⎝ ⎛⎭⎪⎫1y 1+1y 2 =-2-2m ·y 1+y 2y 1y 2=-2-2m ·4m -4=0. 21.【解析】 (1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), ⎩⎪⎨⎪⎧ a =3b 9a 2+1b 2=1 ⇒⎩⎪⎨⎪⎧ a 2=18b 2=2,所求椭圆的方程为x 218+y 22=1 (2)∵直线l ∥OM 且在y 轴上的截距为m ,∴直线l 方程为:y =13x +m由⎩⎪⎨⎪⎧ y =13x +m x 218+y 22=1⇒2x 2+6mx +9m 2-18=0 ∵直线l 交椭圆于A 、B 两点,∴Δ=(6m )2-4×2(9m 2-18)>0⇒-2<m <2 m 的取值范围为-2<m <2,且m ≠0.(3)证明:设直线MA 、MB 的斜率分别为k 1,k 2,那么问题只需证明k 1+k 2=0.设A (x 1,y 1),B (x 2,y 2),那么k 1=y 1-1x 1-3,k 2=y 2-1x 2-3. 由2x 2+6mx +9m 2-18=0得x 1+x 2=-3m ,x 1x 2=92m 2-9.又y 1=13x 1+m ,y 2=13x 2+m , 代入k 1+k 2=(y 1-1)(x 2-3)+(y 2-1)(x 1-3)(x 1-3)(x 2-3), 整理得k 1+k 2=23x 1x 2+(m -2)(x 1+x 2)+6-6m (x 1-3)(x 2-3)=23⎝ ⎛⎭⎪⎫92m 2-9+(m -2)(-3m )+6-6m (x 1-3)(x 2-3)=0∴k 1+k 2=0,从而直线MA 、MB 与x 轴围成一个等腰三角形.22.【解析】 (1)S △APB =12AP ·PB =92,又∠PAB =45°,AP =PB ,故AP =BP =3.∵P (1,0),∴A (-2,0),B (1,-3).∴b =2,将B (1,-3)代入椭圆方程,得⎩⎪⎨⎪⎧ b =2,1b 2+9a 2=1,解得a 2=12,∴所求椭圆的方程为 y 212+x 24=1. (2)设椭圆C 的焦点为F 1,F 2,那么易知F 1(0,-22),F 2(0,22),直线AB 的方程为x +y +2=0,因为M 在双曲线E 上,要使双曲线E 的实轴最长, 只需||MF 1|-|MF 2||最大,∵F 1(0,-22)关于直线AB 的对称点为F 1′(22-2,-2),∴直线F 2F 1′与直线l 的交点为所求M .∵F 2F 1′的方程为y +(3+22)x -22=0,∴联立⎩⎨⎧ y +(3+22)x -22=0,x +y +2=0,得M (1,-3), 又2a ′=||MF 1|-|MF 2||=||MF 1′|-|MF 2||≤|F 2F 1′| =(22-2-0)2+(-2-22)2=26,故a ′max =6,b ′=2,故所求双曲线的方程为 y 26-x 22=1.制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日。

圆锥曲线综合大题练 分类题组-2023届高三数学一轮复习

圆锥曲线综合大题练 分类题组-2023届高三数学一轮复习

题组:圆锥曲线综合大题练题型1:定点问题1.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为√10.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.2.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.3.已知椭圆C:2222=1x ya b(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.4.如图,椭圆E:x 2a2+y2b2=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=12.过F1的直线交椭圆于A、B两点,且∆ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.5.如图,已知椭圆Γ:x 2b2+y2a2=1(a>b>0)的离心率e=√22,短轴右端点为A,M(1.0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于P,Q两点,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.题型2:定值问题1.已知椭圆C :22221+=x y a b (0a b >>)的离心率为 32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N.求证:BM AN ⋅为定值.2.如图, 在平面直角坐标系中, 抛物线的准线与轴交于点,过点的直线与抛物线交于两点, 设到准线的距离. (1)若,求抛物线的标准方程;(2)若,求证:直线的斜率的平方为定值.xOy ()220y px p =>l x M M ,A B ()11,A x y l ()20d p λλ=>13y d ==0AM AB λ+=AB3.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,点(2,√2)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.4.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,的离心率为,点A(1,√32)在椭圆C上,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1∙k2为定值.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率√22,若圆x 2+y 2=a 2被直线x − y −√2=0截得的弦长为2。

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5B.C.D.【答案】C【解析】由已知,|OA|=a=设OA所在渐近线的方程为y=kx(k>0),于是A点坐标可表示为A(x0,kx)(x>0)于是,即A(),进而AB的一个三分点坐标为()该点在椭圆C1上,有,即,得k=2即=2,于是,所以离心率,选C【考点】圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.2.已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【考点】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.3.已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.【答案】(1) ;(2)【解析】(1)因为焦距为4,所以,又,由此可求出的值,从而求得椭圆的方程.(2)椭圆方程化为.设PQ的方程为,代入椭圆方程得:.(ⅰ)设PQ的中点为,求出,只要,即证得OT 平分线段PQ.(ⅱ)可用表示出PQ,TF可得:.再根据取等号的条件,可得T的坐标.试题解答:(1),又.(2)椭圆方程化为.(ⅰ)设PQ的方程为,代入椭圆方程得:.设PQ的中点为,则又TF的方程为,则得,所以,即OT过PQ的中点,即OT平分线段PQ.(ⅱ),又,所以.当时取等号,此时T的坐标为.【考点】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,;(1)若,求点的坐标;(2)求面积的最大值.【答案】(1)或;(2).【解析】(1)根据抛物线方程为,写出焦点为,准线方程为,设,由抛物线的定义知,,把代入求得点的坐标,再由求得点的坐标;(2)设直线的方程为,,,,联立方程组,整理得,先求出的中点的坐标,再由,得出,用弦长公式表示,构造函数,用导数法求的面积的最大值.(1)由题意知,焦点为,准线方程为,设,由抛物线的定义知,,得到,代入求得或,所以或,由得或,(2)设直线的方程为,,,,由得,于是,所以,,所以的中点的坐标,由,所以,所以,因为,所以,由,,所以,又因为,点到直线的距离为,所以,记,,令解得,,所以在上是增函数,在上是减函数,在上是增函数,又,所以当时,取得最大值,此时,所以的面积的最大值为.【考点】抛物线的几何性质,直线与抛物线的位置关系,三角形的面积公式,平面向量的坐标运算.5.如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1);(2)直线方程为或.【解析】本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明,解出k的值.(1)由题意,,即,,即 2分又得:∴椭圆的标准方程:. 5分(2)①当直线的斜率不存在时,直线的方程为联立,解得或,不妨令,,所以对应的“椭点”坐标,.而所以此时以为直径的圆不过坐标原点. 7分②当直线的斜率存在时,设直线的方程为消去得,设,则这两点的“椭点”坐标分别为由根与系数关系得: 9分若使得以为直径的圆过坐标原点,则而,∴即,即代入,解得:所以直线方程为或. 12分【考点】椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.6.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB 的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.【答案】(1)+y2=1(2)t=2或t=【解析】(1)设椭圆C的方程为:(a>b>0),则,解得a=,b=1,故椭圆C的方程为+y2=1.(2)由于A、B两点关于x轴对称,可设直线AB的方程为x=m(-<x<,且m≠0).将x=m代入椭圆方程得|y|=,所以S△AOB=|m| =.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),又点P在椭圆上,所以=1.②由①②得t2=4或t2=.又因为t>0,所以t=2或t=.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A.B.C.D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.【考点】抛物线的标准方程及几何性质.8.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4B.2C.1D.【答案】A【解析】设双曲线左焦点为F1,由双曲线的定义知,|MF2|-|MF1|=2a,即18-|MF1|=10,所以|MF1|=8.又ON为△MF1F2的中位线,所以|ON|=|MF1|=4,所以选A.9.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.10.如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1),,(2)(ⅰ),(ⅱ).【解析】(1)求椭圆标准方程,只需两个独立条件. 由题意知,,,所以,,所以椭圆的方程为,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心,,所以圆的方程为(2)(ⅰ)本题关键分析出比值暗示的解题方向,由于点在轴上,所以,因此解题方向为利用斜率分别表示出点与点的横坐标. 设直线的方程为,与直线的方程联立,解得点,联立,消去并整理得,,解得点,因此当且仅当时,取“=”,所以的最大值为.(ⅱ)求出点的横坐标,分析与点的横坐标的和是否为常数. 直线的方程为,与直线的方程联立,解得点,所以、两点的横坐标之和为.试题解析:(1)由题意知,,,所以,,所以椭圆的方程为, 2分易得圆心,,所以圆的方程为.4分(2)解:设直线的方程为,与直线的方程联立,解得点, 6分联立,消去并整理得,,解得点,9分(ⅰ),当且仅当时,取“=”,所以的最大值为. 12分(ⅱ)直线的方程为,与直线的方程联立,解得点, 14分所以、两点的横坐标之和为.故、两点的横坐标之和为定值,该定值为. 16分【考点】椭圆与圆标准方程,直线与椭圆位置关系11. 如图,在平面直角坐标系xOy 中,已知椭圆=1的左、右顶点为A 、B ,右焦点为F.设过点T(t ,m)的直线TA 、TB 与椭圆分别交于点M(x 1,y 1)、N(x 2,y 2),其中m>0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). 【答案】(1)x =(2)(3)见解析【解析】(1)解:设点P(x ,y),则F(2,0)、B(3,0)、A(-3,0).由PF 2-PB 2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4,化简得x =,故所求点P 的轨迹为直线x =. (2)解:将x 1=2,x 2=分别代入椭圆方程,以及y 1>0,y 2<0得M 、N.直线MTA的方程为,即y =x +1.直线NTB 的方程为,即y =x -.联立方程组,解得所以点T 的坐标为.(3)证明:点T 的坐标为(9,m),直线MTA 的方程为,即y =(x +3).直线NTB 的方程为,即y =(x -3).分别与椭圆=1联立方程组,同时考虑到x 1≠-3,x 2≠3,解得 M、N(证法1)当x 1≠x 2时,直线MN 的方程为,令y =0,解得x=1,此时必过点D(1,0);当x 1=x 2时,直线MN 的方程为x =1,与x 轴交点为D(1,0),所以直线MN 必过x 轴上的一定点D(1,0). (证法2)若x 1=x 2,则由及m>0,得m =2,此时直线MN 的方程为x =1,过点D(1,0).若x 1≠x 2,则m≠2.直线MD 的斜率k MD =,直线ND 的斜率k ND =,得k MD =k ND ,所以直线MN 过D 点.因此,直线MN 必过x 轴上的点D(1,0).12.已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-)2+y2=相切于点Q,且=2,则椭圆C的离心率等于()A.B.C.D.【答案】A【解析】记椭圆的左焦点为F′,圆(x-)2+y2=的圆心为E,连接PF′、QE.∵|EF|=|OF|-|OE|=c-=,=2,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.13.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)(2)见解析(3)存在【解析】(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k 来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.试题解析:解:(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。

高考理科数学一轮复习大题篇----圆锥曲线综合(含答案)

高考理科数学一轮复习大题篇----圆锥曲线综合(含答案)

高考理科数学一轮复习大题篇----圆锥曲线综合【归类解析】题型一 范围问题【解题指导】 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【例】设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1|OF |+1|OA |=3e |F A |,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.【解】 (1)设F (c,0),由1|OF |+1|OA |=3e |F A |, 即1c +1a =3c a a -c,可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4.所以椭圆的方程为x 24+y 23=1. (2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧ x 24+y 23=1,y =k x -2消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0.解得x =2或x =8k 2-64k 2+3. 由题意得x B =8k 2-64k 2+3,从而y B =-12k 4k 2+3. 由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k 24k 2+3,12k 4k 2+3. 由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k . 因此直线MH 的方程为y =-1k x +9-4k 212k . 设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k x -2,y =-1k x +9-4k 212k , 消去y ,解得x M =20k 2+912k 2+1. 在△MAO 中,由∠MOA ≤∠MAO ,得|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M , 化简,得x M ≥1,即20k 2+912k 2+1≥1, 解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64∪⎣⎡⎭⎫64,+∞. 【训练】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围. (1)证明 设P (x 0,y 0),A ⎝⎛⎭⎫14y 21,y 1,B ⎝⎛⎭⎫14y 22,y 2.因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.所以y 1+y 2=2y 0,所以PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22y 20-4x 0. 所以△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=)3220044y x -.因为x 20+y 204=1(-1≤x 0<0), 所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△P AB 面积的取值范围是⎣⎡⎦⎤62,15104. 题型二 最值问题【解题指导】 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【例】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),且椭圆上的点到一个焦点的最短距离为33b . (1)求椭圆C 的离心率;(2)若点M ⎝⎛⎭⎫3,32在椭圆C 上,不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值. 【解】 (1)由题意,得a -c =33b ,则(a -c )2=13b 2, 结合b 2=a 2-c 2,得(a -c )2=13(a 2-c 2), 即2c 2-3ac +a 2=0,亦即2e 2-3e +1=0,结合0<e <1,解得e =12. 所以椭圆C 的离心率为12. (2)由(1)得a =2c ,则b 2=3c 2.将M ⎝⎛⎭⎫3,32代入椭圆方程x 24c 2+y 23c 2=1,解得c =1. 所以椭圆方程为x 24+y 23=1. 易得直线OM 的方程为y =12x . 当直线l 的斜率不存在时,线段AB 的中点不在直线y =12x 上,故直线l 的斜率存在. 设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消y 得(3+4k 2)x 2+8kmx +4m 2-12=0, 由题意得Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=48(3+4k 2-m 2)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2. 因为y 1+y 2=k (x 1+x 2)+2m =6m 3+4k 2, 所以线段AB 的中点N 的坐标为⎝⎛⎭⎫-4km 3+4k 2,3m 3+4k 2, 因为点N 在直线y =12x 上, 所以-4km 3+4k 2=2×3m 3+4k 2, 解得k =-32. 所以Δ=48(12-m 2)>0,解得-23<m <23,且m ≠0,|AB |=1+⎝⎛⎭⎫-322|x 2-x 1| =132·x 1+x 22-4x 1x 2 =132·m 2-4m 2-123=39612-m 2. 又原点O 到直线l 的距离d =2|m |13, 所以S △OAB =12×39612-m 2×2|m |13 =3612-m 2m 2≤36·12-m 2+m 22= 3. 当且仅当12-m 2=m 2,即m =±6时等号成立,符合-23<m <23,且m ≠0.所以△OAB 面积的最大值为 3.【训练】已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).【解】 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎨⎧ x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2b mx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,① 将AB 的中点M ⎝⎛⎭⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2,② 由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则t 2∈⎝⎛⎭⎫0,32. 则|AB |=t 2+1·-2t 4+2t 2+32t 2+12, 且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12 -2⎝⎛⎭⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立,此时满足t 2∈⎝⎛⎭⎫0,32. 故△AOB 面积的最大值为22. 题型三 定点问题【解题指导】 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【例】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b2知,椭圆C 不经过点P 1, 所以点P 2在椭圆C 上.因此⎩⎨⎧ 1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1. 故椭圆C 的方程为x 24+y 2=1. (2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1, 得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1. 而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设知k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0, 解得k =-m +12. 当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m , 即y +1=-m +12(x -2), 所以l 过定点(2,-1).【训练】 已知焦距为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,直线y =43与椭圆C 交于P ,Q 两点(P 在Q 的左边),Q 在x 轴上的射影为B ,且四边形ABPQ 是平行四边形.(1)求椭圆C 的方程;(2)斜率为k 的直线l 与椭圆C 交于两个不同的点M ,N .①若直线l 过原点且与坐标轴不重合,E 是直线3x +3y -2=0上一点,且△EMN 是以E 为直角顶点的等腰直角三角形,求k 的值;②若M 是椭圆的左顶点,D 是直线MN 上一点,且DA ⊥AM ,点G 是x 轴上异于点M 的点,且以DN 为直径的圆恒过直线AN 和DG 的交点,求证:点G 是定点.(1)解 由题意可得2c =22,即c =2,设Q ⎝⎛⎭⎫n ,43,因为四边形ABPQ 为平行四边形, |PQ |=2n ,|AB |=a -n ,所以2n =a -n ,n =a 3, 则⎝⎛⎭⎫a 32a 2+169b 2=1,解得b 2=2,a 2=b 2+c 2=4, 可得椭圆C 的方程为x 24+y 22=1. (2)①解 直线y =kx (k ≠0)代入椭圆方程,可得(1+2k 2)x 2=4,解得x =±21+2k 2, 可设M ⎝ ⎛⎭⎪⎫21+2k 2,2k 1+2k 2, 由E 是3x +3y -2=0上一点,可设E ⎝⎛⎭⎫m ,23-m ⎝⎛⎭⎫m ≠0,且m ≠23, E 到直线kx -y =0的距离为d =⎪⎪⎪⎪km +m -231+k 2,因为△EMN 是以E 为直角顶点的等腰直角三角形,所以OE ⊥MN ,|OM |=d ,即有23-m m =-1k,(*) 4+4k 21+2k 2=⎪⎪⎪⎪km +m -231+k 2,(**)由(*)得m =2k 3k -1(k ≠1),代入(**)式, 化简整理可得7k 2-18k +8=0,解得k =2或47. ②证明 由M (-2,0),可得直线MN 的方程为y =k (x +2)(k ≠0),代入椭圆方程可得(1+2k 2)x 2+8k 2x +8k 2-4=0,可得-2+x N =-8k 21+2k 2,解得x N =2-4k 21+2k 2, y N =k (x N +2)=4k 1+2k 2,即N ⎝ ⎛⎭⎪⎫2-4k 21+2k 2,4k 1+2k 2, 设G (t,0)(t ≠-2),由题意可得D (2,4k ),A (2,0),以DN 为直径的圆恒过直线AN 和DG 的交点,可得AN ⊥DG ,即有AN →·DG →=0,即为⎝ ⎛⎭⎪⎫-8k 21+2k 2,4k 1+2k 2·(t -2,-4k )=0,解得t =0. 故点G 是定点,即为原点(0,0).题型四 定值问题【解题指导】 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.【例】已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值. (1)解 因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2.故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0.设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0. 依题意知Δ=(2k -4)2-4×k 2×1>0,解得k <0或0<k <1.又P A ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)证明 设A (x 1,y 1),B (x 2,y 2),由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k 2. 直线P A 的方程为y -2=y 1-2x 1-1(x -1), 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2. 同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →,得λ=1-y M ,μ=1-y N .所以1λ+1μ=11-y M +11-y N=x 1-1k -1x 1+x 2-1k -1x 2 =1k -1·2x 1x 2-x 1+x2x 1x 2 =1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值. 【训练】已知点M 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2分别为C 的左、右焦点,且|F 1F 2|=4,∠F 1MF 2=60°,△F 1MF 2的面积为433. (1)求椭圆C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 于异于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.(1)解 在△F 1MF 2中,由12|MF 1||MF 2|sin 60°=433,得|MF 1||MF 2|=163. 由余弦定理,得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|·cos 60°=(|MF 1|+|MF 2|)2-2|MF 1||MF 2|(1+cos 60°),解得|MF 1|+|MF 2|=4 2.从而2a =|MF 1|+|MF 2|=42,即a =2 2.由|F 1F 2|=4得c =2,从而b =2, 故椭圆C 的方程为x 28+y 24=1. (2)证明 当直线l 的斜率存在时,设斜率为k ,显然k ≠0,则其方程为y +2=k (x +1),由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k x +1,得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0.Δ=56k 2+32k >0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k k -21+2k 2,x 1x 2=2k 2-8k 1+2k 2. 从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+k -4x 1+x 2x 1x 2 =2k -(k -4)·4k k -22k 2-8k=4. 当直线l 的斜率不存在时,可得A ⎝⎛⎭⎫-1,142,B ⎝⎛⎭⎫-1,-142,得k 1+k 2=4. 综上,k 1+k 2为定值.题型五 证明问题【解题指导】 圆锥曲线中的证明问题多涉及证明定值、点在定直线上等,有时也涉及一些否定性命题,证明方法一般是采用直接法或反证法.【例】设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .(1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0).由NP →= 2 NM →得x 0=x ,y 0=22y . 因为M (x 0,y 0)在C 上,所以x 22+y 22=1. 因此点P 的轨迹方程为x 2+y 2=2.(2)证明 由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1,得-3m -m 2+tn -n 2=1.又由(1)知m 2+n 2=2,故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【训练】已知椭圆T :x 2a 2+y 2b 2=1(a >b >0)的一个顶点A (0,1),离心率e =63,圆C :x 2+y 2=4,从圆C 上任意一点P 向椭圆T 引两条切线PM ,PN .(1)求椭圆T 的方程;(2)求证:PM ⊥PN .(1)解 由题意可知b =1,c a =63,即2a 2=3c 2, 又a 2=b 2+c 2,联立解得a 2=3,b 2=1.∴椭圆方程为x 23+y 2=1. (2)证明 方法一 ①当P 点横坐标为±3时,纵坐标为±1,PM 斜率不存在,PN 斜率为0,PM ⊥PN .②当P 点横坐标不为±3时,设P (x 0,y 0),则x 20+y 20=4,设k PM =k ,PM 的方程为y -y 0=k (x -x 0),联立方程组⎩⎪⎨⎪⎧y -y 0=k x -x 0,x 23+y 2=1, 消去y 得(1+3k 2)x 2+6k (y 0-kx 0)x +3k 2x 20-6kx 0y 0+3y 20-3=0,依题意Δ=36k 2(y 0-kx 0)2-4(1+3k 2)(3k 2x 20-6kx 0y 0+3y 20-3)=0,化简得(3-x 20)k 2+2x 0y 0k +1-y 20=0, 又k PM ,k PN 为方程的两根,所以k PM ·k PN =1-y 203-x 20=1-4-x 203-x 20=x 20-33-x 20=-1. 所以PM ⊥PN .综上知PM ⊥PN .方法二 ①当P 点横坐标为±3时,纵坐标为±1,PM 斜率不存在,PN 斜率为0,PM ⊥PN . ②当P 点横坐标不为±3时,设P (2cos θ,2sin θ),切线方程为y -2sin θ=k (x -2cos θ),⎩⎪⎨⎪⎧ y -2sin θ=k x -2cos θ,x 23+y 2=1, 联立得(1+3k 2)x 2+12k (sin θ-k cos θ)x +12(sin θ-k cos θ)2-3=0,令Δ=0,即Δ=144k 2(sin θ-k cos θ)2-4(1+3k 2)[12(sin θ-k cos θ)2-3]=0,化简得(3-4cos 2θ)k 2+4sin 2θ·k +1-4sin 2θ=0,k PM ·k PN =1-4sin 2θ3-4cos 2θ=4-4sin 2θ-33-4cos 2θ=-1. 所以PM ⊥PN .综上知PM ⊥PN .题型六 探索性问题【解题指导】 解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.【例】在平面直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点, (1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.【解】 (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a , C 在点(2a ,a )处的切线方程为y -a =a (x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a , C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ), 即ax +y +a =0. 故所求切线方程为ax -y -a =0和ax +y +a =0.(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2.将y =kx +a 代入C 的方程得x 2-4kx -4a =0.故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +b a . 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM =∠OPN ,所以点P (0,-a )符合题意.【训练】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点Q ⎝⎛⎭⎫1,-22,且离心率e =22,直线l 与E 相交于M ,N 两点,l 与x 轴、y 轴分别相交于C ,D 两点,O 为坐标原点.(1)求椭圆E 的方程;(2)判断是否存在直线l ,满足2OC →=OM →+OD →,2OD →=ON →+OC →?若存在,求出直线l 的方程;若不存在,请说明理由.【解】 (1)由题意得⎩⎨⎧c a =22,1a 2+12b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=2,b 2=1. 所以椭圆E 的方程为x 22+y 2=1. (2)存在直线l ,满足2OC →=OM →+OD →,2OD →=ON →+OC →.理由如下:方法一 由题意,直线l 的斜率存在,设直线l 的方程为y =kx +m (km ≠0),M (x 1,y 1),N (x 2,y 2),则C ⎝⎛⎭⎫-m k ,0,D (0,m ). 由方程组⎩⎪⎨⎪⎧ y =kx +m ,x 22+y 2=1, 得(1+2k 2)x 2+4kmx +2m 2-2=0,所以Δ=16k 2-8m 2+8>0.(*)由根与系数的关系,得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-21+2k 2. 因为2OC →=OM →+OD →,2OD →=ON →+OC →,所以MC →=CD →=DN →,所以C ,D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合.所以x 1+x 2=-4km 1+2k2=0-m k ,解得k =±22. 由C ,D 是线段MN 的两个三等分点,得|MN |=3|CD |.所以1+k 2|x 1-x 2|=3⎝⎛⎭⎫m k 2+m 2, 即|x 1-x 2|=⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-21+2k 2=3⎪⎪⎪⎪m k , 解得m =±55.验证知(*)成立.所以存在直线l ,满足2OC →=OM →+OD →,2OD →=ON →+OC →,此时直线l 的方程为y =22x ±55或y =-22x ±55. 方法二 设M (x 1,y 1),N (x 2,y 2),C (m,0),D (0,n ),由2OC →=OM →+OD →,2OD →=ON →+OC →,得⎩⎪⎨⎪⎧ 2m ,0=x 1,y 1+0,n ,20,n =x 2,y 2+m ,0,解得M (2m ,-n ),N (-m,2n ).又M ,N 两点在椭圆上,所以⎩⎨⎧4m 22+n 2=1,m 22+4n 2=1,即⎩⎪⎨⎪⎧ 2m 2+n 2=1,m 2+8n 2=2, 解得⎩⎨⎧m =±105,n =±55, 故所求直线l 的方程为52x -10y +25=0或52x -10y -25=0或52x +10y +25=0或52x +10y -25=0.专题突破训练1. 已知P ⎝⎛⎭⎫23,263是椭圆C :x 2a 2+y 2b 2=1(a >b >0)与抛物线E :y 2=2px (p >0)的一个公共点,且椭圆与抛物线具有一个相同的焦点F .(1)求椭圆C 及抛物线E 的方程;(2)设过F 且互相垂直的两动直线l 1,l 2,l 1与椭圆C 交于A ,B 两点,l 2与抛物线E 交于C ,D 两点,求四边形ACBD 面积的最小值. 解 (1)∵P ⎝⎛⎭⎫23,263是抛物线E :y 2=2px (p >0)上一点, ∴p =2,即抛物线E 的方程为y 2=4x ,F (1,0),∴a 2-b 2=1.又∵P ⎝⎛⎭⎫23,263在椭圆C :x 2a 2+y 2b 2=1上, ∴49a 2+83b 2=1,结合a 2-b 2=1知b 2=3(舍负),a 2=4, ∴椭圆C 的方程为x 24+y 23=1, 抛物线E 的方程为y 2=4x .(2)由题意可知直线l 1斜率存在,设直线l 1的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).①当k =0时,|AB |=4,直线l 2的方程为x =1,|CD |=4,故S 四边形ACBD =12·|AB |·|CD |=8. ②当k ≠0时,直线l 2的方程为y =-1k(x -1), 由⎩⎪⎨⎪⎧y =k x -1,x 24+y 23=1 得(3+4k 2)x 2-8k 2x +4k 2-12=0.∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2. 由弦长公式知|AB |=1+k 2|x 1-x 2|=1+k 2[x 1+x 22-4x 1x 2]=12k 2+14k 2+3. 同理可得|CD |=4(k 2+1).∴S 四边形ACBD =12·|AB |·|CD | =12·12k 2+14k 2+3·4(k 2+1) =24k 2+124k 2+3.令t =k 2+1,t ∈(1,+∞),则S 四边形ACBD =24t 24t -1=244t -1t 2=24-⎝⎛⎭⎫1t -22+4, 当t ∈(1,+∞)时,1t∈(0,1), -⎝⎛⎭⎫1t -22+4<3,S 四边形ACBD >243=8. 综上所述,四边形ACBD 面积的最小值为8.2.已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上位于第一象限的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D .(1)若当点A 的横坐标为3,且△ADF 为等边三角形,求C 的方程;(2)对于(1)中求出的抛物线C ,若点D (x 0,0)⎝⎛⎭⎫x 0≥12,记点B 关于x 轴的对称点为E ,AE 交x 轴于点P ,且AP ⊥BP ,求证:点P 的坐标为(-x 0,0),并求点P 到直线AB 的距离d 的取值范围.解 (1)由题意知F ⎝⎛⎭⎫p 2,0,|F A |=3+p 2, 则D (3+p,0),FD 的中点坐标为⎝⎛⎭⎫32+3p 4,0,则32+3p 4=3,解得p =2, 故C 的方程为y 2=4x .(2)依题意可设直线AB 的方程为x =my +x 0(m ≠0),A (x 1,y 1),B (x 2,y 2),则E (x 2,-y 2),由⎩⎪⎨⎪⎧y 2=4x ,x =my +x 0, 消去x ,得y 2-4my -4x 0=0,x 0≥12.所以Δ=16m 2+16x 0>0,y 1+y 2=4m ,y 1y 2=-4x 0,设P 的坐标为(x P ,0),则PE →=(x 2-x P ,-y 2),P A →=(x 1-x P ,y 1),由题意知PE →∥P A →,所以(x 2-x P )y 1+y 2(x 1-x P )=0,即x 2y 1+y 2x 1=y 22y 1+y 21y 24=y 1y 2y 1+y 24=(y 1+y 2)x P ,显然y 1+y 2=4m ≠0,所以x P =y 1y 24=-x 0, 即证P (-x 0,0),由题意知△EPB 为等腰直角三角形,所以k AP =1,即y 1+y 2x 1-x 2=1,也即y 1+y 214y 21-y 22=1, 所以y 1-y 2=4,所以(y 1+y 2)2-4y 1y 2=16,即16m 2+16x 0=16,m 2=1-x 0,x 0<1,又因为x 0≥12,所以12≤x 0<1, d =|-x 0-x 0|1+m 2=2x 01+m 2=2x 02-x 0, 令2-x 0=t ∈⎝⎛⎦⎤1,62,x 0=2-t 2, d =22-t 2t =4t-2t , 易知f (t )=4t -2t 在⎝⎛⎦⎤1,62上是减函数, 所以d ∈⎣⎡⎭⎫63,2. 所以d 的取值范围是⎣⎡⎭⎫63,2. 3.已知椭圆C 1:x 2m +4-y 2n=1与双曲线C 2:x 2m +y 2n =1有相同的焦点,求椭圆C 1的离心率e 1的取值范围.解 ∵椭圆C 1:x 2m +4-y 2n=1, ∴a 21=m +4,b 21=-n ,c 21=m +4+n ,e 21=m +4+n m +4=1+n m +4. ∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件知m +4+n =m -n ,则n =-2,∴e 21=1-2m +4. 由m >0得m +4>4,1m +4<14,-2m +4>-24, ∴1-2m +4>12, 即e 21>12,而0<e 1<1, ∴22<e 1<1. 4.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B ,左焦点为F ,点P 为椭圆C 上任一点,若直线P A 与PB 的斜率之积为-34,且椭圆C 经过点⎝⎛⎭⎫1,32. (1)求椭圆的方程;(2)若PB ,P A 交直线x =-1于M ,N 两点,过左焦点F 作以MN 为直径的圆的切线.问切线长是否为定值,若是,求出定值;若不是,请说明理由.解 (1)设P 点坐标为(x 0,y 0),由题意知A (-a,0),B (a,0),且x 20a 2+y 20b2=1. 则k P A ·k PB =y 0x 0+a ·y 0x 0-a =y 20x 20-a2 =⎝⎛⎭⎫-b 2a 2·x 20-a 2x 20-a 2=-b 2a 2=-34, 即3a 2=4b 2.①又因为椭圆经过点⎝⎛⎭⎫1,32, 故1a 2+94b2=1.② 由①②可知,b 2=3,a 2=4,故椭圆的方程为x 24+y 23=1. (2)由(1)可知A (-2,0),B (2,0),设k P A =k (k ≠0).由k ·k PB =-34,得k PB =-34k. 所以直线PB 的方程为y =-34k(x -2),令x =-1,则y =94k,故M ⎝⎛⎭⎫-1,94k . 直线P A 的方程为y =k (x +2),令x =-1,则y =k ,故N (-1,k ).如图,因为y M y N =94k ·k =94>0,故以MN 为直径的圆在x 轴同侧.设FT 为圆的一条切线,切点为T ,连接MT ,NT ,可知△FTN ∽△FMT ,故|FT ||FM |=|FN ||FT |,则|FT |2=|FN |·|FM |=|k |·⎪⎪⎪⎪94k =94,故|FT |=32. 故过左焦点F 作以MN 为直径的圆的切线长为定值32. 5.已知抛物线C 的顶点在原点,焦点在y 轴上,且抛物线上有一点P (m,5)到焦点的距离为6.(1)求该抛物线C 的方程;(2)已知抛物线上一点M (4,t ),过点M 作抛物线的两条弦MD 和ME ,且MD ⊥ME ,判断直线DE 是否过定点,并说明理由.解 (1)由题意设抛物线方程为x 2=2py (p >0),其准线方程为y =-p 2,P (m,5)到焦点的距离等于P 到其准线的距离, 所以5+p 2=6,即p =2. 所以抛物线方程为x 2=4y .(2)由(1)可得点M (4,4),设直线MD 的方程为y =k (x -4)+4(k ≠0),联立⎩⎪⎨⎪⎧ y =k x -4+4,x 2=4y ,得x 2-4kx +16k -16=0,由题意得,Δ>0,设D (x 1,y 1),E (x 2,y 2),则x M ·x 1=16k -16,所以x 1=16k -164=4k -4, y 1=4k -424=4(k -1)2,同理可得,x 2=-4k -4,y 2=4⎝⎛⎭⎫1k +12, 所以直线DE 的方程为y -4(k -1)2=4k -12-4⎝⎛⎭⎫1k +124k -4+4k+4(x -4k +4)=⎝⎛⎭⎫k +1k ⎝⎛⎭⎫k -1k -2k +1k(x -4k +4)=⎝⎛⎭⎫k -1k -2(x -4k +4). 化简得y =⎝⎛⎭⎫k -1k -2x +4k -4k =⎝⎛⎭⎫k -1k -2(x +4)+8. 所以直线DE 过定点(-4,8).6.已知动圆E 经过定点D (1,0),且与直线x =-1相切,设动圆圆心E 的轨迹为曲线C . (1)求曲线C 的方程;(2)设过点P (1,2)的直线l 1,l 2分别与曲线C 交于A ,B 两点,直线l 1,l 2的斜率存在,且倾斜角互补,证明:直线AB 的斜率为定值.(1)解 由已知,动点E 到定点D (1,0)的距离等于E 到直线x =-1的距离,由抛物线的定义知E 点的轨迹是以D (1,0)为焦点,以x =-1为准线的抛物线,故曲线C 的方程为y 2=4x . (2)证明 由题意直线l 1,l 2的斜率存在,倾斜角互补,得斜率互为相反数,且不等于零. 设A (x 1,y 1),B (x 2,y 2),直线l 1的方程为y =k (x -1)+2,k ≠0. 直线l 2的方程为y =-k (x -1)+2,由⎩⎪⎨⎪⎧y =k x -1+2,y 2=4x得k 2x 2-(2k 2-4k +4)x +(k -2)2=0, Δ=16(k -1)2>0, 已知此方程一个根为1, ∴x 1×1=k -22k 2=k 2-4k +4k 2,即x 1=k 2-4k +4k 2,同理x 2=-k2-4-k +4-k 2=k 2+4k +4k 2,∴x 1+x 2=2k 2+8k 2,x 1-x 2=-8k k 2=-8k ,∴y 1-y 2=[k (x 1-1)+2]-[-k (x 2-1)+2] =k (x 1+x 2)-2k =k ·2k 2+8k 2-2k =8k ,∴k AB =y 1-y 2x 1-x 2=8k -8k =-1,∴直线AB 的斜率为定值-1.7.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为22,过左焦点F 且垂直于x 轴的直线交椭圆C 于P ,Q 两点,且|PQ |=2 2. (1)求C 的方程;(2)若直线l 是圆x 2+y 2=8上的点(2,2)处的切线,点M 是直线l 上任一点,过点M 作椭圆C 的切线MA ,MB ,切点分别为A ,B ,设切线的斜率都存在.求证:直线AB 过定点,并求出该定点的坐标.解 (1)由已知,设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),因为|PQ |=22,不妨设点P (-c ,2), 代入椭圆方程得,c 2a 2+2b 2=1,又因为e =c a =22,所以12+2b 2=1,b =c ,所以b 2=4,a 2=2b 2=8, 所以C 的方程为x 28+y 24=1.(2)依题设,得直线l 的方程为y -2=-(x -2), 即x +y -4=0,设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),x 0≠x 1且x 0≠x 2, 由切线MA 的斜率存在,设其方程为y -y 1=k (x -x 1), 联立⎩⎪⎨⎪⎧y -y 1=k x -x 1,x 28+y 24=1得(2k 2+1)x 2+4k (y 1-kx 1)x +2(y 1-kx 1)2-8=0,由相切得Δ=16k 2(y 1-kx 1)2-8(2k 2+1)[(y 1-kx 1)2-4]=0,化简得(y 1-kx 1)2=8k 2+4,即(x 21-8)k 2-2x 1y 1k +y 21-4=0,因为方程只有一解,所以k =x 1y 1x 21-8=x 1y 1-2y 21=-x 12y 1, 所以切线MA 的方程为y -y 1=-x 12y 1(x -x 1),即x 1x +2y 1y =8,同理,切线MB 的方程为x 2x +2y 2y =8, 又因为两切线都经过点M (x 0,y 0),所以⎩⎪⎨⎪⎧x 1x 0+2y 1y 0=8,x 2x 0+2y 2y 0=8,所以直线AB 的方程为x 0x +2y 0y =8, 又x 0+y 0=4,所以直线AB 的方程可化为x 0x +2(4-x 0)y =8, 即x 0(x -2y )+8y -8=0,令⎩⎪⎨⎪⎧ x -2y =0,8y -8=0得⎩⎪⎨⎪⎧x =2,y =1,所以直线AB 恒过定点(2,1).8.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,左顶点M 到直线x a +y b =1的距离d =455,O为坐标原点. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,若以AB 为直径的圆经过坐标原点,证明:点O 到直线AB 的距离为定值. (1)解 由e =32,得c =32a ,又b 2=a 2-c 2, 所以b =12a ,即a =2b .由左顶点M (-a,0)到直线x a +yb =1,即到直线bx +ay -ab =0的距离d =455,得|b-a-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b=455,解得b =1.所以a =2b =2,c = 3. 所以椭圆C 的方程为x 24+y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,由椭圆的对称性, 可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214+y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0, 所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB , 所以OA →·OB →=x 1x 2+y 1y 2=0, 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0, 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0, 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过⎝⎛⎭⎫1,32与⎝⎛⎭⎫62,304两点.(1)求椭圆C 的方程;(2)过原点的直线l 与椭圆C 交于A ,B 两点,椭圆C 上一点M 满足|MA |=|MB |.求证:1|OA |2+1|OB |2+2|OM |2为定值. (1)解 将⎝⎛⎭⎫1,32与⎝⎛⎭⎫62,304两点代入椭圆C 的方程,得⎩⎪⎨⎪⎧1a 2+94b 2=1,32a 2+3016b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)证明 由|MA |=|MB |,知M 在线段AB 的垂直平分线上,由椭圆的对称性知点A ,B 关于原点对称.①若点A ,B 是椭圆的短轴顶点,则点M 是椭圆的一个长轴顶点,此时 1|OA |2+1|OB |2+2|OM |2=1b 2+1b 2+2a2=2⎝⎛⎭⎫1a 2+1b 2=76. 同理,若点A ,B 是椭圆的长轴顶点,则点M 是椭圆的一个短轴顶点,此时 1|OA |2+1|OB |2+2|OM |2=1a 2+1a 2+2b2=2⎝⎛⎭⎫1a 2+1b 2=76. ②若点A ,B ,M 不是椭圆的顶点,设直线l 的方程为y =kx (k ≠0), 则直线OM 的方程为y =-1kx ,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx ,x 24+y 23=1,解得x 21=123+4k 2,y 21=12k 23+4k 2, 所以|OA |2=|OB |2=x 21+y 21=121+k 23+4k 2,同理,|OM |2=121+k 24+3k 2.所以1|OA |2+1|OB |2+2|OM |2=2×3+4k 2121+k 2+24+3k 2121+k2=76.综上,1|OA |2+1|OB |2+2|OM |2=76为定值. 10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2分别为椭圆的左、右焦点,点P为椭圆上一点,△F 1PF 2面积的最大值为 3. (1)求椭圆C 的方程;(2)过点A (4,0)作关于x 轴对称的两条不同直线l 1,l 2分别交椭圆于M (x 1,y 1)与N (x 2,y 2),且x 1≠x 2,证明直线MN 过定点,并求△AMN 的面积S 的取值范围. 解 (1)设a 2-b 2=c 2,则c a =32,设P (x ,y ),则12F PF S =c |y |,∵|y |≤b ,∴12F PF S≤bc = 3.解得⎩⎪⎨⎪⎧a =2,b =1.∴椭圆C 的方程为x 24+y 2=1.(2)设MN 方程为x =ny +m (n ≠0),联立⎩⎪⎨⎪⎧x =ny +m ,x 2+4y 2-4=0, 得(n 2+4)y 2+2nmy +m 2-4=0, 由题意知,Δ=16(n 2-m 2+4)>0, ∴y 1+y 2=-2nm n 2+4,y 1y 2=m 2-4n 2+4,∵关于x 轴对称的两条不同直线l 1,l 2的斜率之和为0, 即y 1x 1-4+y 2x 2-4=0, 即y 1ny 1+m -4+y 2ny 2+m -4=0,得2ny 1y 2+m (y 1+y 2)-4(y 1+y 2)=0, 即2n m 2-4n 2+4-2nm 2n 2+4+8nm n 2+4=0.解得m =1.直线MN 方程为x =ny +1, ∴直线MN 过定点B (1,0). 又|y 1-y 2|= ⎝ ⎛⎭⎪⎫-2n n 2+42-4·-3n 2+4=4n 2+3n 2+42=41n 2+4-1n 2+42,令1n 2+4=t ,∴t ∈⎝⎛⎭⎫0,14, ∴|y 1-y 2|=4-t 2+t ∈(0,3), 又S =12|AB ||y 1-y 2|=32|y 1-y 2|∈⎝⎛⎭⎫0,332.11.已知椭圆C 的中心为坐标原点,焦点在x 轴上,离心率e =32,以椭圆C 的长轴和短轴为对角线的四边形的周长为4 5. (1)求椭圆C 的标准方程;(2)若经过点P (1,0)的直线l 交椭圆C 于A ,B 两点,是否存在直线l 0:x =x 0(x 0>2),使得A ,B 到直线l 0的距离d A ,d B 满足d A d B =|P A ||PB |恒成立,若存在,求出x 0的值;若不存在,请说明理由.解 (1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵c a =32,∴c =32a , 又∵4a 2+b 2=45,∴a 2+b 2=5,由b 2=a 2-c 2=14a 2,解得a =2,b =1,c = 3. ∴椭圆C 的标准方程为x 24+y 2=1.(2)若直线l 的斜率不存在,则直线l 0为任意直线都满足要求; 当直线l 的斜率存在时,设其方程为y =k (x -1), 设A (x 1,y 1),B (x 2,y 2)(不妨令x 1>1>x 2), 则d A =x 0-x 1,d B =x 0-x 2,|P A |=1+k 2(x 1-1),|PB |=1+k 2(1-x 2), ∵d A d B =|P A ||PB |, ∴x 0-x 1x 0-x 2=1+k 2x 1-11+k 21-x 2=x 1-11-x 2, 解得x 0=2x 1x 2-x 1+x 2x 1+x 2-2.由⎩⎪⎨⎪⎧x 24+y 2=1,y =k x -1,得(1+4k 2)x 2-8k 2x +4k 2-4=0,由题意知,Δ>0显然成立,x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2,x 0=8k 2-81+4k 2-8k 21+4k 28k 21+4k 2-2=4.综上可知存在直线l 0:x =4,使得A ,B 到直线l 0的距离d A ,d B 满足d A d B =|P A ||PB |恒成立.12.已知顶点是坐标原点的抛物线Γ的焦点F 在y 轴正半轴上,圆心在直线y =12x 上的圆E 与x 轴相切,且E ,F 关于点M (-1,0)对称. (1)求E 和Γ的标准方程;(2)过点M 的直线l 与E 交于A ,B ,与Γ交于C ,D ,求证:|CD |>2|AB |. (1)解 设Γ的标准方程为x 2=2py (p >0), 则F ⎝⎛⎭⎫0,p 2. 已知E 在直线y =12x 上,故可设E (2a ,a ).因为E ,F 关于M (-1,0)对称,所以⎩⎪⎨⎪⎧2a +02=-1,p2+a 2=0,解得⎩⎪⎨⎪⎧a =-1,p =2.所以Γ的标准方程为x 2=4y .因为E 与x 轴相切,故半径r =|a |=1, 所以E 的标准方程为(x +2)2+(y +1)2=1. (2)证明 由题意知,直线l 的斜率存在, 设l 的斜率为k ,那么其方程为y =k (x +1)(k ≠0), 则E (-2,-1)到l 的距离d =|k -1|k 2+1, 因为l 与E 交于A ,B 两点, 所以d 2<r 2,即k -12k 2+1<1,解得k >0,所以|AB |=21-d 2=22kk 2+1.由⎩⎪⎨⎪⎧x 2=4y ,y =k x +1消去y 并整理得x 2-4kx -4k =0.Δ=16k 2+16k >0恒成立, 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=4k ,x 1x 2=-4k , 那么|CD |=k 2+1|x 1-x 2| =k 2+1·x 1+x 22-4x 1x 2=4k 2+1·k 2+k .所以|CD |2|AB |2=16k 2+1k 2+k8k k 2+1=2k 2+12k 2+kk =2k k 2+12k +1k>2k k=2. 所以|CD |2>2|AB |2, 即|CD |>2|AB |.13,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴与短轴之和为6,椭圆上任一点到两焦点F 1,F 2的距离之和为4.(1)求椭圆的标准方程;(2)若直线AB :y =x +m 与椭圆交于A ,B 两点,C ,D 在椭圆上,且C ,D 两点关于直线AB 对称,问:是否存在实数m ,使|AB |=2|CD |,若存在,求出m 的值;若不存在,请说明理由.解 (1)由题意,2a =4,2a +2b =6, ∴a =2,b =1.∴椭圆的标准方程为x 24+y 2=1.(2)∵C ,D 关于直线AB 对称, 设直线CD 的方程为y =-x +t ,联立⎩⎪⎨⎪⎧y =-x +t ,x 24+y 2=1消去y ,得5x 2-8tx +4t 2-4=0, Δ=64t 2-4×5×(4t 2-4)>0,解得t 2<5,设C ,D 两点的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1+x 2=8t5,x 1x 2=4t 2-45,设CD 的中点为M (x 0,y 0), ∴⎩⎨⎧x 0=x 1+x 22=4t 5,y 0=-x 0+t =t5,∴M ⎝⎛⎭⎫4t 5,t 5,又点M 也在直线y =x +m 上, 则t 5=4t 5+m ,∴t =-5m3, ∵t 2<5,∴m 2<95.则|CD |=1+1|x 1-x 2| =2·x 1+x 22-4x 1x 2=2·45-t 25.同理|AB |=2·45-m 25.∵|AB |=2|CD |, ∴|AB |2=2|CD |2, ∴2t 2-m 2=5, ∴m 2=4541<95,∴存在实数m ,使|AB |=2|CD |,此时m 的值为±320541.14.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB 的中点,O 为坐标原点. (1)求直线ON 的斜率k ON ;(2)求证:对于椭圆C 上的任意一点M ,都存在θ∈[0,2π),使得OM →=cos θOA →+sin θOB →成立. (1)解 设椭圆的焦距为2c , 因为c a =63,所以a 2-b 2a 2=23,故有a 2=3b 2.从而椭圆C 的方程可化为x 2+3y 2=3b 2.①知右焦点F 的坐标为(2b,0),据题意有AB 所在的直线方程为y =x -2b .②由①②得4x 2-62bx +3b 2=0.③设A (x 1,y 1),B (x 2,y 2),弦AB 的中点N (x 0,y 0),由③及根与系数的关系得:x 0=x 1+x 22=32b 4,y 0=x 0-2b =-24b . 所以k ON =y 0x 0=-13,即为所求. (2)证明 显然OA →与OB →可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量OM →,有且只有一对实数λ,μ,使得等式OM →=λOA →+μOB →成立.设M (x ,y ),由(1)中各点的坐标有(x ,y )=λ(x 1,y 1)+μ(x 2,y 2),故x =λx 1+μx 2,y =λy 1+μy 2. 又因为点M 在椭圆C 上,所以有(λx 1+μx 2)2+3(λy 1+μy 2)2=3b 2,整理可得λ2(x 21+3y 21)+μ2(x 22+3y 22)+2λμ(x 1x 2+3y 1y 2)=3b 2.④由③有x 1+x 2=32b 2,x 1·x 2=3b 24. 所以x 1x 2+3y 1y 2=x 1x 2+3(x 1-2b )(x 2-2b )=4x 1x 2-32b (x 1+x 2)+6b 2=3b 2-9b 2+6b 2=0.⑤又点A ,B 在椭圆C 上,故有x 21+3y 21=3b 2,x 22+3y 22=3b 2.⑥将⑤,⑥代入④可得,λ2+μ2=1.所以,对于椭圆上的每一个点M ,总存在一对实数,使等式OM →=λOA →+μOB →成立,且λ2+μ2=1.所以存在θ∈[0,2π),使得λ=cos θ,μ=sin θ.也就是:对于椭圆C 上任意一点M ,总存在θ∈[0,2π),使得等式OM →=cos θOA →+sin θOB →成立.15.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求出λ的值;若不存在,请说明理由.解 (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ),又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧ 1-b 2=-1,c a =32,a 2-b 2=c 2,解得a =22,b =2,所以椭圆E 的方程为x 28+y 22=1. (2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧ x 28+y 22=1,y =kx +1,得(4k 2+1)x 2+8kx -4=0, 其判别式Δ=(8k )2+16(4k 2+1)>0,所以x 1+x 2=-8k 4k 2+1,x 1x 2=-44k 2+1, 从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=-4λ-8k 2+-4λ-34k 2+1=-3λ+14k 2+1-λ-2. 所以当λ=-13时,-3λ+14k 2+1-λ-2=-53, 此时OA →·OB →+λP A →·PB →=-53为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时,OA →·OB →+λP A →·PB →=OC →·OD →-13PC →·PD → =-2+13=-53. 故存在常数λ=-13,使得OA →·OB →+λP A →·PB →为定值-53.。

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.已知圆经过椭圆的右焦点和上顶点.(1)求椭圆的方程;(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.【答案】(1);(2).【解析】本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能力;考查数形结合、化归与转化及函数与方程等数学思想.第一问,数形结合,令y=0,x=0即可分别求出c和b的值,从而得到椭圆的标准方程;第二问,设出直线方程和P、Q点坐标,令直线与椭圆联立得到Q点横坐标,利用向量的数量积,将P、Q点坐标代入,得到关于k的表达式,利用导数求函数的最值;法二,将进行转化,变成,再利用配方法求最值.试题解析:(1)在中,令得,即,令,得,即, 2分由,∴椭圆:. 4分(2)法一:依题意射线的斜率存在,设,设 -5分得:,∴. 6分得:,∴, 7分∴. 9分.设,,令,得.又,∴在单调递增,在单调递减. 11分∴当时,,即的最大值为. 13分法二:依题意射线的斜率存在,设,设 5分得:,∴. 6分= 9分.设,则.当且仅当即.法三:设点,,6分= . 7分又,设与联立得: . 9分令. 11分又点在第一象限,∴当时,取最大值. 13分【考点】直线、圆、椭圆、平面向量、分式函数.2.(本小题满分12分)已知曲线上的点到点的距离比它到直线的距离小2.(1)求曲线的方程;(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.【答案】(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.【解析】(1)思路一:设为曲线上任意一点,依题意可知曲线是以点为焦点,直线为准线的抛物线,得到曲线的方程为.思路二:设为曲线上任意一点,由,化简即得.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,得,应用导数的几何意义,确定切线的斜率,进一步得切线的方程为.由,得.由,得.根据,得圆心,半径,由弦长,半径及圆心到直线的距离之关系,确定.试题解析:解法一:(1)设为曲线上任意一点,依题意,点S到的距离与它到直线的距离相等,所以曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,则,由,得切线的斜率,所以切线的方程为,即.由,得.由,得.又,所以圆心,半径,.所以点P在曲线上运动时,线段AB的长度不变.解法二:(1)设为曲线上任意一点,则,依题意,点只能在直线的上方,所以,所以,化简得,曲线的方程为.(2)同解法一.【考点】抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.3.已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.(1)求抛物线C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.【答案】(1);(2)x-y-1=0或x+y-1=0.【解析】(1)设Q(x0,4),代入由中得x=,在根据抛物线的性质可得,解出p即可(2)设直线l的方程为,(m≠0)代入中得,直线的方程为,将上式代入中,并整理得.A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),根据二次函数根与系数的关系可得y1+y2=4m,y1y2=-4,.然后求出MN的中点为E和AB的中点为D坐标的表达式,计算的表达式,根据求出m即可.试题解析:(1)设Q(x0,4),代入由中得x=,所以,由题设得,解得p=-2(舍去)或p=2.所以C的方程为.(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,故AB的中点为D(2m2+1,2m),,有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得.设M(x3,y3),N(x4,y4),则.故MN的中点为E().由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得m2-1=0,解得m=1或m=-1,所以所求直线l的方程为x-y-1=0或x+y-1=0.【考点】1.抛物线的性质和方程;2.直线方程以及直线与曲线的位置关系.4.如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程;(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.【答案】(1)或;(2).【解析】(1)因为是圆的直径,所以当圆过原点时,一定有,由此可确定点的位置并进一步求出圆的标准方程;(2)设圆M的半径为,连结,显然有根据椭圆的标准方程知,所以,从而找到符合条件的定圆.解:(1)解法一:因为圆过原点,所以,所以是椭圆的短轴顶点,的坐标是或,于是点的坐标为或,易求圆的半径为所以圆的方程为或 6分解法二:设,因为圆过原点,所以所以,所以,所以点于是点的坐标为或,易求圆的半径所以圆的方程为或 6分(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为 8分探究过程为:设圆的半径为,定圆的半径为,因为,所以当原点为定圆圆心,半径时,定圆始终与圆相内切.(13分)【考点】1、椭圆的定义与标准方程;2、圆的定义与标准方程.5.已知,是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为A.B.C.D.【答案】【解析】即双曲线的一条渐近线方程.过焦点且垂直渐近线的直线方程为:,与联立,解之可得故对称中心的点坐标为();由中点坐标公式可得对称点的坐标为,将其代入双曲线的方程可得结合化简可得,故.故选.【考点】双曲线的几何性质,直线方程,两直线的位置关系.6.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.7.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【答案】B【解析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.8.已知椭圆和椭圆的离心率相同,且点在椭圆上.(1)求椭圆的方程;(2)设为椭圆上一点,过点作直线交椭圆于、两点,且恰为弦的中点。

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。

知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。

(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。

高考数学圆锥曲线专题练习及答案解析

高考数学圆锥曲线专题练习及答案解析
2
X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考达标检测(三十八) 圆锥曲线的综合问题——直线与圆锥曲线的位置关系一、选择题1.已知过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A ,B 两点,且点A 在第一象限,若|AF |=3,则直线l 的斜率为( )A .1 B.2 C. 3D .22解析:选D 由题意可知焦点F (1,0),设A (x A ,y A ), 由|AF |=3=x A +1,得x A =2,又点A 在第一象限, 故A (2,22),故直线l 的斜率为2 2.2.若直线y =kx +2与抛物线y 2=x 有一个公共点,则实数k 的值为( ) A. 18 B .0C. 18或0 D .8或0解析:选C 由⎩⎨⎧y =kx +2,y 2=x ,得ky 2-y +2=0,若k =0,直线与抛物线有一个交点,则y =2, 若k ≠0,则Δ=1-8k =0,∴k =18,综上可知k =0或 18.3.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2 B.32 C.355D.52解析:选B 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),得x 1+x 2=24,y 1+y 2=30,由⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,两式相减得:x 1+x 2x 1-x 2a 2=y 1+y 2y 1-y 2b 2,则y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=4b 25a2.由直线AB 的斜率k =15-612-3=1,∴4b 25a 2=1,则b 2a 2=54, ∴双曲线的离心率e =c a =1+b 2a 2=32. 4.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA ―→·MB ―→=0,则k = ( )A.12B.22C. 2D .2解析:选D 如图所示,设F 为焦点,取AB 的中点P ,过A ,B 分别作准线l 的垂线,垂足分别为G ,H ,连接MF ,MP ,由MA ―→·MB ―→=0,知MA ⊥MB ,则|MP |=12|AB |=12(|AG |+|BH |),所以MP 为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,所以∠GAM =∠AMP =∠MAP , 又|AG |=|AF |,AM 为公共边,所以△AMG ≌△AMF , 所以∠AFM =∠AGM =90°,则MF ⊥AB ,所以k =-1k MF=2.5.已知F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,A ,B 分别为其左、右顶点.O 为坐标原点,D 为其上一点,DF ⊥x 轴.过点A 的直线l 与线段DF 交于点E ,与y 轴交于点M ,直线BE 与y 轴交于点N ,若3|OM |=2|ON |,则双曲线的离心率为( )A .3B .4C .5D .6解析:选C 如图,设A (-a,0),B (a,0),M (0,2m ),N (0,-3m ). 则直线AM 的方程为y =2m a x +2m ,直线BN 的方程为y =3max -3m .∵直线AM ,BN 的交点D (c ,y 0), ∴2mc a +2m =3mc a -3m ,则c a=5,∴双曲线的离心率为5.6.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455C.4105D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎨⎧x 2+4y 2=4,y =x +t消去y ,得5x 2+8tx +4(t 2-1)=0. 则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=2·⎝ ⎛⎭⎪⎫-85t 2-4×4t 2-15=425·5-t 2, 故当t =0时,|AB |max =4105.二、填空题7.焦点是F (0,52),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为__________.解析:设所求的椭圆方程为y 2a 2+x 2b 2=1(a >b >0),直线被椭圆所截弦的端点为A (x 1,y 1),B (x 2,y 2).由题意,可得弦AB 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, 且x 1+x 22=27,y 1+y 22=-37.将A ,B 两点坐标代入椭圆方程中,得⎩⎪⎨⎪⎧y 21a 2+x 21b2=1,y 22a 2+x22b 2=1.两式相减并化简,得a 2b 2=-y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-2×-6747=3,所以a 2=3b 2.又c 2=a 2-b 2=50,所以a 2=75,b 2=25. 故所求椭圆的标准方程为y 275+x 225=1.答案:y 275+x 225=18.经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,倾斜角为60°的直线与双曲线有且只有一个交点,则该双曲线的离心率为________.解析:∵经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,倾斜角为60°的直线与双曲线有且只有一个交点,∴根据双曲线的几何性质知所给直线应与双曲线的一条渐近线y =bax 平行,∴b a=tan 60°=3,即b =3a , ∴c =a 2+b 2=2a ,故e =c a=2. 答案:29.抛物线x 2=4y 与直线x -2y +2=0交于A ,B 两点,且A ,B 关于直线y =-2x +m 对称,则m 的值为________.解析:设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧x 2=4y ,x -2y +2=0消去y ,得x 2-2x -4=0.则x 1+x 2=2,x 1+x 22=1.∴y 1+y 2=12(x 1+x 2)+2=3,y 1+y 22=32.∵A ,B 关于直线y =-2x +m 对称, ∴AB 的中点在直线y =-2x +m 上, 即32=-2×1+m ,解得m =72. 答案:72三、解答题10.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,过右焦点F 2(c,0)垂直于x 轴的直线与椭圆交于P ,Q 两点且|PQ |=433,又过左焦点F 1(-c,0)作直线l 交椭圆于两点.(1)求椭圆C 的方程;(2)若椭圆C 上两点A ,B 关于直线l 对称,求△AOB 面积的最大值. 解:(1)由题意可知|PQ |=2b 2a =433. ①又椭圆的离心率e =ca=1-b 2a 2=33,则b 2a 2=23, ② 由①②解得a 2=3,b 2=2, ∴椭圆的方程为x 23+y 22=1.(2)由(1)可知左焦点F 1(-1,0),依题意,直线l 不垂直x 轴,当直线l 的斜率k ≠0时,可设直线l 的方程为y =k (x +1)(k ≠0),则直线AB 的方程可设为y =-1kx +m ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =-1k x +m ,x 23+y22=1,整理得(2k 2+3)x 2-6kmx +3k 2m 2-6k 2=0,Δ=(-6km )2-4×(2k 2+3)(3k 2m 2-6k 2)>0,则m 2k 2-2k 2-3<0, ③ x 1+x 2=6km 2k 2+3,x 1x 2=3k 2m 2-6k 22k 2+3.设AB 的中点为C (x C ,y C ), 则x C =x 1+x 22=3km 2k 2+3,y C =2k 2m2k 2+3. ∵点C 在直线l 上,∴2k 2m 2k 2+3=k ⎝ ⎛⎭⎪⎫3km 2k 2+3+1,则m =-2k -3k, ④此时m 2-2-3k 2=4k 2+6k2+10>0与③矛盾,故k ≠0时不成立.当直线l 的斜率k =0时,A (x 0,y 0),B (x 0,-y 0)(x 0>0,y 0>0),∴△AOB 的面积S =12·2y 0·x 0=x 0y 0.∵x 203+y 202=1≥2 x 203·y 202=63x 0y 0,∴x 0y 0≤62.当且仅当x 203=y 202=12时取等号.∴△AOB 的面积的最大值为62. 11.已知抛物线E :y 2=2px (p >0)的焦点F ,E 上一点(3,m )到焦点的距离为4. (1)求抛物线E 的方程;(2)过F 作直线l ,交抛物线E 于A ,B 两点,若直线AB 中点的纵坐标为-1,求直线l 的方程.解:(1)抛物线E :y 2=2px (p >0)的准线方程为x =-p2,由抛物线的定义可知3-⎝ ⎛⎭⎪⎫-p 2 =4,解得p =2,∴抛物线E 的方程为y 2=4x .(2)法一:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 21=4x 1,y 22=4x 2,两式相减,整理得y 2-y 1x 2-x 1 =4y 2+y 1(x 1≠x 2). ∵线段AB 中点的纵坐标为-1, ∴直线l 的斜率k AB =4y 2+y 1=4-1×2=-2,∴直线l 的方程为y -0=-2(x -1),即2x +y -2=0. 法二:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设直线l 的方程为x =my +1,由⎩⎨⎧y 2=4x ,x =my +1消去x ,得y 2-4my -4=0. 设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2), ∵线段AB 中点的纵坐标为-1, ∴y 1+y 22 =4m2=-1,解得m =-12,∴直线l 的方程为x =-12y +1,即2x +y -2=0. 12.(2018·海口调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点分别为A ,B ,其离心率e =12,点M 为椭圆上的一个动点,△MAB 面积的最大值是2 3. (1)求椭圆C 的方程; (2)若过椭圆C 右顶点B 的直线l 与椭圆的另一个交点为D ,线段BD 的垂直平分线与y轴交于点P ,当PB ―→·PD ―→=0时,求点P 的坐标. 解:(1)由题意可知⎩⎪⎨⎪⎧ e =c a =12,12×2ab =23,a 2=b 2+c 2,解得a =2,b =3,所以椭圆方程为x 24+y 23=1. (2)由(1)知B (2,0),设直线BD 的方程为y =k (x -2),D (x 1,y 1),把y =k (x -2)代入椭圆方程x 24+y 23=1, 整理得(3+4k 2)x 2-16k 2x +16k 2-12=0,所以2+x 1=16k 23+4k 2⇒x 1=8k 2-63+4k 2,则D ⎝ ⎛⎭⎪⎫8k 2-63+4k 2,-12k 3+4k 2, 所以BD 中点的坐标为⎝ ⎛⎭⎪⎫8k 23+4k 2,-6k 3+4k 2, 则直线BD 的垂直平分线方程为y --6k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x -8k 23+4k 2,得P ⎝ ⎛⎭⎪⎫0,2k 3+4k 2. 又PB ―→·PD ―→=0,即⎝ ⎛⎭⎪⎫2,-2k 3+4k 2·⎝⎛⎭⎪⎫8k 2-63+4k 2,-14k 3+4k 2=0, 化简得64k 4+28k 2-363+4k22=0⇒64k 4+28k 2-36=0, 解得k =±34. 故P ⎝ ⎛⎭⎪⎫0,27或⎝⎛⎭⎪⎫0,-27.1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,设过右焦点的直线l 与椭圆C 交于不同的两点A ,B ,过A ,B 作直线x =2的垂线AP ,BQ ,垂足分别为P ,Q .记λ=|AP |+|BQ ||PQ |,若直线l 的斜率k ≥3,则λ的取值范围为__________. 解析:∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22, ∴⎩⎨⎧ 2b =2,c a =22,a 2=b 2+c 2,解得a =2,b =c =1,∴椭圆C 的方程为x 22+y 2=1. ∵过右焦点的直线l 与椭圆C 交于不同的两点A ,B ,∴设直线l 的方程为y =k (x -1), 联立⎩⎨⎧ x 22+y 2=1,y =k x -1得(2k 2+1)x 2-4k 2x +2k 2-2=0, 设A (x 1,y 1),B (x 2,y 2),y 1>y 2,则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1, ∴λ=|AP |+|BQ ||PQ |=2-x 1+2-x 2y 1-y 2=4-x 1+x 2k x 1-1-k x 2-1=4-x 1+x 2kx 1+x 22-4x 1x 2 =4-4k 22k 2+1k ⎝ ⎛⎭⎪⎫4k 22k 2+12-4×2k 2-22k 2+1=2k 2+2k = 2+2k2. ∵k ≥3,∴当k =3时,λmax = 2+23=263,当k →+∞时,λmin →2, ∴λ的取值范围是⎝ ⎛⎦⎥⎤2,263. 答案:⎝ ⎛⎦⎥⎤2,263 2.已知动点M 到定点F (1,0)的距离比M 到定直线x =-2的距离小1.(1)求点M 的轨迹C 的方程;(2)过点F 任意作互相垂直的两条直线l 1,l 2,分别交曲线C 于点A ,B 和M ,N .设线段AB ,MN 的中点分别为P ,Q ,求证:直线PQ 恒过一个定点;(3)在(2)的条件下,求△FPQ 面积的最小值.解:(1)由题意可知,动点M 到定点F (1,0)的距离等于M 到定直线x =-1的距离, 根据抛物线的定义可知,点M 的轨迹C 是抛物线,所以点M 的轨迹C 的方程为y 2=4x .(2)证明:设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2), 则点P 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.由题意可设直线l 1的方程为y =k (x -1),k ≠0, 由⎩⎨⎧y 2=4x ,y =k x -1得k 2x 2-(2k 2+4)x +k 2=0. Δ=(2k 2+4)2-4k 4=16k 2+16>0. 因为直线l 1与曲线C 交于A ,B 两点, 所以x 1+x 2=2+4k 2,y 1+y 2=k (x 1+x 2-2)=4k. 所以点P 的坐标为⎝ ⎛⎭⎪⎫1+2k 2,2k . 由题知,直线l 2的斜率为-1k ,同理可得点Q 的坐标为(1+2k 2,-2k ).当k ≠±1时,有1+2k 2≠1+2k 2,此时直线PQ 的斜率 k PQ =2k+2k1+2k 2-1-2k 2=k1-k 2. 所以直线PQ 的方程为y +2k =k1-k 2(x -1-2k 2), 整理得yk 2+(x -3)k -y =0. 于是直线PQ 恒过定点E (3,0);当k =±1时,直线PQ 的方程为x =3,也过点E (3,0). 综上所述,直线PQ 恒过定点E (3,0).(3)由(2)得|EF |=2,所以△FPQ 面积S =12|EF |⎝ ⎛⎭⎪⎫2|k |+2|k |=2⎝ ⎛⎭⎪⎫1|k |+|k |≥4, 当且仅当k =±1时,“=”成立,所以△FPQ 面积的最小值为4.如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档