专题22 圆锥曲线高考真题江苏卷(原卷版)-2021年高考数学圆锥曲线中必考知识专练

合集下载

圆锥曲线高考真题江苏卷(解析版)-2021年高考数学圆锥曲线中必考知识专练

圆锥曲线高考真题江苏卷(解析版)-2021年高考数学圆锥曲线中必考知识专练

专题22:圆锥曲线高考真题江苏卷(解析版)一、填空题1.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y =. 【分析】根据条件求b ,再代入双曲线的渐近线方程得出答案. 【详解】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =. 【点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程.2.在平面直角坐标系xOy 中,若双曲线22x a﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____. 【答案】32【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率. 【详解】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为y x =,即22b a a =⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.3.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F 到一,则其离心率的值是________. 【答案】2 【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率. 详解:因为双曲线的焦点(c,0)F 到渐近线,by x a=±即0bx ay ±=的距离为,bcb c ==所以b =,因此22222231,44a c b c c c =-=-=1, 2.2a c e ==点睛:双曲线的焦点到渐近线的距离为b ,焦点在渐近线上的射影到坐标原点的距离为a .4.在平面直角坐标系xOy 中,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 ,F 2 ,则四边形F 1 P F 2 Q 的面积是________.【答案】【解析】右准线方程为10x ==,渐近线方程为3y x =±,设(1010P ,则(1010Q,1(F,2F,则10S == 点睛:(1)已知双曲线方程22221x y a b -=求渐近线:22220x y b y x a b a -=⇒=±;(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的。

押新高考第21题 圆锥曲线(新高考)(原卷版)

押新高考第21题 圆锥曲线(新高考)(原卷版)

圆锥曲线圆锥曲线部分历来是高考的重点,也是学生心中的难点,很多学生对圆锥曲线都有畏惧心理.从高考成绩分析上来看,圆锥曲线也是高考得分较低的部分;从考纲上来看,一般会"考查学生对解析几何基本概念的掌握情况,考查学生对解析几何基本方法的一般应用情况,适当地考查学生对几何学知识的综合应用能力,重视对数学思想方法的渗透".通过近几年的高考可以看到浙江高考题在圆锥曲线这一块考抛物线较多。

圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程,研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、范围、探索性问题等,此类命题第(1)问起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.解决此类问题的关键是找到已知条件和代求问题之间的联系,实现代求问题代数化,与已知条件得到的结论有效对接,难点在于代求问题的转化问题方法总结1.圆锥曲线中最值问题的求解方法(1)几何法:通过利用圆锥曲线的定义和几何性质进行求解(2)代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.函数主要是二次函数、对勾函数或者导数求解,不等式主要是运用基本不等式求解2.圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.3定点、定值模板1.寻找适合运动变化的量或者参数,如点坐标,直线的斜率,截距等,把相关问题用参数表示备用,或者找寻带有参数的直线与曲线联立方程组,得到关于x 或y 的一元二次方程,利用韦达定理列出x1x2,x1+x2(或y1y2,y1+y2的关系式备用2.根据已知条件把定点、定值问题转化为与参数有关的方程问题,与第一步的结论对接3,确定与参数无关点、值,即为所求.1.(2021·湖南·高考真题)已知椭圆()2222:10x y C a b a b +=>>经过点()20A ,3(1)求椭圆C 的方程;(2)设直线1y x =-与椭圆C 相交于P Q ,两点,求AP AQ ⋅的值.2.(2021·江苏·高考真题)已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x <时,()()log 2a f x x x =-+(0a >,且1a ≠).又直线():250l mx y m m R +++=∈恒过定点A ,且点A 在函数()f x 的图像上.(1) 求实数a 的值;(2) 求()()48f f -+的值;(3) 求函数()f x 的解析式.3.(2021·全国·高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为(2,0)F 6 (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||3MN =4.(2021·浙江·高考真题)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.5.(2021·北京·高考真题)已知椭圆2222:1(0)x y E a b a b +=>>一个顶 点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.1.(2022·天津·一模)已知椭圆()222210x y a b a b +=>>的右顶点为A ,上顶点为B ,离心率为2 且6AB (1)求椭圆的方程;(2)过点A 的直线与椭圆相交于点24,33⎛⎫- ⎪⎝⎭H ,与y 轴相交于点S ,过点S 的另一条直线l 与椭圆相交于M ,N 两点,且△ASM 的面积是△HSN 面积的32倍,求直线l 的方程. 2.(2022·福建·模拟预测)在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为12,F F ,2过点()2,0P 作直线l 与椭圆C 相交于,A B 两点.若A 是椭圆C 的短轴端点时,23AF AP ⋅=. (1)求椭圆C 的标准方程;(2)试判断是否存在直线l ,使得21F A ,2112F P ,21F B 成等差数列?若存在,求出直线l 的方程;若不存在,说明理由. 3.(2022·湖南·雅礼中学二模)已知曲线C :22221(0)x y a b a b+=>>,1F ,2F 分别为C 的左、右焦点,过1F 作直线l 与C 交于A ,B 两点,满足115AF F B =,且12224AF F Sa =.设e 为C 的离心率. (1)求2e ; (2)若32e ≤,且2a =,过点P (4,1)的直线1l 与C 交于E ,F 两点,1l 上存在一点T 使111EP FP PT +=.求T 的轨迹方程.4.(2022·广东深圳·二模)已知椭圆2222:1(0)x y E a b a b +=>>经过点31,2M ⎛⎫ ⎪ ⎪⎝⎭,且焦距1223F F =,线段,AB CD 分别是它的长轴和短轴.(1)求椭圆E 的方程;(2)若(,)N s t 是平面上的动点,从下面两个条件中选一个...........,证明:直线PQ 经过定点. ①31,2s t =≠±,直线,NA NB 与椭圆E 的另一交点分别为P ,Q ; ②2,t s =∈R ,直线,NC ND 与椭圆E 的另一交点分别为P ,Q .5.(2022·广东汕头·二模)如图所示,C 为半圆锥顶点,O 为圆锥底面圆心,BD 为底面直径,A 为弧BD 中点.BCD △是边长为2的等边三角形,弦AD 上点E 使得二面角E BC D --的大小为30°,且AE t AD =.(1)求t 的值;(2)对于平面ACD 内的动点P 总有OP //平面BEC ,请指出P 的轨迹,并说明该轨迹上任意点P 都使得OP //平面BEC 的理由.(限时:30分钟)1.已知圆C :()22116x y -+=,点()1,0F -,P 是圆C 上一动点,若线段PF 的垂直平分线和CP 相交于点M .(1)求点M 的轨迹方程E .(2)A ,B 是M 的轨迹方程与x 轴的交点(点A 在点B 左边),直线GH 过点()4,0T 与轨迹E 交于G ,H 两点,直线AG 与1x =交于点N ,求证:动直线NH 过定点B .2.已知定点()22,0O ,点P 为圆1O :()22232x y ++=(1O 为圆心)上一动点,线段2O P 的垂直平分线与直线1O P 交于点G .(1)设点G 的轨迹为曲线C ,求曲线C 的方程;(2)若过点2O 且不与x 轴重合的直线l 与(1)中曲线C 交于D ,E 两点,M 为线段DE 的中点,直线OM (O 为原点)与曲线C 交于A ,B 两点,且满足2MD MA MB =⋅,若存在这样的直线,求出直线l 的方程,若不存在请说明理由. 3.已知椭圆E :()222210x y a b a b +=>>的离心率3e =,椭圆E 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,四边形ACBD 的面积为4.(1)求椭圆E 的方程;(2)若P 是椭圆E 上一点(不在坐标轴上),直线PC ,PD 分别与x 轴相交于M ,N 两点,设PC ,PD ,OP 的斜率分别为1k ,2k ,3k ,过点P 的直线l 的斜率为k ,且123k k kk =,直线l 与x 轴交于点Q ,求MQ NQ -的值.4.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别是点A ,B ,直线2:3l x =与椭圆C 相交于D ,E 两个不同点,直线DA 与直线DB 的斜率之积为14-,ABD △的面积为23. (1)求椭圆C 的标准方程;(2)若点P 是直线2:3l x =的一个动点(不在x 轴上),直线AP 与椭圆C 的另一个交点为Q ,过P 作BQ 的垂线,垂足为M ,在x 轴上是否存在定点N ,使得MN 为定值,若存在,请求出点N 的坐标;若不存在,请说明理由.5.如图,A ,B ,M ,N 为抛物线22y x =上四个不同的点,直线AB 与直线MN 相交于点()1,0,直线AN 过点()2,0.(1)记A ,B 的纵坐标分别为A y ,B y ,求A B y y 的值;(2)记直线AN ,BM 的斜率分别为1k ,2k ,是否存在实数λ,使得21k k λ=?若存在,求出λ的值;若不存在,说明理由.。

2021年高考数学理试题分类汇编:圆锥曲线(含答案)

2021年高考数学理试题分类汇编:圆锥曲线(含答案)

2021年高考数学理试题分类汇编:圆锥曲线(含答案)2021年高考数学理试题分类汇编——圆锥曲线一、选择题1.【2021年四川高考】设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,那么直线OM的斜率的最大值为?答案】C2.【2021年天津高考】双曲线x^2/a^2-y^2/b^2=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,那么双曲线的方程为?答案】D3.【2021年全国I高考】方程x^2/4-y^2/n^2=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是?答案】A4.【2021年全国I高考】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点,|AB|=42,|DE|=25,那么C的焦点到准线的距离为?答案】B5.【2021年全国II高考】圆x+y-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,那么a=?答案】A6.【2021年全国II高考】圆F_1,F_2是双曲线E: x^2/4-y^2/9=1的左、右焦点,点M在E上,MF_1与x轴垂直,F_1F_2=b/a*sin∠MF_1F_2,那么E的离心率为?答案】A7.【2021年全国III高考】O为坐标原点,F是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点,A、B分别为C的左、右顶点。

P为C上一点,且PF⊥x轴。

过点A的直线l与线段PF交于点M,与y轴交于点E。

假设直线BM经过OE的中点,那么C的离心率为?答案】A8.【2021年浙江高考】椭圆C_1: x^2/4+y^2/m^2=1(m>1)与双曲线C_2: x^2/4-y^2/n^2=1(n>0)的焦点重合,e_1,e_2分别为C_1,C_2的离心率,且e_1>e_2,那么m、n的大小关系是?答案】m>n2y-1由AN·BM = (x-a)(y-b)(x+c)(y+c) = (x+c)(y+c)得证。

专题2 圆锥曲线求解析式(解析版)-2021年高考数学圆锥曲线中必考知识专练

专题2 圆锥曲线求解析式(解析版)-2021年高考数学圆锥曲线中必考知识专练
a
双曲线的虚轴长为16 2 c2 a2 2a ,可得 a 8 ,
当双曲线的焦点在 x 轴上时,双曲线的标准方程为 x2 y2 1 ; 64 64
当双曲线的焦点在 y 轴上时,双曲线的标准方程为 y2 x2 1 . 64 64
综上所述,所求双曲线的标准方程为 x2 y2 1 或 y2 x2 1 ;
B. x2 y2 1 34
C. x2 y2 1 16 9
D. x2 y2 1 9 16
【答案】D 解:由题可知, F1A F2F1 F2 A ,若 (F2F1 F2 A) F1A 0 ,即为 (F2F1 F2 A) F2F1 F2 A 0 ,
2 可得 AF2
【答案】A
由题意可得
2c
4
c2 a2
5 b2
a ,解得 b
6
,因此,椭圆的标准方程为
4
x2 36
y2 16
1.
7.若双曲线 C : mx2 y2 2 的实轴长等于虚轴长的一半,则 m ( )
1
A.
4
1 B.
2
C.4
D.2
【答案】C 解:双曲线 C : mx2
y2
2 化为标准方程是 C :
3
x2 9
y2 3
1;
(2)由双曲线的焦点在
y 轴上,可设双曲线的标准方程为
y2 a2
x2 b2
1a
0, b
0,
由双曲线的定义可得 2a 4
5 ,则 a 2
5
,所以,双曲线的标准为
y2 20
x2 b2
1,
将点 2, 5 的坐标代入双曲线的标准方程得
52
20
22 b2
1 ,解得 b

专题20 圆锥曲线全国卷高考真题综合2(解析版)-2021年高考数学圆锥曲线中必考知识专练

专题20 圆锥曲线全国卷高考真题综合2(解析版)-2021年高考数学圆锥曲线中必考知识专练

专题20:圆锥曲线全国卷高考真题综合2(解析版)一,选择题1,2017年全国普通高等学校招生统一考试理科数学(新课标1卷)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14C .12D .10【答案】A 【解析】设11223344(,),(,),(,),(,)A x y B x y D x y E x y ,直线1l 的方程为1(1)y k x =-,联立方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=-212124k k +=,同理直线2l 与抛物线的交点满足22342224k x x k ++=,由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=,当且仅当121k k =-=(或1-)时,取等号.点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin p AB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=.2,2017年全国普通高等学校招生统一考试理科数学(新课标2卷)若双曲线C:221a b-=(0a >,0b >)的一条渐近线被圆()224x y -+=所截得的弦长为2,则C 的离心率为 ( ) A .2 BCD.3【答案】A 【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d =则点()2,0到直线0bx ay +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A .点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 3.2017年全国普通高等学校招生统一考试理科数学(全国卷3)【答案】B则C 的方程为145-= . 本题选择B 选项.4.2017年全国普通高等学校招生统一考试理科数学(全国卷3正式版)已知椭圆C :22221x y a b+=,(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63 B .33 C .23 D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离222ab d a a b ==+,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,63c e a ==,故选A.5.2016年全国普通高等学校招生统一考试理科数学(新课标1卷)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 A .(–1,3) B .(–1,) C .(0,3) D .(0,)【答案】A 【解析】由题意知:双曲线的焦点在轴上,所以,解得,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A .【考点】双曲线的性质【名师点睛】双曲线知识一般作为客观题出现,主要考查双曲线的几何性质,属于基础题.注意双曲线的焦距是2c而不是c,这一点易出错.6.2016年全国普通高等学校招生统一考试理科数学(新课标1卷)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为A.2 B.4 C.6 D.8【答案】B【解析】试题分析:如图,设抛物线方程为,圆的半径为r,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【考点】抛物线的性质【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)圆的圆心到直线的距离为1,则()A.B.C.D.2【答案】A 【解析】 试题分析:由配方得,所以圆心为,因为圆的圆心到直线的距离为1,所以,解得,故选A.【考点】 圆的方程,点到直线的距离公式【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离. 已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围.8.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知00(,)M x y 是双曲线C :2212x y -=上的一点,1F ,2F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .33()B .33(C .2222( D .2323( 【答案】A 【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF ⋅=0000(3,)(3,)x y x y --⋅-=2220003310x y y +-=-<,解得03333y -<<,故选A. 考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.9,2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A .5 B .2C .3D .2【答案】D 【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.10,2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ) 已知为双曲线:的一个焦点,则点到的一条渐近线的距离为( ) A .B .3C .D .【答案】A 【解析】试题分析:由已知得,双曲线C 的标准方程为.则,,设一个焦点,一条渐近线的方程为,即,所以焦点F到渐近线的距离为,选A .【考点定位】1、双曲线的标准方程和简单几何性质;2、点到直线的距离公式.11,2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ) 已知抛物线C :的焦点为F ,准线为,P 是上一点,Q 是直线PF 与C 得一个交点,若4FP FQ =,则( )A .B .C .D .【答案】B 【详解】试题分析:如图所示,因为4FP FQ =,故34PQ PF =,过点Q 作QM l ⊥,垂足为M ,则//QM x 轴,所以344MQ PQ PF==,所以3MQ =,由抛物线定义知,3QF MQ ==,选B .【考点定位】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.12,2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷)设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A .33B .93C .6332D .94【答案】D 【解析】由题意可知:直线AB 的方程为33()34y x =-,代入抛物线的方程可得:2412390y y --=,设A 11(,)x y 、B 22(,)x y ,则所求三角形的面积为121213()424y y y y ⨯⨯+-=94,故选D.考点:本小题主要考查直线与抛物线的位置关系,考查两点间距离公式等基础知识,考查同学们分析问题与解决问题的能力. 二,填空题13,2017年全国普通高等学校招生统一考试理科数学(新课标1卷)已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线于交M 、N 两点,若60MAN ∠=,则C 的离心率为__________. 【答案】23 【解析】 如图所示,由题意可得|OA|=a ,|AN|=|AM|=b , ∵∠MAN=60°,∴,∴=设双曲线C的一条渐近线y=bax的倾斜角为θ,则tanθ=||||APOP=.又tan θ=ba,ba=,解得a2=3b2,∴==答案:3点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量,,a b c的方程或不等式,再根据222b c a=-和cea=转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).14,2017年全国普通高等学校招生统一考试理科数学(新课标2卷)已知F是抛物线C:28y x=的焦点,M是C上一点,F M的延长线交y轴于点N.若M 为F N的中点,则F N=____________.【答案】6【分析】如图所示,不妨设点M位于第一象限,设抛物线的准线与x轴交于点'F,作MB l⊥与点B,NA l⊥与点A,由抛物线的解析式可得准线方程为2x=-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FFBM+==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.15.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________. 【答案】22325()24x y -+= 【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=.考点:椭圆的几何性质;圆的标准方程16,2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷)设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________. 【答案】[1,1]- 【解析】由题意知:直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,如图,过OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为∠OMN=45,所以sin 45OA OM ==212OM ≤,解得2OM ≤,因为点M (0x ,1),所以2012OM x =+≤,解得011x -≤≤,故0x 的取值范围是[1,1]-.考点:本小题主要考查考查直线与圆的位置关系,考查数形结合能力和逻辑思维能力,考查同学们分析问题和解决问题的能力,有一定的区分度. 三,解答题 17.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ))32,2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN 的面积AMNS11212144227749=⨯⨯⨯=. (Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =+代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x ==.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当k =因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->2k <. 因此k 的取值范围是)2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.18.2016年全国普通高等学校招生统一考试理科数学(新课标1卷)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k的函数,再求最值。

(2021)高考数学真题试卷(江苏卷)带答案解析

(2021)高考数学真题试卷(江苏卷)带答案解析

2021年高考数学真题试卷(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.(共14题;共70分)1.已知集合A={−1,0,1,6},B={x|x>0,x∈R},则A∩B=________.【答案】{1,6}【考点】交集及其运算【解析】【解答】∵集合A={−1,0,1,6},B={x|x>0,x∈R},借助数轴得:A∩B={1,6}【分析】根据已知条件借助数轴,用交集的运算法则求出集合A∩B。

2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是________.【答案】2【考点】复数代数形式的乘除运算【解析】【解答】设z=(a+2i)×(1+i),∵复数z的实部为0,又∵z=(a−2)+(a+2)i,∴a−2=0,∴a=2【分析】利用复数的乘法运算法则求出复数z,从而求出复数z的实部和虚部,再结合复数z的实部为0的已知条件求出a的值。

3.下图是一个算法流程图,则输出的S的值是________.【答案】5【考点】程序框图【解析】【解答】第一步:x=1,S=0,S=S+x2=0+12=12,1≥4不成立;第二步:x=x+1=1+1=2,S=S+x2=12+22=32,2≥4不成立;第三步:x=x+1=2+1=3,S=S+x2=32+32=62=3,3≥4不成立;第四步:x=x+1=3+1=4,S=S+x2=3+42=5,4≥4成立;∴输出的S=5【分析】根据题中的已知条件结合程序框图的顺序结构、条件结构和循环结构求出输出的S的值。

4.函数y=√7+6x−x2的定义域是________.【答案】[−1,7]【考点】函数的定义域及其求法【解析】【解答】∵函数y=√7+6x−x2,∴要使函数有意义,则7+6x−x2≥0,∴x2−6x−7≤0,∴(x+1)(x−7)≤0,∴−1≤x≤7,∴函数的定义域为[-1,7]【分析】利用根式函数求定义域的方法结合一元二次不等式求解集的方法求出函数的定义域。

圆锥曲线高考真题浙江卷(解析版)-2021年高考数学圆锥曲线中必考知识专练

圆锥曲线高考真题浙江卷(解析版)-2021年高考数学圆锥曲线中必考知识专练

专题21:圆锥曲线高考真题浙江卷(解析版)一、单选题1.渐近线方程为0x y ±=的双曲线的离心率是( )A .2B .1CD .2【答案】C【分析】 本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c =则该双曲线的离心率为 e c a ==, 故选C .【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =图像上的点,则|OP |=( )A .2B .5C D【答案】D【分析】根据题意可知,点P 既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.3.椭圆2x 9+2y 4=1的离心率是( ) A.3 B.3 C .23 D .59【答案】B【解析】 椭圆22194x y +=中22222945a b c a b ===-=,,.离心率e c a ==,故选B. 4.双曲线221 3x y -=的焦点坐标是( ) A.(),) B .()2,0-,()2,0C.(0,,(D .()0,2-,()0,2 【答案】B【分析】 根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.【详解】 因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±, 因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.【点睛】。

江苏高考中的圆锥曲线(解答题型)

江苏高考中的圆锥曲线(解答题型)

即 4x21+9y21=36,4x22+9y22=36.
故 4x2+9y2=4(x21+λ2x22+2λx1x2)+9(y21+λ2y22+2λy1y2)=
(4x
2 1

9y
2 1
)

λ2(4x
2 2

9y
2 2
)

2λ(4x1x2

9y1y2)

36

36λ2

2λ(4x1x2+9y1y2).
所以 4x2+9y2=36+36λ2,即9+x29λ2+4+y24λ2=1,
又离心率为 22,即ac= 22,
bc=2, 由ac= 22,
a2=b2+c2,
解得 a2=4,b2=c2=2,
∴所求椭圆的方程为x42+y22=1.
高考专题辅导与测试·数学
创新方案系列丛书
(2)由(1)知 F2(
2,0),∴kMF2=-2
=- 2
2,
∴直线 l 的斜率等于 22,直线 l 的方程为 y= 22x+2.
所以点 P 是椭圆9+x29λ2+4+y24λ2=1 上的点.
设该椭圆的左、右焦点分别为 M,N,则由椭圆的定义 PM
+PN=18 得 18=2 9+9λ2,所以 λ=±2 2,
所以 M(-3 5,0),N(3 5,0).
即存在符合题意的 λ=±2 2,M(-3 5,0),N(3 5,0).
解题反思: 1.变量的选择是点还是直线的斜率。 2.求最值方法-----基本不等式(找和,积是否为定值) 3.体会点在椭圆上的应用。 4.记住一个小结论(点差法推导)
解题反思: 1.构建等式的方法。(线段长相等) 2.构建不等式的方法(判别式) 3.条件的等价应用。 4.设斜率时应注意的问题(分类思想)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题22:圆锥曲线高考真题江苏卷(原卷版)
一、填空题
1.在平面直角坐标系xOy 中,若双曲线2
2
21(0)y x b b
-=>经过点(3,4),则该双曲
线的渐近线方程是_____.
2.在平面直角坐标系xOy 中,若双曲线22x a ﹣
25y =1(a >0)的一条渐近线方程为y=5
2
x ,则该双曲线的离心率是____.
3.在平面直角坐标系xOy 中,若双曲线22
221(0,0)x y a b a b
-=>>的右焦点(c,0)F 到一
条渐近线的距离为
3
c ,则其离心率的值是________. 4.在平面直角坐标系xOy 中,双曲线2
213
x y -= 的右准线与它的两条渐近线分
别交于点
P ,Q ,其焦点是F 1 ,F 2 ,则四边形F 1 P F 2 Q 的面积是________.
5.在平面直角坐标系xOy 中,双曲线22
173x y -=的焦距是____________.
6.在平面直角坐标系中,
为双曲线
右支上的一个动点.若点

直线的距离大于c 恒成立,则是实数c 的最大值为
二、解答题
7.如图,在平面直角坐标系xOy 中,椭圆C :22
221(0)x y a b a b
+=>>的焦点为F 1(–1、
0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222
(1)4x y a -+=交
于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=
5
2

(1)求椭圆C的标准方程;(2)求点E的坐标.
8.在平面直角坐标系xOy中,已知椭圆
22
:1
43
x y
E+=的左、右焦点分别为F1,F2,
点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.
(1)求△AF1F2的周长;
(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP QP
⋅的最小值;
(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M 的坐标.
9.如图,在平面直角坐标系xOy中,椭圆C过点
1
(3,)
2
,焦点
12
(3,0),(3,0)
F F
-,
圆O的直径为12
F F.
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l 与椭圆C 交于,A B 两点.若OAB 的面积为
26
7
,求直线l 的方程.
10.如图,在平面直角坐标系xOy 中,椭圆22
22:1(0)x y E a b a b
>>+=的左、右焦点分
别为F 1,F 2,离心率为
1
2
,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.
(1)求椭圆E 的标准方程;
(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.
11.如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).
(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程; (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q. ①求证:线段PQ 的中点坐标为(2,)p p --; ②求p 的取值范围.
12.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆
的离心率为,且右焦点F 到左准线l 的距离为3.
(1)求椭圆的标准方程;
(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.
13.已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且5
4
QF PQ =
. (1)求抛物线C 的方程;
(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程. 14.
在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上.
(1)求抛物线C 的标准方程;
(2)求过点F ,且与直线OA 垂直的直线的方程;
(3)设过点(,0)(0)M m m >的直线交抛物线C 于D 、E 两点,ME =2DM ,记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式.。

相关文档
最新文档