椭圆定点定值专题
椭圆题型二--定点

圆锥曲线定点、定直线、定值专题1.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;,不是左右顶点),且以AB为直径的圆过椭(Ⅱ)若直线l:y kx m=+与椭圆C相交于A,B两点(A B圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.解:(1)由题意设椭圆的标准方程为由已知得a+c=3,a-c=1,∴a=2,c=1,∴b2=a2—c2=3∴椭圆的标准方程为。
(2)设A(x1,y1),B(x2,y2),联立得又因为以AB为直径的圆过椭圆的右顶点D(2,0)∴∴∴解得m1=—2k,且均满足3+4k 2-m 2〉0当m 1=-2k 时,l 的方程为y=k(x —2),直线过定点(2,0),与已知矛盾;当时,l 的方程为直线过定点所以,直线l 过定点,定点坐标为。
2.已知椭圆E 的中心在原点,焦点在x 轴上,椭圆上的点到焦点的距离的最小值为21-,离心率为2e 2=﹒(Ⅰ)求椭圆E 的方程; (Ⅱ)过点()1,0作直线交E 于P 、Q 两点,试问:在x 轴上是否存在一个定点M ,MP MQ ⋅为定值?若存在,求出这个定点M 的坐标;若不存在,请说明理由﹒解:(1), ∴所求椭圆E 的方程为:。
(2)当直线l 不与x 轴重合时,可设直线l 的方程为:x=ky+1,,把(2)代入(1)整理得:,(3)∴,假设存在定点M(m ,0),使得为定值,=,当且仅当5—4m=0,即时,(为定值).这时.再验证当直线l 的倾斜角α=0时的情形,此时取,, ,∴存在定点使得对于经过(1,0)点的任意一条直线l 均有(恒为定值).3。
已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,离心率25e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点。
(I )求椭圆的标准方程;(Ⅱ)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥,求m 的取值范围;(Ⅲ)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由。
椭圆曲线中的定点定值问题的四种方法

椭圆曲线中的定点定值问题的四种方法
椭圆曲线密码学是现代密码学领域中的一个重要分支,其核心是解决椭圆曲线上的定点定值问题。
本文将介绍椭圆曲线中的定点定值问题及其四种常用解决方法。
定点定值问题是指给定一个椭圆曲线上的点P和整数k,求kP 的值。
下面将介绍四种方法来解决这个问题:
1. 变形重复平方算法(Double-and-Add Algorithm):这是最简单和直观的方法,通过将k表示为二进制形式,并根据位的值来迭代地进行计算。
当某一位为1时,将点P加到结果上;当某一位为0时,将点P进行加法运算。
该算法的时间复杂度为O(log(k))。
2. NAF (Non-Adjacent Form)方法:在变形重复平方算法的基础上,在k表示为二进制时可以选择使用加1或减1的方式,使得连续1的位数尽可能少。
这样可以减少加法运算的次数,进而提高效率。
3. 有穷域上的运算法则:将椭圆曲线上的点坐标和系数限定在一个有限域中,通过定义该有限域上的加法和乘法运算法则来求解定点定值问题。
这种方法在实际应用中经常使用,可以利用有限域运算的高效性。
4. 同态映射方法:根据椭圆曲线的同态性质,将定点定值问题转化为其他更容易求解的问题,并利用同态映射的特性进行计算。
这种方法具有较高的复杂性和灵活性,适用于特定的情况。
通过掌握这四种方法,我们可以更好地理解和应用椭圆曲线密码学中的定点定值问题。
根据实际情况选择合适的方法可以提高计算效率和保证系统的安全性。
专题04 椭圆中的定点、定值、定直线问题

专题04 椭圆中的定点、定值、定直线问题一、单选题1.过原点的动直线l 与椭圆22132x y +=交于A ,B 两点,D 为椭圆C 的上顶点,若直线AD ,BD 的斜率存在且分别为1k ,2k ,则12k k =( )A .23-B .23C .32D .32-2.已知F 为椭圆22:132x y C +=的右焦点,点A 是直线3x =上的动点,过点A 作椭圆C 的切线AM ,AN ,切点分别为M ,N ,则||||||MF NF MN +-的值为( ) A .3B .2C .1D .03.椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC过定点( ) A.(1,0)B .C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭4.椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54B .45C .43D .345.椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .26.椭圆22:13x C y +=,过x 轴上一定点N 作直线l ,交椭圆C 于A ,B 两点,当直线l 绕点N 任意旋转时,有2211||||t AN BN +=(其中t 为定值),则( ) A .9t =B .4t =C .3t =D .2t =7.如图,1A ,2A 为椭圆22195x y+=的长轴的左、右端点,O 为坐标原点,S ,Q ,T 为椭圆上不同于1A ,2A 的三点,直线1QA ,2QA ,OS ,OT 围成一个平行四边形OPQR ,则22OS OT +=( )A .5 B.3C .9D .148.M 是椭圆2212516x y +=上一点,1F ,2F 是椭圆的左,右焦点,点I 是12MF F ∆的内心,延长MI 交线段12F F 于N ,则MI IN的值为( )A .53B .35C .43D .34二、多选题9.1F ,2F 是椭圆C :22143x y+=的左、右焦点,且1F ,2F 分别在椭圆C 的内接ABC 的AB与AC 边上,圆I 是ABC 的内切圆,则下列说法正确的是( ) A .ABC 的周长为定值8B .当点A 与上顶点重合时,圆I 的方程为22325x y += C .2211AF CF +为定值43D .当AB x ⊥轴时,线段BC 交x 轴于点D ,则24OF OD ⋅=10.椭圆2222:1(0)x y a b a b +=>>ABC 的三个顶点都在椭圆上,O 为坐标原点,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,F ,且三条边所在直线的斜率分别1k ,2k ,3k ,且1k ,2k ,3k 均不为0,则( ) A .22:2:1a b =B .直线AB 与直线OD 的斜率之积为2-C .直线BC 与直线OE 的斜率之积为12-D .若直线OD ,OE ,OF 的斜率之和为1,则123111k k k ++的值为2-11.椭圆22:12520x y M +=的左、右焦点分别是1F ,2F ,左、右顶点分别是1A ,2A ,点P是椭圆上异于1A ,2A 的任意一点,则下列说法正确的是( ) A .125PF PF +=B .直线1PA 与直线2PA 的斜率之积为45-C .存在点P 满足1290F PF ∠=︒D .若12F PF △的面积为P 的横坐标为12.如图,已知椭圆22142x y +=的左、右顶点分别是12,A A ,上顶点为1B ,在椭圆上任取一点C ,连结1A C 交直线2x =于点P ,连结2A C 交OP 于点M (O 是坐标原点),则下列结论正确的是( )A .12CA CA k k 为定值 B .112A P OP k k =C .2OP A C ⊥D .1MB 三、填空题13.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________.14.已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________. 15.已知椭圆22221(0)x y a b a b+=>>与直线11:2l y x =,21:2l y x =-,过椭圆上一点P 作12,l l 的平行线,分别交12,l l 于,M N 两点,若||MN 为定值,则ab=__________. 16.已知椭圆2212x y +=与y 轴交于点M ,N ,直线y x =交椭圆于12,A A 两点,P 是椭圆上异于12,A A 的点,点Q 满足1122,P A Q QA A A P ⊥⊥,则||||QM QN +=__________ 四、解答题17.在平面直角坐标系xOy 中,已知点()M ,直线:l x =P 到点M 的距离与到直线l (1)求动点P 的轨迹E 的方程;(2)设曲线E 与x 轴交于A 、B 两点,过定点()1,0N -的直线与曲线E 交于C 、D 两点(与A 、B 不重合),证明:直线AC ,BD 的交点在定直线上.18.已知椭圆C :22221(0)x y a b a b+=>>的左右顶点分别为1A ,2A ,右焦点为2(1,0)F ,点31,2B ⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆C 的方程;(2)若直线l :(4)(0)y k x k =-≠与椭圆C 交于M ,N 两点,已知直线1A M 与2A N 相交于点G ,证明:点G 在定直线上,并求出此定直线的方程.19.椭圆2222:1(0)x y E a b a b +=>>的离心率e =A ,B 分别为椭圆E 的左、右顶点,P 为椭圆E 上任意一点,PAB △面积的最大值为2. (1)求椭圆E 的方程;(2)过点(1,0)F 且斜率不为零的直线交椭圆E 于M ,N 两点,过点M 作直线4x =的垂线,垂足为H ,证明:直线HN 与x 轴的交点为定点.20.已知椭圆2222:1(0)x y C a b a b +=>>2,直线2x =-被椭圆C 截得的线段长为(1)求椭圆C 的方程;(2)设过椭圆C 的右焦点F 与坐标轴不垂直的直线l 交C 于点A ,B ,交y 轴于点E ,P 为线段AB 的中点,EQ OP ⊥且Q 为垂足.问:是否存在定点H ,使得QH 的长为定值?若存在,求点H 的坐标;若不存在,请说明理由.21.已知椭圆()2222:10x y C a b a b =>>+过点()0,1A(1)求椭圆C 的方程;(2)过A 作斜率分别为12, k k 的两条直线,分别交椭圆于点, M N ,且122k k +=,证明:直线MN 过定点.。
椭圆定点定值专题

圆锥曲线选讲1.已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)P(2,n),Q(2,﹣n)是椭圆C上两个定点,A、B是椭圆C上位于直线PQ两侧的动点.①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值,说明理由.方程为b=2,离心率的方程为…的方程为,代入,的面积时,,,,可得,…2.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)已知A为椭圆C的左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=m (定值m≠0),求直线l的斜率.)∵椭圆离心率为,,∴,∴的方程是…联立方程组=(),∴﹣=m3.如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点.(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.,又的方程为.,则,,∴)在椭圆上,∴,故的斜率为,直线的斜率为,的方程为=.4.已知F1,F2分别是椭圆(a>b>0)的左、右焦点,半焦距为c,直线x=﹣与x轴的交点为N,满足,设A、B是上半椭圆上满足的两点,其中.(1)求椭圆的方程及直线AB的斜率k的取值范围;)由于,,从而所求椭圆的方程为,即解得,依题意取从而.)是区间上的减函数,从而,,解得,而,∴的斜率的取值范围是的方程是)在此切线上,有5.在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB的斜率之积为定值;22a=.①②,因,故..为定值.,故6.已知椭圆的左焦点为F(﹣,0),离心率e=,M、N是椭圆上的动点.(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为﹣,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,,∴……可得:可得:,即…;,∴+1+1=在椭圆上,∴=07.一束光线从点F1(﹣1,0)出发,经直线l:2x﹣y+3=0上一点P反射后,恰好穿过点F2(1,0).(1)求P点的坐标;(2)求以F1、F2为焦点且过点P的椭圆C的方程;(3)设点Q是椭圆C上除长轴两端点外的任意一点,试问在x轴上是否存在两定点A、B,使得直线QA、QB的,则且,,即,解得.a=的方程为.•,将,,或,(﹣为定值﹣.8.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)设直线l:y=kx+t(k≠0)交椭圆C于A、B两点,D为AB的中点,k OD为直线OD的斜率,求证:k•k OD为定值;(3)在(2)条件下,当t=1时,若的夹角为锐角,试求k的取值范围.)根据题意有:的方程为)联立方程组,故为定值,解得∈时,9.如图所示,椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py (p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l的斜率为定值;(2)当λ∈[2,4]时,求椭圆的离心率e的取值范围.:,可得[10.已知椭圆(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;)由,,=2故所求椭圆方程为,故,,∴点,则得到.,代入上式整理,得..化简,得,11.在平面直角坐标系xOy中,椭圆=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0),左、右顶点分别为A,B,离心率为,动点P到F1,F2的距离的平方和为6.(1)求动点P的轨迹方程;(2)若,,Q为椭圆上位于x轴上方的动点,直线DM•CN,BQ分别交直线m于点M,N.(i)当直线AQ的斜率为时,求△AMN的面积;,)解:由题意知,,解得.,的方程为,令,的方程为,令,得,的斜率为时,并整理得,解得=.,.为定值,该定值为.于L,求证:为定值(2)将椭圆(a>b>0)与x2+y2=a2相类比,请写出与(1)类似的命题,并证明你的结论.(3)如图,若AB、CD是过椭圆(a>b>0)中心的两条直线,且直线AB、CD的斜率积,点E是椭圆上异于A、C的任意一点,AE交直线CD于K,CE交直线AB于L,求证:为定值.,===1)如图,设椭圆(,求证:,==,.的方程为.,直线联立联立.联立解得联立,解得==.同理===.为定值.13.作斜率为的直线l与椭圆C:交于A,B两点(如图所示),且在直线l的左上方.(1)证明:△PAB的内切圆的圆心在一条定直线上;(2)若∠APB=60°,求△PAB的面积.代入中,化简整理得于是有.,的内切圆的圆心在直线)的结论可知,代入中,.,所以,即.所以.同理可求得=•.14.设椭圆C:+=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2+=.(1)若过A.Q.F2三点的圆恰好与直线l:x﹣y﹣3=0相切,求椭圆C的方程;(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:+为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.)由,∴所求椭圆方程为,则,为定值,∴且的取值范围是15.已知A,B分别是椭圆C1:=1的左、右顶点,P是椭圆上异与A,B的任意一点,Q是双曲线C2:=1上异与A,B的任意一点,a>b>0.(I)若P(),Q(,1),求椭圆C l的方程;(Ⅱ)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;(Ⅲ)过Q作垂直于x轴的直线l,直线AP,BP分别交l于M,N,判断△PMN是否可能为正三角形,并说明理由.()在椭圆上,()在双曲线上,得:的方程为;,,,=)在椭圆上,上,,=.a=16.已知椭圆=1的焦点坐标为(±1,0),椭圆经过点(1,)(1)求椭圆方程;(2)过椭圆左顶点M(﹣a,0)与直线x=a上点N的直线交椭圆于点P,求的值.(3)过右焦点且不与对称轴平行的直线l交椭圆于A、B两点,点Q(2,t),若K QA+K QB=2与l的斜率无关,求t的值.)由题意得)的方程为得所以,fh=17.如图,已知椭圆的焦点为F1(1,0)、F2(﹣1,0),离心率为,过点A(2,0)的直线l交椭圆C于M、N两点.(1)求椭圆C的方程;(2)①求直线l的斜率k的取值范围;②在直线l的斜率k不断变化过程中,探究∠MF1A和∠NF1F2是否总相等?若相等,请给出证明,若不相等,说明理由.)由已知条件知,,解得的方程为;联立;,==18.已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.(1)求椭圆E的标准方程;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.)由题意可得,解得,.)可知:椭圆的右准线方程为,且代入化简得的斜率之积是定值.,,,,,∴我们知道与,与19.如图,双曲线C1:与椭圆C2:(0<b<2)的左、右顶点分别为A1、A2第一象限内的点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.(I)求证:为定值(其中表示直线AA 1的斜率,等意义类似);(II)证明:△OAA2与△OA2P不相似.(III)设满足{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R} 的正数m的最大值是b,求b的值.,.=)证明:设)且解之得:,且==,即)解:由得,由得|,|,⇔⇔b=的值为…的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.)由已知,椭圆方程可设为.所求椭圆方程为.得,解得..可得(.为邻边的平行四边形是菱形⇔..21.已知椭圆的离心率为,且椭圆上的点到两个焦点的距离和为2.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)试用m表示△MPQ的面积,并求面积的最大值.2,∴的离心率为,即,∴.可得(的坐标为=.即,即=|FM||x|FM|,可得.,∴的面积为()在区间单调递增,在区间单调递减.有最大值的面积为×=的面积有最大值22.已知椭圆E:的左焦点,若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F.(Ⅰ)求椭圆E的方程;(Ⅱ)已知两点Q(﹣2,0),M(0,1)及椭圆G:,过点Q作斜率为k的直线l交椭圆G于H,K 两点,设线段HK的中点为N,连接MN,试问当k为何值时,直线MN过椭圆G的顶点?(Ⅲ)过坐标原点O的直线交椭圆W:于P、A两点,其中P在第一象限,过P作x轴的垂线,垂中,的方程为.)并代入得:的方程为,则,解得:,则,即(舍去)或的方程为,的方程为垂直的直线方程为上,所以,,的方程为,所以直线,,所以,则23.已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点为A,B.(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;(2)设直线AB与x轴、y轴分别交于点M,N,求证:为定值.及圆的性质,可得,则,∴方程为,得,令,为定值,定值是24.已知椭圆中心在原点,焦点在y轴上,离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线y=x+2相切.(Ⅰ)求椭圆的标准方程;(Ⅱ)设点F是椭圆在y轴正半轴上的一个焦点,点A,B是抛物线x2=4y上的两个动点,且满足,过点A,B分别作抛物线的两条切线,设两切线的交点为M,试推断是否为定值?(,得.又故椭圆的标准方程是.y=xx x xx x x的坐标为M,=((x为定值(1)求证:为定值;)设椭圆方程为,设当直线x代入得x代入,得此时=AOB=|OA||OB|AOB=|OA|)知AOB=|OA||OB|,∴AOB=|OA|≤a26.设F1、F2分别是椭圆+y2=1的左、右焦点.(1)若P是该椭圆上的一个动点,求向量乘积的取值范围;(2)设过定点M(0,2)的直线l与椭圆交于不同的两点M、N,且∠MON为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.(3)设A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.求)根据题意易知,所以.,消去,整理得:⇔,得,或==2227.已知椭圆的左焦点F1(﹣1,0),长轴长与短轴长的比是.(Ⅰ)求椭圆的方程;(Ⅱ)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n,求证:为定值.(Ⅰ)解:由已知得,故所求椭圆方程为,.=.为定值.28.已知椭圆的左顶点是A,过焦点F(c,0)(c>0,为椭圆的半焦距)作倾斜角为θ的直线(非x轴)交椭圆于M,N两点,直线AM,AN分别交直线(称为椭圆的右准线)于P,Q两点.(1)若当θ=30°时有,求椭圆的离心率;(2)若离心率e=,求证:为定值.,,∴,.)当x=三点共线,得,(,,,整理得29.已知点P在椭圆C:(a>b>0)上,F1、F2分别为椭圆C的左、右焦点,满足|PF1|=6﹣|PF2|,且椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若过点Q(1,0)且不与x轴垂直的直线l与椭圆C相交于两个不同点M、N,在x轴上是否存在定点G,使得为定值.若存在,求出所有满足这种条件的点G的坐标;若不存在,说明理由.,的方程为.联立并消去,则=解法一:设,解得====.为定值,则30.如图,已知椭圆C:的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.,的方程为.上,所以,.时,取得最小值为)式,,故上,代入圆的方程得到的方程为:,得,。
椭圆定点定值专题(精选.)

一.解答题(共30小题)1.已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)P(2,n),Q(2,﹣n)是椭圆C上两个定点,A、B是椭圆C上位于直线PQ两侧的动点.①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值,说明理由.2.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)已知A为椭圆C的左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=m (定值m≠0),求直线l的斜率.3.如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点.(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.4.已知F1,F2分别是椭圆(a>b>0)的左、右焦点,半焦距为c,直线x=﹣与x轴的交点为N,满足,设A、B是上半椭圆上满足的两点,其中.(1)求椭圆的方程及直线AB的斜率k的取值范围;(2)过A、B两点分别作椭圆的切线,两切线相交于一点P,试问:点P是否恒在某定直线上运动,请说明理由.5.在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB的斜率之积为定值;(ii)求OA2+OB2.6.已知椭圆的左焦点为F(﹣,0),离心率e=,M、N是椭圆上的动点.(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为﹣,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,7.一束光线从点F1(﹣1,0)出发,经直线l:2x﹣y+3=0上一点P反射后,恰好穿过点F2(1,0).(1)求P点的坐标;(2)求以F1、F2为焦点且过点P的椭圆C的方程;(3)设点Q是椭圆C上除长轴两端点外的任意一点,试问在x轴上是否存在两定点A、B,使得直线QA、QB的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点A、B的坐标;若不存在,请说明理由.8.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)设直线l:y=kx+t(k≠0)交椭圆C于A、B两点,D为AB的中点,k OD为直线OD的斜率,求证:k•k OD为定值;(3)在(2)条件下,当t=1时,若的夹角为锐角,试求k的取值范围.9.如图所示,椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l的斜率为定值;(2)当λ∈[2,4]时,求椭圆的离心率e的取值范围.10.已知椭圆(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若k,求e的取值范围.11.在平面直角坐标系xOy中,椭圆=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0),左、右顶点分别为A,B,离心率为,动点P到F1,F2的距离的平方和为6.(1)求动点P的轨迹方程;(2)若,,Q为椭圆上位于x轴上方的动点,直线DM•CN,BQ分别交直线m于点M,N.(i)当直线AQ的斜率为时,求△AMN的面积;(ii)求证:对任意的动点Q,DM•CN为定值.12.(1)如图,设圆O:x2+y2=a2的两条互相垂直的直径为AB、CD,E在弧BD上,AE交CD于K,CE交AB 于L,求证:为定值(2)将椭圆(a>b>0)与x2+y2=a2相类比,请写出与(1)类似的命题,并证明你的结论.(3)如图,若AB、CD是过椭圆(a>b>0)中心的两条直线,且直线AB、CD的斜率积,点E是椭圆上异于A、C的任意一点,AE交直线CD于K,CE交直线AB于L,求证:为定值.13.作斜率为的直线l与椭圆C:交于A,B两点(如图所示),且在直线l的左上方.(1)证明:△PAB的内切圆的圆心在一条定直线上;(2)若∠APB=60°,求△PAB的面积.14.设椭圆C:+=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2+=.(1)若过A.Q.F2三点的圆恰好与直线l:x﹣y﹣3=0相切,求椭圆C的方程;(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:+为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.15.已知A,B分别是椭圆C1:=1的左、右顶点,P是椭圆上异与A,B的任意一点,Q是双曲线C2:=1上异与A,B的任意一点,a>b>0.(I)若P(),Q(,1),求椭圆C l的方程;(Ⅱ)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;(Ⅲ)过Q作垂直于x轴的直线l,直线AP,BP分别交l于M,N,判断△PMN是否可能为正三角形,并说明理由.16.已知椭圆=1的焦点坐标为(±1,0),椭圆经过点(1,)(1)求椭圆方程;(2)过椭圆左顶点M(﹣a,0)与直线x=a上点N的直线交椭圆于点P,求的值.(3)过右焦点且不与对称轴平行的直线l交椭圆于A、B两点,点Q(2,t),若K QA+K QB=2与l的斜率无关,求t的值.17.如图,已知椭圆的焦点为F1(1,0)、F2(﹣1,0),离心率为,过点A(2,0)的直线l交椭圆C于M、N两点.(1)求椭圆C的方程;(2)①求直线l的斜率k的取值范围;②在直线l的斜率k不断变化过程中,探究∠MF1A和∠NF1F2是否总相等?若相等,请给出证明,若不相等,说明理由.18.已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.(1)求椭圆E的标准方程;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.19.如图,双曲线C1:与椭圆C2:(0<b<2)的左、右顶点分别为A1、A2第一象限内的点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.(I)求证:为定值(其中表示直线AA1的斜率,等意义类似);(II)证明:△OAA2与△OA2P不相似.(III)设满足{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R} 的正数m的最大值是b,求b的值.20.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.21.已知椭圆的离心率为,且椭圆上的点到两个焦点的距离和为2.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)试用m表示△MPQ的面积,并求面积的最大值.22.已知椭圆E:的左焦点,若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F.(Ⅰ)求椭圆E的方程;(Ⅱ)已知两点Q(﹣2,0),M(0,1)及椭圆G:,过点Q作斜率为k的直线l交椭圆G于H,K 两点,设线段HK的中点为N,连接MN,试问当k为何值时,直线MN过椭圆G的顶点?(Ⅲ)过坐标原点O的直线交椭圆W:于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC并延长交椭圆W于B,求证:PA⊥PB.23.已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点为A,B.(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;(2)设直线AB与x轴、y轴分别交于点M,N,求证:为定值.24.已知椭圆中心在原点,焦点在y轴上,离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线y=x+2相切.(Ⅰ)求椭圆的标准方程;(Ⅱ)设点F是椭圆在y轴正半轴上的一个焦点,点A,B是抛物线x2=4y上的两个动点,且满足,过点A,B分别作抛物线的两条切线,设两切线的交点为M,试推断是否为定值?若是,求出这个定值;若不是,说明理由.25.已知椭圆的中心为O,长轴、短轴的长分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA⊥OB.(1)求证:为定值;(2)求△AOB面积的最大值和最小值.26.设F1、F2分别是椭圆+y2=1的左、右焦点.(1)若P是该椭圆上的一个动点,求向量乘积的取值范围;(2)设过定点M(0,2)的直线l与椭圆交于不同的两点M、N,且∠MON为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.(3)设A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.27.已知椭圆的左焦点F1(﹣1,0),长轴长与短轴长的比是.(Ⅰ)求椭圆的方程;(Ⅱ)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n,求证:为定值.28.已知椭圆的左顶点是A,过焦点F(c,0)(c>0,为椭圆的半焦距)作倾斜角为θ的直线(非x轴)交椭圆于M,N两点,直线AM,AN分别交直线(称为椭圆的右准线)于P,Q两点.(1)若当θ=30°时有,求椭圆的离心率;(2)若离心率e=,求证:为定值.29.已知点P在椭圆C:(a>b>0)上,F1、F2分别为椭圆C的左、右焦点,满足|PF1|=6﹣|PF2|,且椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若过点Q(1,0)且不与x轴垂直的直线l与椭圆C相交于两个不同点M、N,在x轴上是否存在定点G,使得为定值.若存在,求出所有满足这种条件的点G的坐标;若不存在,说明理由.30.如图,已知椭圆C:的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.参考答案与试题解析一.解答题(共30小题)1.已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)P(2,n),Q(2,﹣n)是椭圆C上两个定点,A、B是椭圆C上位于直线PQ两侧的动点.①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值,说明理由.解:(Ⅰ)设C方程为由已知b=2,离心率…(3分)得a=4,所以,椭圆C的方程为…(4分)(Ⅱ)①由(Ⅰ)可求得点P、Q的坐标为P(2,3).Q(2,﹣3),则|PQ|=6,设A(x1,y1),B(x2,y2),直线AB的方程为,代入,得x2+tx+t2﹣12=0 由△>0,解得﹣4<t<4,由根与系数的关系得,四边形APBQ的面积…(6分)故,当t=0时,…(7分)②∠APQ=∠BPQ时,PA、PB的斜率之和为0,设直线PA的斜率为k,则PB的斜率为﹣k,PA的直线方程为y﹣3=k(x﹣2)与,联立解得(3+4k2)x2+8(3﹣2k)kx+4(3﹣2k)2﹣48=0,.…(9分)同理PB的直线方程y﹣3=﹣k(x﹣2),可得所以,…(11分)==,所以直线AB的斜率为定…(13分)2.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)已知A为椭圆C的左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=m (定值m≠0),求直线l的斜率.解:(1)∵椭圆离心率为,∴,∴(2分)又椭圆经过点,∴解得c=1,∴(3分)∴椭圆C的方程是…(4分)(2)若直线l斜率不存在,显然k1+k2=0不合题意…(5分)设直线方程为l:y=k(x﹣1),M(x1,y1),N(x2,y2)联立方程组得(3+4k2)x2﹣8k2x+4k2﹣12=0…(7分)∴…(8分)∴k1+k2=====k()=﹣∵k1+k2=m,∴﹣=m,∴k=.3.如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点.(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.解:(1)由题意得2c=2,∴c=1,又,a2=b2+1.消去a可得,2b4﹣5b2﹣3=0,解得b2=3或(舍去),则a2=4,∴椭圆E的方程为.(2)(ⅰ)设P(x1,y1)(y1≠0),M(2,y0),则,,∵A,P,M三点共线,∴,∴,∵P(x1,y1)在椭圆上,∴,故为定值.(ⅱ)直线BP的斜率为,直线m的斜率为,则直线m的方程为,====,即.所以直线m过定点(﹣1,0).4.已知F1,F2分别是椭圆(a>b>0)的左、右焦点,半焦距为c,直线x=﹣与x轴的交点为N,满足,设A、B是上半椭圆上满足的两点,其中.(1)求椭圆的方程及直线AB的斜率k的取值范围;(2)过A、B两点分别作椭圆的切线,两切线相交于一点P,试问:点P是否恒在某定直线上运动,请说明理由.解:(1)由于,∴解得a2=2,b2=1,从而所求椭圆的方程为=1.∵三点共线,而点N的坐标为(﹣2,0).设直线AB的方程为y=k(x+2),其中k为直线AB的斜率,依条件知k≠0.由消去x得,即.根据条件可知解得,依题意取.设A(x1,y1),B(x2,y2),则根据韦达定理,得,又由,得(x1+2,y1)=λ(x2+2,y2),∴从而从而消去y2得.令,则.由于,所以φ'(λ)<0.∴φ(λ)是区间上的减函数,从而,即,∴,解得,而,∴.故直线AB的斜率的取值范围是.(2)设点P的坐标为(x0,y0),则可得切线PA的方程是,而点A(x1,y1)在此切线上,有即x0x1+2y0y1=x12+2y12,又∵A在椭圆上,∴有x0x1+2y0y=2,①同理可得x0x2+2y0y2=2.②根据①和②可知直线AB的方程为,x0x+2y0y=2,而直线AB过定点N(﹣2,0),∴﹣2x0=2⇒x0=﹣1,因此,点P恒在直线x=﹣1上运动.5.在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB的斜率之积为定值;(ii)求OA2+OB2.解:(1)依题意,得c=1.于是,a=,b=1.…(2分)所以所求椭圆的方程为.…(4分)(2)(i)设A(x1,y1),B(x2,y2),则①,②.又设M(x,y),因,故…(7分)因M在椭圆上,故.整理得.将①②代入上式,并注意cosθsinθ≠0,得.所以,为定值.…(10分)(ii),故y12+y22=1.又,故x12+x22=2.所以,OA2+OB2=x12+y12+x22+y22=3.…(16分)6.已知椭圆的左焦点为F(﹣,0),离心率e=,M、N是椭圆上的动点.(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为﹣,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.(Ⅰ)解:由题设可知:,∴a=2,c=…2分∴b2=a2﹣c2=2…3分∴椭圆的标准方程为:…4分(Ⅱ)解:设P(x P,y P),M(x1,y1),N(x2,y2),由可得:①…5分由直线OM与ON的斜率之积为可得:,即x1x2+2y1y2=0②…6分由①②可得:x P2+2y P2=(x12+2y12)+(x22+2y22)∵M、N是椭圆上的点,∴x12+2y12=4,x22+2y22=4∴x P2+2y P2=8,即…..8分由椭圆定义可知存在两个定点F1(﹣2,0),F2(2,0),使得动点P到两定点距离和为定值4;….9分;(Ⅲ)证明:设M(x1,y1),B(x2,y2),则x1>0,y1>0,x2>0,y2>0,x1≠x2,A(x1,0),N(﹣x1,﹣y1)…..10分由题设可知l AB斜率存在且满足k NA=k NB,∴….③k MN•k MB+1=+1④…12分将③代入④可得:k MN•k MB+1=+1=⑤….13分∵点M,B在椭圆上,∴k MN•k MB+1==0∴k MN•k MB+1=0∴k MN•k MB=﹣1∴MN⊥MB…14分.7.一束光线从点F1(﹣1,0)出发,经直线l:2x﹣y+3=0上一点P反射后,恰好穿过点F2(1,0).(1)求P点的坐标;(2)求以F1、F2为焦点且过点P的椭圆C的方程;(3)设点Q是椭圆C上除长轴两端点外的任意一点,试问在x轴上是否存在两定点A、B,使得直线QA、QB的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点A、B的坐标;若不存在,请说明理由.解:(1)设F1关于l的对称点为F(m,n),则且,解得,,即.由,解得.(2)因为PF1=PF,根据椭圆定义,得2a=PF1+PF2=PF+PF2=FF2=,所以a=.又c=1,所以b=1.所以椭圆C的方程为.(3)假设存在两定点为A(s,0),B(t,0),使得对于椭圆上任意一点Q(x,y)(除长轴两端点)都有k Qt•k Qs=k(k为定值),即•,将代入并整理得(*).由题意,(*)式对任意x∈(﹣,)恒成立,所以,解之得或.所以有且只有两定点(,0),(﹣,0),使得k Qt•k Qs为定值﹣.8.已知椭圆的离心率为,且经过点.(1)求椭圆C的方程;(2)设直线l:y=kx+t(k≠0)交椭圆C于A、B两点,D为AB的中点,k OD为直线OD的斜率,求证:k•k OD为定值;(3)在(2)条件下,当t=1时,若的夹角为锐角,试求k的取值范围.解:(1)根据题意有:解得:∴椭圆C的方程为=1(2)联立方程组消去y得:(4+k2)x2+2kx+t2﹣4=0①设A(x1,y1),B(x2,y2),AB中点坐标为(x0,y0)则有:∴,故为定值(3)当t=1时,①式为(4+k2)x2+2kx﹣3=0故∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1∴若的夹角为锐角,则有,即,解得,且k≠0,∴当k∈时,的夹角为锐角9.如图所示,椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l的斜率为定值;(2)当λ∈[2,4]时,求椭圆的离心率e的取值范围.(1)证明:∵椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线P:x2=2py(p>0)的焦点与F1重合,∴,∴抛物线P:x2=4cy.设过F2的直线l的方程为y+c=kx,与抛物线联立,可得x2﹣4kcx+4c2=0,∵过F2的直线l与抛物线P相切,切点E在第一象限,∴△=16k2c2﹣16c2=0,k>0∴k=1,即切线l的斜率为定值;(2)解:由(1),可得直线l的方程为y=x﹣c,代入椭圆方程可得(a2+b2)x2﹣2b2cx+b2c2﹣a2b2=0设A(x1,y1),B(x2,y2),则①,②∵∴x2=﹣λx1③由①②③可得=∵f(λ)=,当λ∈[2,4]时,单调递增,∴f(λ)∈∴∵0<e<1∴椭圆的离心率e的取值范围是[].10.已知椭圆(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若k,求e的取值范围.解:(1)由=,c=2,得a=,b==2.故所求椭圆方程为.(2)设A(x1,y1),则B(﹣x1,﹣y1),故,.①由题意,得.化简,得,∴点A在以原点为圆心,2为半径的圆上.②设A(x1,y1),则得到.将,,代入上式整理,得k2(2e2﹣1)=e4﹣2e2+1;∵e4﹣2e2+1>0,k2>0,∴2e2﹣1>0,∴.∴≥3.化简,得.解之,得,.故离心率的取值范围是.11.在平面直角坐标系xOy中,椭圆=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0),左、右顶点分别为A,B,离心率为,动点P到F1,F2的距离的平方和为6.(1)求动点P的轨迹方程;(2)若,,Q为椭圆上位于x轴上方的动点,直线DM•CN,BQ分别交直线m于点M,N.(i)当直线AQ的斜率为时,求△AMN的面积;(ii)求证:对任意的动点Q,DM•CN为定值.(1)解:设P(x,y),则,即(x+1)2+y2+(x﹣1)2+y2=6,整理得,x2+y2=2,所以动点P的轨迹方程为x2+y2=2.…(4分)(2)解:由题意知,,解得,所以椭圆方程为.…(6分)则,,设Q(x0,y0),y0>0,则,直线AQ的方程为,令,得,直线BQ的方程为,令,得,( i )当直线AQ 的斜率为时,有,消去x 0并整理得,,解得或y 0=0(舍),…(10分) 所以△AMN 的面积==. …(12分)(ii ),,所以.所以对任意的动点Q ,DM •CN 为定值,该定值为. …(16分)12.(1)如图,设圆O :x 2+y 2=a 2的两条互相垂直的直径为AB 、CD ,E 在弧BD 上,AE 交CD 于K ,CE 交AB 于L ,求证:为定值(2)将椭圆(a >b >0)与x 2+y 2=a 2相类比,请写出与(1)类似的命题,并证明你的结论.(3)如图,若AB 、CD 是过椭圆(a >b >0)中心的两条直线,且直线AB 、CD 的斜率积,点E 是椭圆上异于A 、C 的任意一点,AE 交直线CD 于K ,CE 交直线AB 于L ,求证:为定值.解答: 解:(1)如图所示,过点E 作EF ⊥AB ,垂足为F 点, ∵CD ⊥AB ,∴EF ∥CD ,∴,,又EF2+FO2=OE2=a2,∴====1.为定值.(2)如图,设椭圆(a>b>0),椭圆的长轴、短轴分别为AB、CD,E在椭圆的BD部分上,AE交CD于K,CE交AB于L,求证:为定值.证明:过点E作EF⊥AB,垂足为F点,∵CD⊥AB,∴EF∥CD,∴,,∴===1.为定值.(3)如图所示,过点E分别作EF∥CD交AB与点F,EM∥AB交直线CD于点M.∴,.设A(x1,y1),C(x2,y2),D(﹣x2,﹣y2),B(﹣x1,﹣y1).E(x0,y0).则.设直线AB的方程为y=kx(k≠0),则直线CD的方程为.直线EF的方程为,直线EM的方程为y﹣y0=k(x﹣x0).联立解得x F=.联立,解得x M=.联立解得.联立,解得=.∴==.同理.∴====.为定值.13.作斜率为的直线l与椭圆C:交于A,B两点(如图所示),且在直线l的左上方.(1)证明:△PAB的内切圆的圆心在一条定直线上;(2)若∠APB=60°,求△PAB的面积.(1)证明:设直线l:,A(x1,y1),B(x2,y2).将代入中,化简整理得2x2+6mx+9m2﹣36=0.于是有,.则,上式中,分子====,从而,k PA+k PB=0.又P在直线l的左上方,因此,∠APB的角平分线是平行于y轴的直线,所以△PAB的内切圆的圆心在直线上.(2)解:若∠APB=60°时,结合(1)的结论可知.直线PA的方程为:,代入中,消去y得.它的两根分别是x1和,所以,即.所以.同理可求得.=••=.14.设椭圆C:+=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2+=.(1)若过A.Q.F2三点的圆恰好与直线l:x﹣y﹣3=0相切,求椭圆C的方程;(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:+为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.解:(1)由知:F1为F2Q中点.又∵,∴|F1Q|=|F1A|=|F1F2|,即F1为△AQF2的外接圆圆心而|F1A|=a,|F1F2|=2c,∴a=2c,又圆心为(﹣c,0),半径r=a,∴,解得a=2,∴所求椭圆方程为.(5分)(2)①由(1)知F2(1,0),y=k(x﹣1),,代入得(3+4k2)x2﹣8k2x+4k2﹣12=0,设M(x1,y1),N(x2,y2),则,,又∵|F2M|=a﹣ex1,|F2N|=a﹣ex2,∴=,,∴为定值.(10分)②由上可知:y1+y2=k(x1+x2﹣2),=(x1+x2﹣2m,y1+y2),由于菱形对角线垂直,则,故k(y1+y2)+x1+x2﹣2m=0,则k2(x1+x2﹣2)+x1+x2﹣2m=0,+,由已知条件知k≠0且k∈R,,∴,故存在满足题意的点P且的取值范围是.(15分)15.已知A,B分别是椭圆C1:=1的左、右顶点,P是椭圆上异与A,B的任意一点,Q是双曲线C2:=1上异与A,B的任意一点,a>b>0.(I)若P(),Q(,1),求椭圆C l的方程;(Ⅱ)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;(Ⅲ)过Q作垂直于x轴的直线l,直线AP,BP分别交l于M,N,判断△PMN是否可能为正三角形,并说明理由.解答:(Ⅰ)解:∵P()在椭圆上,Q(,1)在双曲线上,则,①+②×3得:,a2=5,把a2=5代入①得,b2=4.所以椭圆C l的方程为;(Ⅱ)证明:由A(﹣a,0),B(a,0),设P(x1,y1),Q(x2,y2),则,,,k1•k2+k3•k4==∵设P(x1,y1)在椭圆上,Q(x2,y2)在双曲线上,∴,则k1•k2+k3•k4===.所以k1•k2+k3•k4为定值;(Ⅲ)假设△PMN是正三角形,∴∠MPN=∠PMN=60°,又∵MN⊥x轴,∴∠PAN=30°,∠PBA=30°,∴△PAB为等腰三角形,∴点P位于y轴上,且P在椭圆上,∴点P的坐标为(0,±b),此时,即a=.综上,当a=,且点P的坐标为(0,±b)时,△PMN为正三角形.16.已知椭圆=1的焦点坐标为(±1,0),椭圆经过点(1,)(1)求椭圆方程;(2)过椭圆左顶点M(﹣a,0)与直线x=a上点N的直线交椭圆于点P,求的值.(3)过右焦点且不与对称轴平行的直线l交椭圆于A、B两点,点Q(2,t),若K QA+K QB=2与l的斜率无关,求t的值.解:(1)由题意得解得a2=2,b2=1故椭圆方程为(2)设N(),P(X,Y)则MN的方程为由得由韦达定理得所以代入直线方程得P()∴,∴(3)AB的方程为x=my+1,设A(e,f),B(g,h)由得(m2+2)y2+2my﹣1=0所以f+h=,fh=====2∵K QA+K QB=2与l的斜率无关∴2t=2,即t=1.17.如图,已知椭圆的焦点为F1(1,0)、F2(﹣1,0),离心率为,过点A(2,0)的直线l交椭圆C于M、N两点.(1)求椭圆C的方程;(2)①求直线l的斜率k的取值范围;②在直线l的斜率k不断变化过程中,探究∠MF1A和∠NF1F2是否总相等?若相等,请给出证明,若不相等,说明理由.解:(1)由已知条件知,,解得,又b2=a2﹣c2=1,所以椭圆C的方程为;(2)设直线l的方程为y=k(x﹣2),联立,得(1+2k2)x2﹣8k2x+8k2=2=0,①由于直线l与椭圆C相交,所以△=64k4﹣4(1+2k2)(8k2﹣2)>0,解得直线l的斜率k的取值范围是;②∠MF1A和∠NF1F2总相等.证明:设M(x1,y1),N(x2,y2),则,所以tan∠MF1A﹣tan∠NF1F2====,所以tan∠MF1A=tan∠NF1F2,又∠MF1A和∠NF1F2均为锐角,所以∠MF1A=∠NF1F2.18.已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.(1)求椭圆E的标准方程;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.解:(1)由题意可得,解得,c=1,所以椭圆E:.(2)由(1)可知:椭圆的右准线方程为,设P(3,y0),Q(x1,y1),因为PF2⊥F2Q,所以,所以﹣y1y0=2(x1﹣1)又因为且代入化简得.即直线PQ与直线OQ的斜率之积是定值.(3)设过P(3,3)的直线l与椭圆交于两个不同点M(x1,y1),N(x2,y2),点H(x,y),则,.设,则,∴(3﹣x1,3﹣y1)=﹣λ(x2﹣3,y2﹣3),(x﹣x1,y﹣y1)=λ(x2﹣x,y2﹣y)整理得,,∴从而,由于,,∴我们知道与的系数之比为2:3,与的系数之比为2:3.∴,所以点H恒在直线2x+3y﹣2=0上.19.如图,双曲线C1:与椭圆C2:(0<b<2)的左、右顶点分别为A1、A2第一象限内的点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.(I)求证:为定值(其中表示直线AA1的斜率,等意义类似);(II)证明:△OAA2与△OA2P不相似.(III)设满足{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R} 的正数m的最大值是b,求b的值.(I)解:由已知得A1(﹣2,0),A2(2,0).设A(x1,y1),P(x2,y2),由题意知A、P均在第一象限,且满足,.则=…(3分)而Q、O、A、P在同一直线上,所以x1y2=x2y1故…(4分)(II)证明:设,P(x,y),则A(tx,ty)且,解之得:,且…(6分)OA•OP﹣OA22=tOP2﹣OA22=,其中0<t<1所以f′(t)=恒成立,,函数f(t)在区间(0,1)上是减函数,因此当0<t<1时,f(t)>f(1)=,即故:△OAA2与△OA2P不相似.…(9分)(III)解:由得,由得.∴{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R}因此∀y≠0,⇔⇔m2≤3所以b=因此b的值为…(13分)20.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.解:(1)由已知,椭圆方程可设为.(1分)∵两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,∴.所求椭圆方程为.(4分)(2)右焦点F(1,0),直线l的方程为y=x﹣1.设P(x1,y1),Q(x2,y2),由得3y2+2y﹣1=0,解得.∴.(9分)(3)假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形.因为直线与x轴不垂直,所以设直线l的方程为y=k(x﹣1)(k≠0).由可得(1+2k2)x2﹣4k2x+2k2﹣2=0.∴..其中x2﹣x1≠0以MP,MQ为邻边的平行四边形是菱形⇔(x1+x2﹣2m,y1+y2)(x2﹣x1,y2﹣y1)=0⇔(x1+x2﹣2m)(x2﹣x1)+(y1+y2)(y2﹣y1)=0⇔(x1+x2﹣2m)+k(y1+y2)=0⇔2k2﹣(2+4k2)m=0.∴.(14分)21.已知椭圆的离心率为,且椭圆上的点到两个焦点的距离和为2.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)试用m表示△MPQ的面积,并求面积的最大值.解:(Ⅰ)椭圆上的点到两个焦点的距离和为2,即2a=2,∴a=椭圆的离心率为,即e=∵e=,∴,∴c=1又∵a2=b2+c2,∴b=1.又斜率为k(k≠0)的直线l过椭圆的上焦点,即椭圆的焦点在Y轴上∴椭圆方程为.(Ⅱ)设直线l的方程为y=kx+1,由可得(k2+2)x2+2kx﹣1=0.设P(x1,y1),Q(x2,y2),则△=8k2+8>0,..设线段PQ中点为N,则点N的坐标为,∵M(0,m),∴直线MN的斜率k MN=∵直线MN为PQ的垂直平分线,∴k MN•k=﹣1,可得.即,又k≠0,∴k2+2>2,∴,即.(Ⅲ)设椭圆上焦点为F,∵y轴把△PQM分成了△PMF和△QMF,∴=|FM||x 1|+|FM||x2|=|FM|(|x1|+|x2|)∵P,Q在y轴两侧,∴|x1|+|x2|=||(x1﹣x2)∴,∵,由,可得.∴.又∵|FM|=1﹣m,∴.∴△MPQ的面积为().设f(m)=m(1﹣m)3,则f'(m)=(1﹣m)2(1﹣4m).可知f(m)在区间单调递增,在区间单调递减.∴f(m)=m(1﹣m)3有最大值.此时∴△MPQ的面积为×=∴△MPQ的面积有最大值.22.已知椭圆E:的左焦点,若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F.(Ⅰ)求椭圆E的方程;(Ⅱ)已知两点Q(﹣2,0),M(0,1)及椭圆G:,过点Q作斜率为k的直线l交椭圆G于H,K 两点,设线段HK的中点为N,连接MN,试问当k为何值时,直线MN过椭圆G的顶点?(Ⅲ)过坐标原点O的直线交椭圆W:于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC并延长交椭圆W于B,求证:PA⊥PB.解:(Ⅰ)连接DF2,FO(O为坐标原点,F2为右焦点),由题意知:椭圆的右焦点为因为FO是△DF1F2的中位线,且DF1⊥FO,所以|DF2|=2|FO|=2b,所以|DF1|=2a﹣|DF2|=2a﹣2b,故.…(2分)在Rt△FOF1中,即b2+(a﹣b)2=c2=5,又b2+5=a2,解得a2=9,b2=4,所求椭圆E的方程为.…(4分)(Ⅱ)由(Ⅰ)得椭圆G:设直线l的方程为y=k(x+2)并代入整理得:(k2+4)x2+4k2x+4k2﹣4=0由△>0得:,…(5分)设H(x1,y1),K(x2,y2),N(x0,y0)则由中点坐标公式得:…(6分)①当k=0时,有N(0,0),直线MN显然过椭圆G的两个顶点(0,﹣2),(0,2).…(7分)②当k≠0时,则x0≠0,直线MN的方程为此时直线MN显然不能过椭圆G的两个顶点(0,﹣2),(0,2);若直线MN过椭圆G的顶点(1,0),则,即x0+y0=1,所以,解得:(舍去),…(8分)若直线MN过椭圆G的顶点(﹣1,0),则,即x0﹣y0=﹣1,所以,解得:(舍去).…(9分)综上,当k=0或或时,直线MN过椭圆G的顶点.…(10分)(Ⅲ)法一:由(Ⅰ)得椭圆W的方程为,…(11分)根据题意可设P(m,n),则A(﹣m,﹣n),C(m,0)则直线AC的方程为,…①过点P且与AP垂直的直线方程为,…②①×②并整理得:,又P在椭圆W上,所以,所以,即①、②两直线的交点B在椭圆W上,所以PA⊥PB.…(14分)法二:由(Ⅰ)得椭圆W的方程为根据题意可设P(m,n),则A(﹣m,﹣n),C(m,0),∴,,所以直线,化简得,所以,因为x A=﹣m,所以,则.…(12分)所以,则k PA•k PB=﹣1,故PA⊥PB.…(14分)23.已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点为A,B.(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e;(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e的取值范围;(2)设直线AB与x轴、y轴分别交于点M,N,求证:为定值.解:(Ⅰ)(ⅰ)∵圆O过椭圆的焦点,圆O:x2+y2=b2,∴b=c,∴b2=a2﹣c2=c2,∴a2=2c2,∴.(3分)(ⅱ)由∠APB=90°及圆的性质,可得,∴|OP|2=2b2≤a2,∴a2≤2c2∴,.(6分)(Ⅱ)设P(x0,y0),A(x1,y1),B(x2,y2),则整理得x0x+y0y=x12+y12∵x12+y12=b2。
专题 椭圆中的定点定值问题

椭圆中的定点定值问题1.已知椭圆C:22221x ya b+=(0a b>>)的右焦点为F(1,0),且(1-,22)在椭圆C上。
(1)求椭圆的标准方程;(2)已知动直线l过点F,且与椭圆C交于A、B两点,试问x轴上是否存在定点Q,使得716QA QB⋅=-恒成立?若存在,求出点Q的坐标;若不存在,请说明理由。
解:(1)由题意知c=1.由椭圆定义得22222(11)()22a=--++,即2a= --3分∴2211b=-=,∴椭圆C 方程为2212xy+=.(2)假设在x轴上存在点Q(m,0),使得716QA QB⋅=-恒成立。
当直线l的斜率不存在时,A (1,22),B(1,22-),由于(521,42-)·(521,42--)=716-,所以54m=,下面证明54m=时,716QA QB⋅=-恒成立。
当直线l的斜率为0时,A(2,0)B(2-,0)则(524-,0)•(524--,0)=716-,符合题意。
当直线l的斜率不为0时,设直线l的方程为x=ty+1,A()11,x y,B()22,x y,由x=ty+1及2212xy+=得22(2)210t y ty++-=有0∆>∴12122221,22ty y y yt t+=-=-++;111x ty=+,221x ty=+∴112212125511(,)(,)()()4444x y x y ty ty y y-⋅-=--+=2(1)t+121211()416y y t y y-++=22222211212217(1)242162(2)1616t t tt tt t t--+-++⋅+=+=-+++,综上所述:在x轴上存在点Q(54,0)使得716QA QB⋅=-恒成立。
2.如图,中心在坐标原点,焦点分别在x轴和y轴上的椭圆1T,2T都过点(0,2)M-,且椭圆1T与2T的离心率均为22.(Ⅰ)求椭圆1T与椭圆2T的标准方程;(Ⅱ)过点M引两条斜率分别为,k k'的直线分别交1T,2T于点P,Q,当4k k'=时,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.解:(Ⅰ)22221,1422x y yx+=+=;(Ⅱ)直线MP的方程为2y kx=-,联立椭圆方程得:221422x yy kx⎧+=⎪⎨⎪=-⎩,消去y得22(21)420k x kx+-=,则42Pkx=,则点P的坐标为242222:(,)k kP-,同理可得点Q的坐标为:222222:(,)k kQ''-,又4k k'=,则点Q为:22242822(,)8181k kk k-++,22222282222218121242428121PQk kk kkkk kk k---++==--++,则直线PQ的方程为:2222142()2k ky xk--=--,即222222142()21221k ky xk k k--=--++,化简得122y xk=-+,即当0x=时,2y=,故直线PQ过定点(0,2).3.已知,椭圆C过点A,两个焦点为(﹣1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.解:(1)由题意,c=1,可设椭圆方程为,解得b2=3,(舍去)所以椭圆方程为.(2)设直线AE方程为:,代入得,设E(x E,y E),F(x F,y F),因为点在椭圆上,所以由韦达定理得:,,所以,.又直线AF的斜率与AE的斜率互为相反数,yxOPQ在上式中以﹣K 代K,可得,所以直线EF 的斜率,即直线EF的斜率为定值,其值为.4.已知椭圆E:+=1(a>b>0)经过点(0,),离心率为,点O为坐标原点.(Ⅰ)求椭圆E的标准方程;(Ⅱ)过左焦点F任作一直线l ,交椭圆E 于P、Q两点.(i)求•的取值范围;(ii)若直线l不垂直于坐标轴,记弦PQ的中点为M,过F作PQ的垂线FN交直线OM 于点N ,证明:点N在一条定直线上.解:(Ⅰ)由题意可得b=,e==,又a2﹣b2=c2,解得a=,c=2,即有椭圆方程为+=1;(Ⅱ)(i)F(﹣2,0),当直线的斜率不存在时,设P(x1,y1),Q(x2,y 2),直线方程为x=﹣2,可得P(﹣2,),Q(﹣2,﹣),•=4﹣=;当直线的斜率存在,设l:y=k(x+2),设P(x1,y1),Q(x2,y2),代入椭圆方程x2+3y2=6,可得(1+3k2)x2+12k2x+12k2﹣6=0,x1+x2=﹣,x1x2=,•=x1x2+y1y2=x1x2+k2(x1+2)(x2+2)=(1+k2)x1x2+2k2(x 1+x2)+4k2=(1+k2)•+2k2•(﹣)+4k2==﹣,由k2≥0,3k2+1≥1,可得﹣6≤•<,综上可得,•的取值范围是[﹣6,];(ii)证明:由直线l的斜率一定存在,且不为0,可设PQ:y=k(x+2),FN:y=﹣(x+2),设M (x0,y0),则x0=,由x1+x2=﹣,可得x0=,y0=k(x 0+2)=,直线OM的斜率为k OM==﹣,直线OM:y=﹣x,由得,即有k取何值,N的横坐标均为﹣3,则点N在一条定直线x=﹣3上.5.椭圆C:+=1(a>b>0).(1)若椭圆C过点(﹣3,0)和(2,).①求椭圆C的方程;②若过椭圆C的下顶点D点作两条互相垂直的直线分别与椭圆C相交于点P,M,求证:直线PM经过一定点;(2)若椭圆C过点(1,2),求椭圆C的中心到右准线的距离的最小值.解:(1)①∵椭圆C:+=1(a>b>0)过点(﹣3,0)和(2,),∴,解得a=3,b=1,∴椭圆C的方程.证明:②由题意得PD、MD的斜率存在且不为0,设直线PD 的斜率为k,则PD :y=kx ﹣1,由,得P (,),用﹣代k,得M(,),∴=,∴直线PM:y﹣=,即y=,∴直线PM经过定点T(0,).解:(2)椭圆C 的中心到右准线的距离d=,由=1,得,∴==,令t=a 2﹣5,t >0,则=t++9≥2+9=4+9,当且仅当t=2,时,等号成立,∴椭圆C 的中心到右准线的距离的最小值为.6.已知椭圆()222210x y a b a b +=>>的右焦点到直线2:a l x c =的距离为45,离心率5e =,,A B 是椭圆上的两动点,动点P 满足OP OA OB λ=+,(其中λ为常数).(1)求椭圆标准方程;(2)当1λ=且直线AB 与OP 斜率均存在时,求AB OP k k +的最小值;(3)若G 是线段AB 的中点,且OA OB OG AB k k k k ⋅=⋅,问是否存在常数λ和平面内两定点,M N ,使得动点P 满足18PM PN +=,若存在,求出λ的值和定点,M N ;若不存在,请说明理由.解:(1)由题设可知:右焦点到直线2:a l x c=的距离为: 2a c c -=455, 又53c a =,222b a c =-,∴24b =.∴椭圆标准方程为22194x y +=. (2)设()()1122,,,A x y B x y 则由OP OA OB =+得()1212,P x x y y ++.∴221212122212121249AB OPy y y y y y k k x x x x x x -+-⋅=⋅==--+-. 由()0,AB k ∈+∞得,423AB OP AB OP k k k k +≥⋅=,当且仅当23AB k =±时取等号 (3)221212122212121249AB OGy y y y y y k k x x x x x x -+-⋅=⋅==--+-.∴4·9OA OB k k =-.∴12124+90x x y y =. 设(),P x y ,则由OP OA OB λ=+,得)11221212,,,,x y x y x y x x y y λλλ=+=++, 即1212,x x x y y y λλ=+=+.因为点A 、B 在椭圆224+9=36x y 上,所以()2221212493636249x y x x y y λλ+=+++.所以222493636x y λ+=+.即222219944x y λλ+=++,所以P点是椭圆222219944x yλλ+=++上的点, 设该椭圆的左、右焦点为,M N ,则由椭圆的定义18PM PN +=得182299λ=+, ∴22λ=±,()35,0M ,()35,0N -.7.已知椭圆22221(0)x y a b a b +=>>的右焦点为F 2(1,0),点3(1,)2H 在椭圆上.(1)求椭圆方程;(2)点00(,)M x y 在圆222x y b +=上,M 在第一象限,过M 作圆222x y b +=的切线交椭圆于P 、Q 两点,问|F 2P|+|F 2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由. 解:(1) 右焦点为2(1,0)F ,∴1=c ,左焦点为)0,1(1-F ,点3(1,)2H 在椭圆上 222212332(11)(11)422a HF HF ⎛⎫⎛⎫=+=+++-+= ⎪ ⎪⎝⎭⎝⎭,2=∴a ,322=-=c a b所以椭圆方程为13422=+y x(2)设()),(,,2211y x Q y x P ,()213412121≤=+x y x()()212121212122)4(41)41(311-=-+-=+-=x x x y x PF112212)4(21x x PF -=-=∴,连接OM ,OP ,由相切条件知1212121212122221413)41(33||||x PM x x x y x OM OP PM =∴=--+=-+=-=221212112=+-=+∴x x PM PF ,同理可求221212222=+-=+∴x x QM QF所以22224F P F Q PQ ++=+=为定值.8.分别过椭圆E :=1(a >b >0)左、右焦点F 1、F 2的动直线l 1、l 2相交于P 点,与椭圆E 分别交于A 、B 与C 、D 不同四点,直线OA 、OB 、OC 、OD 的斜率分别为k 1、k 2、k 3、k 4,且满足k 1+k 2=k 3+k 4,已知当l 1与x 轴重合时,|AB|=2,|CD|=.(1)求椭圆E 的方程;(2)是否存在定点M ,N ,使得|PM|+|PN|为定值?若存在,求出M 、N 点坐标,若不存在,说明理由. 解:(1)当l 1与x 轴重合时,k 1+k 2=k 3+k 4=0, 即k 3=﹣k 4,∴l 2垂直于x 轴,得|AB|=2a=2,|CD|=,解得a=,b=,∴椭圆E 的方程为.(2)焦点F 1、F 2坐标分别为(﹣1,0),(1,0),当直线l 1或l 2斜率不存在时,P 点坐标为(﹣1,0)或(1,0), 当直线l 1,l 2斜率存在时,设斜率分别为m 1,m 2,设A(x1,y1),B(x2,y2),由,得,∴,,===,同理k3+k4=,∵k1+k2=k3+k4,∴,即(m1m2+2)(m2﹣m1)=0,由题意知m1≠m2,∴m1m2+2=0,设P(x,y),则,即,x≠±1,由当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0)也满足,∴点P(x,y)点在椭圆上,∴存在点M,N其坐标分别为(0,﹣1)、(0,1),使得|PM|+|PN|为定值2.9.如图,在平面直角坐标系xOy中,已知椭圆C:+=1,设R(x0,y0)是椭圆C上的任一点,从原点O向圆R:(x﹣x0)2+(y﹣y0)2=8作两条切线,分别交椭圆于点P,Q.(1)若直线OP,OQ互相垂直,求圆R的方程;(2)若直线OP,OQ的斜率存在,并记为k1,k2,求证:2k1k2+1=0;(3)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.解:(1)由圆R的方程知,圆R的半径的半径,因为直线OP,OQ互相垂直,且和圆R相切,所以,即,①又点R在椭圆C上,所以,②联立①②,解得所以所求圆R的方程为.(2)因为直线OP:y=k1x,OQ:y=k2x,与圆R相切,所以,化简得=0同理,所以k1,k2是方程(x02﹣8)k2﹣2x0y0k+y02﹣8=0的两个不相等的实数根,,因为点R(x0,y0)在椭圆C上,所以,即,所以,即2k1k2+1=0.(3)OP2+OQ2是定值,定值为36,理由如下:法一:(i)当直线OP,OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),联立解得所以,同理,得,由,所以====36(ii)当直线ξ落在坐标轴上时,显然有OP2+OQ2=36,综上:OP2+OQ2=36.法二:(i)当直线OP,OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),因为2k1k2+1=0,所以,即,因为P(x1,y1),Q(x2,y2),在椭圆C上,所以,即,所以,整理得,所以,所以OP2+OQ2=36.(ii)当直线OP,OQ落在坐标轴上时,显然有OP2+OQ2=36,综上:OP2+OQ2=36.10.已知椭圆C:)0(12222>>=+babyax,左焦点)0,3(-F,且离心率23=e.(1)求椭圆C的方程;(2)若直线l:mkxy+=(0≠k)与椭圆C交于不同的两点M,N(M,N不是左、右顶点),且以MN 为直径的圆经过椭圆C 的右顶点A .求证:直线l 过定点,并求出定点的坐标.解:(1)由题意可知⎪⎪⎩⎪⎪⎨⎧+====222233c b a a ce c ,解得2=a ,1=b 所以椭圆的方程为1422=+y x . (2)由方程组⎪⎩⎪⎨⎧=++=1422y x m kx y 得0448)41(222=-+++m kmx x k ,0)44)(41(4)8(222>-+-=∆m k km , 整理得01422>+-m k ,设),(11y x M ,),(22y x N ,则221418k kmx x +=+,22214144k m x x +-= 由已知,AN AM ⊥,即0=⋅AN AM ,又椭圆的右顶点为)0,2(A ,所以0)2)(2(2121=+--y y x x ,∵2212122121)())((m x x km x x k m kx m kx y y +++=++=,∴04))(2()1(221212=+++-++m x x km x x k ,即04418)2(4144)1(22222=+++⋅-++-⋅+m kkmkm k m k . 整理得01216522=++k mk m , 解得k m 2-=或56km -=均满足01422>+-m k . 当k m 2-=时,直线l 的方程为k kx y 2-=,过定点)0,2(,与题意矛盾,舍去;当56k m -=时,直线l 的方程为)56(-=x k y ,过定点)0,56(,故直线l 过定点,且定点的坐标为)0,56(.11.已知椭圆C :)0(12222>>=+b a by a x,点A 在椭圆C 上,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,是否存在圆心在坐标原点,半径为定值的定圆C ,使得l 与圆C 相交于不在坐标轴上的两点1P ,2P ,记直线1OP ,2OP 的斜率分别为1k ,2k ,满足12k k ⋅为定值,若存在,求出定圆的方程并求出12k k ⋅的值,若不存在,请说明理由.解:(Ⅰ)由题意,得c a =a 2=b 2+c 2,又因为点A 在椭圆C 上,所以221314a b+=, 解得a=2,b=1,c =C 的方程为2214x y +=. (Ⅱ)结论:存在符合条件的圆,且此圆的方程为x 2+y 2=5.证明如下:假设存在符合条件的圆,并设此圆的方程为x 2+y 2=r 2(r >0). 当直线l 的斜率存在时,设l 的方程为y=kx+m .由方程组2214y kx m x y =+⎧⎪⎨+=⎪⎩得(4k 2+1)x 2+8kmx +4m 2﹣4=0,因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即m 2=4k 2+1.由方程组222y kx mx y r=+⎧⎨+=⎩得(k 2+1)x 2+2kmx+m 2﹣r 2=0,则22222(2)4(1)()0km k m r ∆=-+->.设P 1(x 1,y 1),P 2(x 2,y 2),则12221kmx x k -+=+,221221m r x x k -=+,设直线OP 1,OP 2的斜率分别为k 1,k 2,所以221212121212121212()()()y y kx m kx m k x x km x x M k k x x x x x x +++++===222222222222222111m r kmk km m m r k k k m r m rk --⋅+⋅+-++==--+,将m 2=4k 2+1代入上式,得221222(4)14(1)r k k k k r -+=+-. 要使得k 1k 2为定值,则224141r r-=-,即r 2=5,验证符合题意. 所以当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足k 1k 2为定值14-.当直线l 的斜率不存在时,由题意知l 的方程为x=±2, 此时,圆x 2+y 2=5与l 的交点P 1,P 2也满足1214k k =-. 综上,当圆的方程为x 2+y 2=5时,圆与l 的交点P 1,P 2满足斜率之积k 1k 2为定值14-. 12.已知椭圆)0(1:2222>>=+b a by a x C ,经过点)22,1(,且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆方程;(2)过椭圆右顶点的两条斜率乘积为21-的直线分别交椭圆于N M ,两点,试问:直线MN 是否过定点?若过定点,请求出此定点,若不过,请说明理由.解:(1)根据题意12121211222222222=+⇒⎩⎨⎧==⇒⎪⎩⎪⎨⎧+==+=y x b a cb a b ac b .当MN 的斜率存在时,设0224)21(22:22222=-+++⇒⎩⎨⎧=++=m kmx x k y x mkx y MN ,⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+>+-=∆22212212221222140)12(8k m x x k km x x m k ,∴21222222112211-=-+⋅-+=-⋅-=⋅x m kx x m kx x y x y k k NA MA , ∴k m m km m m x x km x x k 200202))(22()12(2221212-==⇒=+⇒=++-++或(舍). ∴直线MN kx y =过定点(0,0),当MN 斜率不存在时也符合,即直线MN 恒过定点(0,0). 14.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为6,以原点O 为圆心,椭圆C 的长半轴为半径的圆与直线2260x y -+=相切. (1)求椭圆C 标准方程;(2)已知点,A B 为动直线(2)(0)y k x k =-≠与椭圆C 的两个交点,问:在x 轴上是否存在点E ,使2EA EA AB +⋅为定值?若存在,试求出点E 的坐标和定值,若不存在,说明理由.解:(1)由36=e 得36=a c ,即a c 36=① 又以原点O 为圆心,椭圆C 的长轴长为半径的圆为222a y x =+且与直线0622=+-y x 相切,所以6)2(2622=-+=a 代入①得c=2, 所以2222=-=c a b .所以椭圆C 的标准方程为12622=+y x (2)由⎪⎩⎪⎨⎧-==+)2(12622x k y y x 得061212)31(2222=-+-+k x k x k设()()1122,,,A x y B x y ,所以2221222131612,3112kk x x k k x x +-=+=+ 根据题意,假设x 轴上存在定点E (m ,0),使得2()EA EA AB EA AB EA EA EB +⋅=+⋅=⋅为定值. 则()()()11221212,,()EA EB x m y x m y x m x m y y ⋅=-⋅-=--+=()()()()()()22222221221231610123421k m k m mm k x x m k x x k +-++-=++++-+要使上式为定值,即与k 无关,()631012322-=+-m m m ,得37=m .此时,22569EA EA AB m +⋅=-=-,所以在x 轴上存在定点E (37,0)使得2EA EA AB +⋅为定值,且定值为95-. 15.已知椭圆具有如下性质:若椭圆的方程为22221(0)x y a b a b+=>>,则椭圆在其上一点00(,)A x y 处的切线方程为00221x x y ya b+=,试运用该性质解决以下问题:已知椭圆221:12x C y +=和椭圆222:4x C y λ+=(1,λλ>为常数).(1)如图(1),点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,求OCD ∆面积的最小值; (2)如图(2),过椭圆2C 上任意一点P 作1C 的两条切线PM 和PN ,切点分别为,M N ,当点P 在椭圆2C 上运动时,是否存在定圆恒与直线MN 相切?若存在,求出圆的方程;若不存在,请说明理由. 解:(1)设22(,)B x y ,则椭圆1C 在点B 处的切线方程为2212x x y y += 令210,D x y y ==,令220,C y x x ==,所以221OCD S x y ∆=又点B 在椭圆的第一象限上,所以2222220,0,12x x y y >>+=∴222222222212222x x y y x y =+≥= ∴221222OCD S x y ∆=≥=,当且仅当22222x y =2221x y ⇔== 所以当2(1,)2B 时,三角形OCD 的面积的最小值为22. (2)设(,)P m n ,则椭圆1C 在点33(,)M x y 处的切线为:3312xx y y +=又PM 过点(,)P m n ,所以3312x m y n +=,同理点44(,)N x y 也满足4412xm y n +=所以,M N 都在12x m yn +=上,即直线MN 的方程为12xm yn +=,又(,)P m n 在2C 上,224m n λ+=,故原点O 到直线MN 的距离为:224d m n λ==+, 所以直线MN 始终与圆221x y λ+=相切.16.已知直线1y x =+被圆2232x y +=截得的弦长恰与椭圆2222:1(0)x y C a b a b +=>>的短轴长相等,椭圆C 的离心率22e =.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点1(0,)3M -的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点T ,使得无论l 如何转动,以AB 为直径的圆恒过定点T ?若存在,求出点T 的坐标,若不存在,请说明理由。
椭圆综合题中定值定点范围问题总结

椭 圆一、直线与椭圆问题的常规解题方法:1.设直线与方程;提醒:①设直线时分斜率存在与不存在;②设为y=kx+b 与x=my+n 的区别2.设交点坐标;提醒:之所以要设是因为不去求出它,即“设而不求”3.联立方程组;4.消元韦达定理;提醒:抛物线时经常是把抛物线方程代入直线方程反而简单5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”提醒:需讨论K 是否存在⇔OA OB ⊥ ⇔121K K •=- ⇔0OA OB •= ⇔ 12120x x y y += ②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔“向量的数量积大于、等于、小于0问题” ⇔12120x x y y +>>0;③“等角、角平分、角互补问题” ⇔斜率关系120K K +=或12K K =; ④“共线问题”如:AQ QB λ= ⇔数的角度:坐标表示法;形的角度:距离转化法; 如:A 、O 、B 三点共线⇔直线OA 与OB 斜率相等; ⑤“点、线对称问题” ⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与弦长公式问题提醒:注意两个面积公式 的 合理选择; 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0.二、基本解题思想:1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式;2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解;3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明;4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,5、求最值问题时:将对象表示为变量的函数,几何法、配方法转化为二次函数的最值、 三角代换法转化为三角函数的最值、利用切线的方法、利用均值不等 式的方法等再解决;6、转化思想:有些题思路易成,但难以实施;这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过 取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三 角式,证明该式是恒定的; 1直线恒过定点问题1、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M-1,0关于直线0l 的对称点为N,直线PN 恒过一定点G,求点G 的坐标;2、已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一 象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭 圆于A 、B 两点;1求P 点坐标;2求证直线AB 的斜率为定值;3、已知动直线(1)y k x =+与椭圆22:1553x y C +=相交于A 、B 两点,已知点 7(,0)3M -, 求证:MA MB ⋅为定值.4、 在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不 过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E , 射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.Ⅰ求22m k +的最小值;Ⅱ若2OG OD =OE ,求证:直线l 过定点;椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函数的值域来解. 1从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围;5、已知直线l 与y 轴交于点(0,)P m ,与椭圆22:21C x y +=交于相异两点A 、B , 且3AP PB =,求m 的取值范围.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范 围.6、已知点(4, 0)M ,(1, 0)N ,若动点P 满足6||MN MP PN ⋅=. Ⅰ求动点P 的轨迹C 的方程;Ⅱ设过点N 的直线l 交轨迹C 于A ,B 两点,若181275NA NB -⋅-≤≤,求 直线l 的斜率的取值范围.3利用基本不等式求参数的取值范围7、已知点Q 为椭圆E :221182x y +=上的一动点,点A 的坐标为(3,1),求AP AQ ⋅的取值范围.8.已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上.若右焦点到直线220x y -+=的距 离为3.1求椭圆的方程.2设直线(0)y kx m k =+≠与椭圆相交于不同的两点,M N .当||||AM AN =时,求m 的 取值范围.9. 如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上, 点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E . I 求曲线E 的方程;II 若过定点F 0,2的直线交曲线E 于不同的两点,G H 点G 在点,F H 之间,且满足FH FG λ=, 求λ的取值范围.10、.已知椭圆E 的中心在坐标原点O ,两个焦点分别为)0,1(-A 、)0,1(B ,一个顶点为)0,2(H .1求椭圆E 的标准方程;2对于x 轴上的点)0,(t P ,椭圆E 上存在点M ,使得MH MP ⊥,求t 的取值范围.11.已知椭圆2222:1x y C a b +=(0)a b >>的离心率为2,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切.Ⅰ求椭圆C 的方程;Ⅱ若过点M 2,0的直线与椭圆C 相交于两点,A B ,设P 为椭圆上一点,且满足OP t OB OA =+O 为坐标原点,-时,求实数t 取值范围.椭圆中的最值问题一、常见基本题型: 1利用基本不等式求最值,12、已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一 象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交 椭圆于A 、B 两点,求△PAB 面积的最大值; 2利用函数求最值,13.如图,DP x ⊥轴,点M 在DP 的延长线上,且||2||DM DP =.当点P 在圆221x y +=上运动时; I 求点M 的轨迹C 的方程;Ⅱ过点22(0,)1T t y +=作圆x 的切线l 交曲线 C 于A,B 两点,求△AOB 面积S 的最大值和相应的点T 的坐标;14、已知椭圆22:14x G y +=.过点(,0)m 作圆221x y +=的切线l 交椭圆G 于A,B 两点. 将|AB|表示为m 的函数,并求|AB|的最大值.选做1、已知A 、B 、C 是椭圆)0(1:2222>>=+b a by a x m 上的三点,其中点A 的坐标为)0,32(,BC 过椭圆m 的中心,且||2||,0AC BC BC AC ==•.1求椭圆m 的方程;2过点),0(t M 的直线l 斜率存在时与椭圆m 交于两点P,Q,设D 为椭圆m 与y 轴负半轴的交点,且||||DQ DP =.求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(1,0)N ,点P 是圆M 上的动点,点Q 在NP上,点G 在MP 上,且满足NP =2NQ ,GQ ·NP =0. 1若1,0,4m n r =-==,求点G 的轨迹C 的方程;2若动圆M 和1中所求轨迹C 相交于不同两点,A B ,是否存在一组正实数,,m n r , 使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.3、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.Ⅰ求椭圆C 的标准方程;Ⅱ若直线:l y kx m =+与椭圆C 相交于A ,B 两点A B ,不是左右顶点,且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点M 2,1,平行于OM 的直线l 在y 轴上的截距为mm ≠0,l 交椭圆于A 、B 两个不同点; 1求椭圆的方程; 2求m 的取值范围;3求证直线MA 、MB 与x 轴始终围成一个等腰三角形.参考答案1、解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++-- 从而直线PN 恒过定点(1,0)G2、解:1设椭圆方程为22221y x a b+=,由题意可得2,2,22a b c ===所以椭圆的方程为22142y x +=则122),(0,2)F F -,设0000(,)(0,0)P x y x y >>则100200(,2),(,2),PF x y PF x y =--=--221200(2)1PF PF x y ∴⋅=--=点00(,)P x y 在曲线上,则2200 1.24x y += 220042y x -∴=从而22004(2)12y y ---=,得02y =则点P 的坐标为2);2由1知1//PF x 轴,直线PA 、PB 斜率互为相反数,设PB 斜率为(0)k k >,则PB 的直线方程为:2(1)y k x =-由222(1)124y k x x y ⎧-=-⎪⎨+=⎪⎩得222(2)2(2)(2)40k x k k x k ++-+--=设(,),B B B x y 则2222(2)222122B k k k k x k k ---=-=++同理可得222222A k k x k +-=+,则2422A B kx x k-=+ 28(1)(1)2A B A B ky y k x k x k-=----=+ 所以直线AB 的斜率2A BAB A By y k x x -==-为定值;3、 解: 将(1)y k x =+代入221553x y +=中得2222(13)6350k x k x k +++-= 4222364(31)(35)48200k k k k ∴∆=-+-=+>,2122631k x x k +=-+,21223531k x x k -=+所以112212127777(,)(,)()()3333MA MB x y x y x x y y ⋅=++=+++ 2121277()()(1)(1)33x x k x x =+++++2221212749(1)()()39k x x k x x k =++++++2222222357649(1)()()313319k k k k k k k -=+++-++++ 4222316549319k k k k ---=+++49=; 4、 解:Ⅰ由题意:设直线:(0)l y kx n n =+≠,由2213y kx nx y =+⎧⎪⎨+=⎪⎩消y 得:222(13)6330k x knx n +++-=, 2222364(13)3(1)∆=-+-k n k n ×2212(31)0k n =+->设A 11(,)x y 、B 22(,)x y ,AB 的中点E 00(,)x y ,则由韦达定理得:12x x +=2613kn k -+,即02313kn x k -=+,002313kny kx n k n k-=+=⨯+=+213n k +, 所以中点E 的坐标为23(,13kn k -+2)13nk+, 因为O 、E 、D 三点在同一直线上,所以OE OD k K =,即133mk -=-, 解得1m k =,所以22m k +=2212k k+≥,当且仅当1k =时取等号, 即22m k +的最小值为2. Ⅱ证明:由题意知:n>0,因为直线OD 的方程为3my x =-,所以由22313m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得交点G 的纵坐标为223G m y m =+, 又因为213E n y k=+,D y m =,且2OG OD =OE ,所以222313m n m m k =⋅++, 又由Ⅰ知: 1m k=,所以解得k n =,所以直线l 的方程为:l y kx k =+, 即有:(1)l y k x =+, 令1x =-得,y=0,与实数k 无关, 5、 解:1当直线斜率不存在时:12m =±2当直线斜率存在时:设l 与椭圆C 交点为 1122(,),(,)A x y B x y ∴2221y kx mx y =+⎧⎨+=⎩得 222(2)210k x kmx m +++-=22222(2)4(2)(1)4(22)0km k m k m ∴∆=-+-=-+>212122221,22km m x x x x k k --+==++∵3AP PB =,∴123x x -=,∴122212223x x x x x x +=-⎧⎨=-⎩. 消去2x ,得212123()40x x x x ++=, 2222213()4022km m k k --∴+=++ 整理得22224220k m m k +--=214m =时,上式不成立; 214m ≠时,2222241m k m -=-, ∴22222041m k m -=≥-,∴211-<≤-m 或121≤<m 把2222241m k m -=-代入得211-<<-m 或121<<m ∴211-<<-m 或121<<m 综上m 的取值范围为211-<≤-m 或121≤<m ; 6、解:Ⅰ设动点(, )P x y ,则(4, )MP x y =-,(3, 0)MN =-,(1, )PN x y =--.由已知得22)()1(6)4(3y x x -+-=--,化简得223412x y +=,得22143x y +=. 所以点P 的轨迹C 是椭圆,C 的方程为13422=+y x . Ⅱ由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A ,B 两点的坐标分别为11(, )A x y ,22(, )B x y .由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩消去y 得2222(43)84120k x k x k +-+-=.因为N 在椭圆内,所以0∆>.所以212221228,34412.34k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为2121212(1)(1)(1)(1)(1)NA NB x x y y k x x ⋅=--+=+--]1)()[1(21212++-+=x x x x k222222243)1(943438124)1(k k k k k k k ++-=+++--+=,所以22189(1)127345k k -+--+≤≤. 解得213k ≤≤. 7、 解: (1,3)AP =,设Qx ,y ,(3,1)AQ x y =--,(3)3(1)36AP AQ x y x y ⋅=-+-=+-.∵221182x y +=,即22(3)18x y +=, 而22(3)2|||3|x y x y +⋅≥,∴-18≤6xy ≤18.则222(3)(3)6186x y x y xy xy +=++=+的取值范围是0,36.3x y +的取值范围是-6,6.∴36AP AQ x y ⋅=+-的取值范围是-12,0. 8、解:1依题意可设椭圆方程为2221x y a+=,则右焦点)F3=,解得23a =,故所求椭圆的方程为22 1.3x y +=2设(,)P P P x y 、(,)M M M x y 、(,)N N N x y ,P 为弦MN 的中点,由2213y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(31)63(1)0k x mkx m +++-=直线与椭圆相交,22222(6)4(31)3(1)031,mk k m m k ∴∆=-+⨯->⇒<+ ①23231M N P x x mkx k +∴==-+,从而231P P m y kx m k =+=+, 21313P APP y m k k x mk +++∴==-,又||||,,AM AN AP MN =∴⊥则:23113m k mk k++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<,由②得22103m k -=>,解得12m >.综上求得m 的取值范围是122m <<. 9、解:Ⅰ.0,2=⋅=AM NP AP AM∴NP 为AM 的垂直平分线,∴|NA|=|NM| 又.222||||,22||||>=+∴=+AN CN NM CN ∴动点N 的轨迹是以点C -1,0,A1,0为焦点的椭圆.且椭圆长轴长为,222=a 焦距2c=2. .1,1,22===∴b c a∴曲线E 的方程为.1222=+y x Ⅱ当直线GH 斜率存在时,设直线GH 方程为,12,222=++=y x kx y 代入椭圆方程 得.230.034)21(222>>∆=+++k kx x k 得由设2212212211213,214),,(),,(k x x k k x x y x H y x G +=+-=+则 )2,()2,(,2211-=-∴=y x y x FH FG λλ 又λλλλλ2122221222122121)1(.,)1(,x x x x x x x x x x x x x ==++∴=+=+∴=∴, λλλλ222222)1()121(316,213)1()214(+=++=++-∴kk k k 整理得.331.316214.316323164,2322<<<++<∴<+<∴>λλλ解得k k .131,10<<∴<<λλ 又 又当直线GH 斜率不存在,方程为.31,31,0===λFH FG x)1,31[,131的取值范围是即所求λλ<≤∴10、解:1由题意可得,1c =,2a =,∴3b =.∴所求的椭圆的标准方程为:22143x y +=. 2设),(00y x M )20±≠x (,则 2200143x y +=. ① 且),(00y x t MP --=,),2(00y x MH --=,由MH MP ⊥可得0=⋅MH MP ,即∴0)2)((2000=+--y x x t . ②由①、②消去0y 整理得3241)2(0200-+-=-x x x t . ∵20≠x∴23411)2(4100-=---=x x t .∵220<<-x , ∴ 12-<<-t .∴t 的取值范围为)1,2(--.11、 解:Ⅰ由题意知22c e a ==, 所以22222212c a b e a a -===. 即222a b =. 又因为2111b ==+,所以22a =,21b =. 故椭圆C 的方程为1222=+y x . Ⅱ由题意知直线AB 的斜率存在.设AB :(2)y k x =-,11(,)A x y ,22(,)B x y ,(,)P x y ,由22(2),1.2y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)8820k x k x k +-+-=. 422644(21)(82)0k k k ∆=-+->,212k <. 2122812k x x k +=+,21228212k x x k -=+.∵OP t OB OA =+,∴1212(,)(,)x x y y t x y ++=,21228(12)x x k x t t k +==+, 1212214[()4](12)y y ky k x x k t t t k +-==+-=+. ∵点P 在椭圆上,∴222222222(8)(4)22(12)(12)k k t k t k -+=++, ∴22216(12)k t k =+.∵PB PA -<253,∴2122513k x x +-<,∴22121220(1)[()4]9k x x x x ++-<∴422222648220(1)[4](12)129k k k k k -+-<++, ∴22(41)(1413)0k k -+>,∴214k >. ∴21142k <<,∵22216(12)k t k =+,∴222216881212k t k k ==-++, ∴2623t -<<-或2623t <<, ∴实数t 取值范围为)2,362()362,2( --. 12、解、设椭圆方程为22221y x a b+=,由题意可得2,2,22a b c ===,故椭圆方程为22142y x +=设AB 的直线方程:m x y +=2.由⎪⎩⎪⎨⎧=++=142222y x m x y ,得0422422=-++m mx x , 由0)4(16)22(22>--=∆m m ,得2222<<-mP 到AB 的距离为3||m d =,则3||3)214(21||212m m d AB S PAB ⋅⋅-=⋅=∆2)28(81)8(8122222=+-≤+-=m m m m ;当且仅当()22,222-∈±=m 取等号, ∴三角形PAB 面积的最大值为2; 13、 解:设点M 的坐标为()y x ,,点P 的坐标为()00,y x ,则0x x =,02y y =,所以x x =0,20yy =, ① 因为()00,y x P 在圆122=+y x 上,所以12020=+y x ②将①代入②,得点M 的轨迹方程C 的方程为1422=+y x . Ⅱ由题意知,1||≥t .当1=t 时,切线l 的方程为1=y ,点A 、B 的坐标分别为),1,23(),1,23(-此时3||=AB ,当1-=t 时,同理可得3||=AB ; 当1>t 时,设切线l 的方程为,m kx y +=R k ∈由⎪⎩⎪⎨⎧=++=,14,22y x t kx y 得042)4(222=-+++t ktx x k ③ 设A 、B 两点的坐标分别为),(),,(2211y x y x ,则由③得:222122144,42k t x x k kt x x +-=+-=+. 又由l 与圆122=+y x 相切,得,11||2=+k t 即.122+=k t所以212212)()(||y y x x AB -+-=]4)4(4)4(4)[1(222222kt k t k k +--++=2.3||342+=t t因为,2||3||343||34||2≤+=+=t t t t AB 且当3±=t 时,|AB|=2,所以|AB|的最大值为2依题意,圆心O 到直线AB 的距离为圆122=+y x 的半径,所以AOB ∆面积1121≤⨯=AB S , 当且仅当3±=t 时,AOB ∆面积S 的最大值为1,相应的T 的坐标为()3,0-或者()3,0.14、 解:由题意知,||1m ≥.当1m =时,切线l 的方程为1x =,点A,B 的坐标分别为33(1,),(1,)22-, 此时||3AB =;当1m =-时,同理可得||3AB =; 当1m >时,设切线l 的方程为()y k x m =-.由22()14y k x m x y =-⎧⎪⎨+=⎪⎩得22222(14)8440k x k mx k m +-+-=. 设A,B 两点的坐标分别为1122(,),(,)x y x y . 又由l 与圆221x y +=相切,211k =+,即2221m k k =+.所以222221212112||()()(1)[()4]AB x x y y k x x x x =-+-=++- 42222222644(44)(1)[](14)14k m k m k k k -=+-++243|3m m =+. 由于当1m =±时,||3AB 243|43||233||||m AB m m m ==≤++,当且当3m =,||2AB =.所以|AB|的最大值为2.选做1、 解1椭圆m :141222=+y x2由条件D0,-2 ∵M0,t 1°当k=0时,显然-2<t<2 2°当k≠0时,设t kx y l +=:⎪⎩⎪⎨⎧+==+t kx y y x 141222 消y 得 01236)31(222=-+++t ktx x k由△>0 可得 22124k t +< ①设),(),,(),,(002211y x H PQ y x Q y x P 中点则22103132k kt x x x +=+=20031k tt kx y +=+= ∴)31,313(22k tk kt H ++-由kk PQ OH DQ DP DH 1||||-=⊥∴=即∴2223110313231k t k k kt kt+=-=-+-++化简得 ② ∴t>1 将①代入②得 1<t<4 ∴t 的范围是1,4综上t ∈-2,4 2、解:12,NP NQ =∴∴点Q 为PN 的中点,又0GQ NP ⋅=,GQ PN ∴⊥或G 点与Q 点重合.∴.||||GN PG =又|||||||||| 4.GM GN GM GP PM +=+== ∴点G 的轨迹是以,M N 为焦点的椭圆,且2,1a c ==,∴b G ==∴的轨迹方程是221.43x y +=2解:不存在这样一组正实数,下面证明: 由题意,若存在这样的一组正实数, 当直线MN 的斜率存在时,设之为k ,故直线MN 的方程为:(1)y k x =-,设1122(,),(,)A x y B x y ,AB 中点00(,)D x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得: 12121212()()()()043x x x x y y y y -+-++=. 注意到12121y y x x k -=--,且12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ ,则00314x y k = , ② 又点D 在直线MN 上,00(1)y k x ∴=-,代入②式得:04x =. 因为弦AB 的中点D 在⑴所给椭圆C 内,故022x -<<, 这与04x =矛盾,所以所求这组正实数不存在. 当直线MN 的斜率不存在时,直线MN 的方程为1x =,则此时1212,2y y x x =+=,代入①式得120x x -=,这与,A B 是不同两点矛盾.综上,所求的这组正实数不存在.3、解:Ⅰ椭圆的标准方程为22143x y +=. Ⅱ设11()A x y ,,22()B x y ,,联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,, 得222(34)84(3)0k x mkx m +++-=, 22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,则, 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+, 因为以AB 为直径的圆过椭圆的右焦点(20)D ,, 1AD BD k k ∴=-,即1212122y y x x =---,1212122()40y y x x x x ∴+-++=,2222223(4)4(3)1640343434m k m mk k k k--∴+++=+++, 2291640m mk k ∴++=.解得:12m k =-,227k m =-,且均满足22340k m +->, 当12m k =-时,l 的方程为(2)y k x =-,直线过定点(20),,与已知矛盾; 当227k m =-时,l 的方程为2()7y k x =-,直线过定点2(0)7,. 所以,直线l 过定点,定点坐标为2(0)7,. 4、解:1设椭圆方程为)0(12222>>=+b a by a x 则⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧=+=2811422222b a b a b a 解得 ∴椭圆方程为12822=+y x 2∵直线l 平行于OM,且在y 轴上的截距m, 又K OM =21 m x y l +=∴21的方程为: 由0422128212222=-++∴⎪⎪⎩⎪⎪⎨⎧=++=m mx x y x m x y ∵直线l 与椭圆交于A 、B 两个不同点,分且解得8...........................................................0,22,0)42(4)2(22≠<<->--=∆∴m m m m3设直线MA 、MB 的斜率分别为k 1,k 2,只需证明k 1+k 2=0即可设42,2),,(),,(221212211-=-=+m x x m x x y x B y x A 且则21,21222111--=--=x y k x y k 由可得042222=-++m mx x 42,222121-=-++m x x m x x 而)2)(2()2)(1()2()1(2121211221221121----+---=--+--=+x x x y x y x y x y k k )2)(2()1(4)2)(2(42)2)(2()1(4))(2()2)(2()2)(121()2)(121(212212*********------+-=----+++=----++--+=x x m m m m x x m x x m x x x x x m x x m x13......................................................0)2)(2(444242212122=+∴=--+-+--=k k x x m m m m 分 故直线MA 、MB 与x 轴始终围成一个等腰三角形;。
2025届高考数学二轮复习微专题25椭圆中与面积有关的定点定值问题作业

微专题25 椭圆中与面积有关的定点、定值问题1.已知椭圆x 24+y22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若PF 1-PF 2=2,则△PF 1F 2的面积是________.2.椭圆x 216+y27=1的左、右焦点分别为F 1,F 2,点A(x 1,y 1),B(x 2,y 2)在椭圆上且直线AB 过F 2,若△F 1AB 的面积为2,则|y 1-y 2|的值为________.3.已知椭圆C :x 24+y23=1的左、右焦点分别为F 1,F 2,动直线l :y =x +m 与椭圆C 相切,点M ,N 是直线l 上的两点,且F 1M ⊥l ,F 2N ⊥l.则四边形F 1MNF 2的面积为________.4.已知椭圆G 的方程为x 212+y24=1.斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P(-3,2),则△PAB 的面积是________.5.已知椭圆C :x 212+y24=1,点B 是其下顶点,过点B 的直线交椭圆C 于另外一点A(点A 在x 轴下方),若点P 为椭圆C 上异于A ,B 的动点,且直线AP ,BP 分别交直线y =x 于点M ,N ,则OM·ON=________.6.焦点在x轴的椭圆C过点P(2,2),且与直线l:y=x+3交于A,B两点,若△PAB 的面积为2,则椭圆C的标准方程为________.7.如图,已知椭圆C :x 2a 2+y2b 2=1(a >b>0)过点(0,1)和⎝ ⎛⎭⎪⎫1,22,圆O :x 2+y 2=b 2.(1)求椭圆C 的标准方程;(2)若直线l 与圆O 相切,切点在第一象限内,且直线l 与椭圆C 交于A ,B 两点,△OAB 的面积为64时,求直线l 的方程.8.已知椭圆Γ:x 2a 2+y2b 2=1(a >b >0),过原点的两条直线l 1和l 2分别与Γ交于点A ,B 和C ,D ,得到平行四边形ACBD.(1)当四边形ACBD 为正方形时,求该正方形的面积S.(2)若直线l 1和l 2关于y 轴对称,Γ上随意一点P 到l 1和l 2的距离分别为d 1和d 2,当d 12+d 22为定值时,求此时直线l 1和l 2的斜率及该定值.(3)当四边形ACBD 为菱形,且圆x 2+y2=1内切于菱形ACBD 时,求a ,b 满意的关系式.微专题251.答案: 2.解析:由题意,PF 1+PF 2=4,所以△PF 1F 2的三边长分别为3,1,22,明显△PF 1F 2是直角三角形,所以S =12×1×22= 2.2.答案:23.解析:△F 1AB 的面积S =12·F 1F 2·|y 1-y 2|=3|y 1-y 2|=2,所以|y 1-y 2|=23.3.答案:7.解析:将直线l 的方程y =x +m 代入椭圆C 的方程3x 2+4y 2=12中,得7x 2+8mx +4m 2-12=0.由直线与椭圆C 仅有一个公共点知,Δ=64m 2-28(4m 2-12)=0,化简得m 2=7.设d 1=F 1M =|-1+m |2,d 2=F 2N =|1+m |2,又|d 1-d 2|=MN ,所以S =12|d 1-d 2|(d 1+d 2)=⎪⎪⎪⎪⎪⎪d 12-d 222=|m |=7.4.答案:92.解析:设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1得4x 2+6mx +3m 2-12=0.①设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m4; 因为AB 是等腰△PAB 的底边,所以PE ⊥AB ,所以PE 的斜率k =2-m4-3+3m 4=-1,解得m=2.此时方程①为4x 2+12x =0,解得x 1=-3,x 2=0,所以y 1=-1,y 2=2.所以AB =32,此时,点P (-3,2)到直线AB :x -y +2=0的距离为d =|-3-2+2|2=322,所以△PAB 的面积S =12AB ·d =92.5.答案:6. 解析:设P (x 0,y 0),则x 0212+y 024=1,即y 02=4-x 023.设M (x M ,y M ),由A ,P ,M 三点共线,即AP →∥AM →,所以(x 0+3)(y M +1)=(y 0+1)(x M +3),又点M 在直线y =x 上,解得M 点的横坐标x M =3y 0-x 0x 0-y 0+2,设N (x N ,y N ),由B ,P ,N 三点共线,即BP →∥BN →,所以x 0(y N +2)=(y 0+2)x N ,点N 在直线y =x 上,解得N 点的横坐标x N =-2x 0x 0-y 0-2.所以OM ·ON =2|x M -0|·2|x N -0|= 2|x M |·|x N |=⎪⎪⎪⎪⎪⎪3y 0-x 0x 0-y 0+2·⎪⎪⎪⎪⎪⎪-2x 0x 0-y 0-2= 2⎪⎪⎪⎪⎪⎪2x 02-6x 0y 0(x 0-y 0)2-4= 2⎪⎪⎪⎪⎪⎪⎪⎪2x 02-6x 0y 0x 02-2x 0y 0-x 023= 2⎪⎪⎪⎪⎪⎪⎪⎪x 02-3x 0y 0x 023-x 0y 0=6. 6.答案:x 26+y 23=1.解析:由题意,设椭圆的方程为mx 2+ny 2=1,其中0<m <n .则有m +n =12.另一方面,联立⎩⎨⎧y =x +3,mx 2+ny 2=1,消去x 得12y 2-23my +3m -1=0.因为OP ∥AB ,所以△PAB 的面积即为△OAB 的面积,所以S =12×3·|y 1-y 2|=66m 2-3m +1=2,所以6m 2-3m +13=0,解得m =13或者m =16.因为0<m <n ,所以m=16,n =13.椭圆C 的方程为x 26+y23=1. 7.答案:(1)x 22+y 2=1;(2)y =-22x +62.解析:(1)因为椭圆C 过点(0,1)和⎝ ⎛⎭⎪⎫1,22,代入椭圆方程,得 ⎩⎪⎨⎪⎧02a 2+12b 2=1.12a 2+12b 2=1.解得⎩⎨⎧a =2,b =1.所以椭圆C 的标准方程是x 22+y 2=1.(2)因为切点在第一象限,所以可设直线l 为y =kx +m (k <0,m >0),A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧x 2+2y 2=2,y =kx +m ,消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0,所以⎩⎪⎨⎪⎧x 1+x 2=-4km1+2k 2,x 1x 2=2m 2·21+2k2,因为直线l 与圆O 相切,圆心O 到直线l 的距离d =|m |1+k 2=1,所以m 2=1+k 2.线段AB 的长为l AB =1+k 2·(x 1+x 2)2-4x 1x 2= 1+k 2·⎝ ⎛⎭⎪⎫4km 1+2k 22-4·2m 2-21+2k 2= 22·1+k 21+2k 2·k 2,所以△OAB 的面积S =12l AB ·d =12×22×1+k 21+2k 2·k 2=64,即(1+k 2)·k 2(1+2k 2)2=316,所以16(1+k 2)·k 2=3(1+2k 2)2,即(2k 2+3)(2k 2-1)=0,所以k 2=12,k =-22,所以m =62,直线l 的方程为y =-22x +62. 8.答案:(1)4a 2b 2a 2+b 2;(2)直线l 1和l 2的斜率分别为b a 和-b a ,此时d 12+d 22=2a 2b 2a 2+b 2;(3)1a 2+1b2=1.解析:(1)因为四边形ACBD 为正方形,所以直线l 1,l 2的方程为y =x 和y =-x .点A ,B 的坐标为(x 1,y 1),(x 2,y 2)为方程组⎩⎪⎨⎪⎧y =x ,x 2a 2+y 2b2=1的实数解,解得x 12=x 22=a 2b 2a 2+b 2.依据对称性,可得正方形ACBD 的面积S =4x 12=4a 2b2a 2+b 2.(2)由题意,不妨设直线l 1的方程为y =kx (k ≠0),于是直线l 2的方程为y =-kx .设P (x 0,y 0),于是有x 02a 2+y 02b 2=1,又d 1=|kx 0-y 0|k 2+1,d 2=|kx 0+y 0|k 2+1,d 12+d 22=(kx 0-y 0)2k 2+1+(kx 0+y 0)2k 2+1=2k 2x 02+2y 02k 2+1,将y 02=b 2⎝ ⎛⎭⎪⎫1-x 02a 2代入上式,得d 12+d 22=2k 2x 02+2b 2⎝ ⎛⎭⎪⎫1-x 02a 2k 2+1=⎝⎛⎭⎪⎫2k 2-b 2a 2x 02+2b2k 2+1,对于随意x 0∈[-a ,a ],上式为定值,必有k 2-b 2a 2=0,即k =±ba,因此,直线l 1和l 2的斜率分别为b a 和-b a ,此时d 12+d 22=2a 2b 2a 2+b2.(3)设AC 与圆x 2+y 2=1相切的切点坐标为(x 0,y 0),所以x 02+y 02=1,则切线AC 的方程为x 0x +y 0y =1.点A ,C 的坐标为(x 1,y 1),(x 2,y 2)为方程组⎩⎪⎨⎪⎧x 0x +y 0y =1,x 2a 2+y 2b2=1的实数解.①当x 0=0或y 0=0时,ACBD 均为正方形,椭圆均过点(1,1),于是有1a 2+1b2=1.②当x 0≠0且y 0≠0时,将y =1y 0(1-x 0x )代入x 2a 2+y 2b2=1,整理得(b 2y 02+a 2x 02)x 2-2x 0a 2x+a 2(1-b 2y 02)=0,于是x 1x 2=a 2(1-b 2y 02)b 2y 02+a 2x 02,同理可得y 1y 2=b 2(1-a 2x 02)b 2y 02+a 2x 02.因为ACBD 为菱形,所以AO ⊥CO ,得AO →·CO →=0,即x 1x 2+y 1y 2=0,所以a 2(1-b 2y 02)b 2y 02+a 2x 02+b 2(1-a 2x 02)b 2y 02+a 2x 02=0,整理得a 2+b 2=a 2b 2(x 02+y 02).因为x 02+y 02=1,得a 2+b 2=a 2b 2,即1a 2+1b2=1.综上,a ,b 满意的关系式为1a 2+1b2=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.解答题(共30小题)1.已知椭圆C得中心在原点,焦点在x轴上,离心率为,短轴长为4.(Ⅰ)求椭圆C得标准方程;(Ⅱ)P(2,n),Q(2,﹣n)就是椭圆C上两个定点,A、B就是椭圆C上位于直线PQ两侧得动点.①若直线AB得斜率为,求四边形APBQ面积得最大值;②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB得斜率就是否为定值,说明理由.2.已知椭圆得离心率为,且经过点.(1)求椭圆C得方程;(2)已知A为椭圆C得左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN得斜率k1,k2满足k1+k2=m(定值m≠0),求直线l得斜率.3.如图,在平面直角坐标系xOy中,椭圆得焦距为2,且过点.(1)求椭圆E得方程;(2)若点A,B分别就是椭圆E得左、右顶点,直线l经过点B且垂直于x轴,点P就是椭圆上异于A,B得任意一点,直线AP交l于点M.(ⅰ)设直线OM得斜率为k1,直线BP得斜率为k2,求证:k1k2为定值;(ⅱ)设过点M垂直于PB得直线为m.求证:直线m过定点,并求出定点得坐标.4.已知F1,F2分别就是椭圆(a>b>0)得左、右焦点,半焦距为c,直线x=﹣与x轴得交点为N,满足,设A、B就是上半椭圆上满足得两点,其中.(1)求椭圆得方程及直线AB得斜率k得取值范围;(2)过A、B两点分别作椭圆得切线,两切线相交于一点P,试问:点P就是否恒在某定直线上运动,请说明理由.5.在平面直角坐标系xOy中,已知椭圆(a>b>0)得离心率为,其焦点在圆x2+y2=1上.(1)求椭圆得方程;(2)设A,B,M就是椭圆上得三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB得斜率之积为定值;(ii)求OA2+OB2.6.已知椭圆得左焦点为F(﹣,0),离心率e=,M、N就是椭圆上得动点.(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON得斜率之积为﹣,问:就是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2得坐标,若不存在,说明理由.(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上得射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.7.一束光线从点F1(﹣1,0)出发,经直线l:2x﹣y+3=0上一点P反射后,恰好穿过点F2(1,0).(1)求P点得坐标;(2)求以F1、F2为焦点且过点P得椭圆C得方程;(3)设点Q就是椭圆C上除长轴两端点外得任意一点,试问在x轴上就是否存在两定点A、B,使得直线QA、QB得斜率之积为定值?若存在,请求出定值,并求出所有满足条件得定点A、B得坐标;若不存在,请说明理由.8.已知椭圆得离心率为,且经过点.(1)求椭圆C得方程;(2)设直线l:y=kx+t(k≠0)交椭圆C于A、B两点,D为AB得中点,k OD为直线OD得斜率,求证:k•k OD为定值;(3)在(2)条件下,当t=1时,若得夹角为锐角,试求k得取值范围.9.如图所示,椭圆C:得焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py(p>0)得焦点与F1重合,过F2得直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l得斜率为定值;(2)当λ∈[2,4]时,求椭圆得离心率e得取值范围.10.已知椭圆(a>b>0)得右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆得方程;(2)设A,B为椭圆上关于原点对称得两点,AF1得中点为M,BF1得中点为N,若原点O在以线段MN为直径得圆上.①证明点A在定圆上;②设直线AB得斜率为k,若k,求e得取值范围.11.在平面直角坐标系xOy中,椭圆=1(a>b>0)得焦点为F1(﹣1,0),F2(1,0),左、右顶点分别为A,B,离心率为,动点P到F1,F2得距离得平方与为6.(1)求动点P得轨迹方程;(2)若,,Q为椭圆上位于x轴上方得动点,直线DM•CN,BQ分别交直线m于点M,N.(i)当直线AQ得斜率为时,求△AMN得面积;(ii)求证:对任意得动点Q,DM•CN为定值.12.(1)如图,设圆O:x2+y2=a2得两条互相垂直得直径为AB、CD,E在弧BD上,AE交CD于K,CE交AB于L,求证:为定值(2)将椭圆(a>b>0)与x2+y2=a2相类比,请写出与(1)类似得命题,并证明您得结论.(3)如图,若AB、CD就是过椭圆(a>b>0)中心得两条直线,且直线AB、CD得斜率积,点E就是椭圆上异于A、C得任意一点,AE交直线CD于K,CE交直线AB于L,求证:为定值.13.作斜率为得直线l与椭圆C:交于A,B两点(如图所示),且在直线l得左上方.(1)证明:△PAB得内切圆得圆心在一条定直线上;(2)若∠APB=60°,求△PAB得面积.14.设椭圆C:+=1(a>b>0)得左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直得直线交x轴负半轴于点Q,且2+=.(1)若过A.Q.F 2三点得圆恰好与直线l:x﹣y﹣3=0相切,求椭圆C得方程;(2)在(1)得条件下,过右焦点F2作斜率为k得直线l与椭圆C交于M.N两点.试证明:+为定值;②在x轴上就是否存在点P(m,0)使得以PM,PN为邻边得平行四边形就是菱形,如果存在,求出m得取值范围,如果不存在,说明理由.15.已知A,B分别就是椭圆C1:=1得左、右顶点,P就是椭圆上异与A,B得任意一点,Q就是双曲线C2:=1上异与A,B得任意一点,a>b>0.(I)若P(),Q(,1),求椭圆C l得方程;(Ⅱ)记直线AP,BP,AQ,BQ得斜率分别就是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;(Ⅲ)过Q作垂直于x轴得直线l,直线AP,BP分别交l于M,N,判断△PMN就是否可能为正三角形,并说明理由.16.已知椭圆=1得焦点坐标为(±1,0),椭圆经过点(1,)(1)求椭圆方程;(2)过椭圆左顶点M(﹣a,0)与直线x=a上点N得直线交椭圆于点P,求得值.(3)过右焦点且不与对称轴平行得直线l交椭圆于A、B两点,点Q(2,t),若K QA+K QB=2与l得斜率无关,求t得值.17.如图,已知椭圆得焦点为F1(1,0)、F2(﹣1,0),离心率为,过点A(2,0)得直线l交椭圆C于M、N两点.(1)求椭圆C得方程;(2)①求直线l得斜率k得取值范围;②在直线l得斜率k不断变化过程中,探究∠MF1A与∠NF1F2就是否总相等?若相等,请给出证明,若不相等,说明理由.18.已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之与为,离心率为,左、右焦点分别为F1,F2,点P就是右准线上任意一点,过F2作直线PF2得垂线F2Q交椭圆于Q点.(1)求椭圆E得标准方程;(2)证明:直线PQ与直线OQ得斜率之积就是定值;(3)点P得纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.19.如图,双曲线C1:与椭圆C2:(0<b<2)得左、右顶点分别为A1、A2第一象限内得点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.(I)求证:为定值(其中表示直线AA1得斜率,等意义类似);(II)证明:△OAA2与△OA2P不相似.(III)设满足{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R} 得正数m得最大值就是b,求b得值.20.已知椭圆得中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点与短轴得两个端点恰为一个正方形得顶点.过右焦点F与x轴不垂直得直线l交椭圆于P,Q两点.(1)求椭圆得方程;(2)当直线l得斜率为1时,求△POQ得面积;(3)在线段OF上就是否存在点M(m,0),使得以MP,MQ为邻边得平行四边形就是菱形?若存在,求出m得取值范围;若不存在,请说明理由.21.已知椭圆得离心率为,且椭圆上得点到两个焦点得距离与为2.斜率为k(k≠0)得直线l过椭圆得上焦点且与椭圆相交于P,Q两点,线段PQ得垂直平分线与y轴相交于点M(0,m).(Ⅰ)求椭圆得方程;(Ⅱ)求m得取值范围;(Ⅲ)试用m表示△MPQ得面积,并求面积得最大值.22.已知椭圆E:得左焦点,若椭圆上存在一点D,满足以椭圆短轴为直径得圆与线段DF1相切于线段DF1得中点F.(Ⅰ)求椭圆E得方程;(Ⅱ)已知两点Q(﹣2,0),M(0,1)及椭圆G:,过点Q作斜率为k得直线l交椭圆G于H,K两点,设线段HK得中点为N,连接MN,试问当k为何值时,直线MN过椭圆G得顶点?(Ⅲ) 过坐标原点O得直线交椭圆W:于P、A两点,其中P在第一象限,过P作x轴得垂线,垂足为C,连接AC并延长交椭圆W于B,求证:PA⊥PB.23.已知椭圆与圆O:x2+y2=b2,过椭圆上一点P引圆O得两条切线,切点为A,B.(1)(ⅰ)若圆O过椭圆得两个焦点,求椭圆得离心率e;(ⅱ)若椭圆上存在点P,使得∠APB=90°,求椭圆离心率e得取值范围;(2)设直线AB与x轴、y轴分别交于点M,N,求证:为定值.24.已知椭圆中心在原点,焦点在y轴上,离心率为,以原点为圆心,椭圆短半轴长为半径得圆与直线y=x+2相切.(Ⅰ)求椭圆得标准方程;(Ⅱ)设点F就是椭圆在y轴正半轴上得一个焦点,点A,B就是抛物线x2=4y上得两个动点,且满足,过点A,B分别作抛物线得两条切线,设两切线得交点为M,试推断就是否为定值?若就是,求出这个定值;若不就是,说明理由.25.已知椭圆得中心为O,长轴、短轴得长分别为2a,2b(a>b>0),A,B分别为椭圆上得两点,且OA⊥OB.(1)求证:为定值;(2)求△AOB面积得最大值与最小值.26.设F1、F2分别就是椭圆+y2=1得左、右焦点.(1)若P就是该椭圆上得一个动点,求向量乘积得取值范围;(2)设过定点M(0,2)得直线l与椭圆交于不同得两点M、N,且∠MON为锐角(其中O为坐标原点),求直线l得斜率k 得取值范围.(3)设A(2,0),B(0,1)就是它得两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积得最大值.27.已知椭圆得左焦点F1(﹣1,0),长轴长与短轴长得比就是.(Ⅰ)求椭圆得方程;(Ⅱ)过F1作两直线m,n交椭圆于A,B,C,D四点,若m⊥n,求证:为定值.28.已知椭圆得左顶点就是A,过焦点F(c,0)(c>0,为椭圆得半焦距)作倾斜角为θ得直线(非x轴)交椭圆于M,N两点,直线AM,AN分别交直线(称为椭圆得右准线)于P,Q两点.(1)若当θ=30°时有,求椭圆得离心率;(2)若离心率e=,求证:为定值.29.已知点P在椭圆C:(a>b>0)上,F1、F2分别为椭圆C得左、右焦点,满足|PF1|=6﹣|PF2|,且椭圆C得离心率为.(Ⅰ)求椭圆C得方程;(Ⅱ)若过点Q(1,0)且不与x轴垂直得直线l与椭圆C相交于两个不同点M、N,在x轴上就是否存在定点G,使得为定值.若存在,求出所有满足这种条件得点G得坐标;若不存在,说明理由.30.如图,已知椭圆C:得离心率为,以椭圆C得左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)求椭圆C得方程;(2)求得最小值,并求此时圆T得方程;(3)设点P就是椭圆C上异于M,N得任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.参考答案与试题解析一.解答题(共30小题)1.已知椭圆C得中心在原点,焦点在x轴上,离心率为,短轴长为4.(Ⅰ)求椭圆C得标准方程;(Ⅱ)P(2,n),Q(2,﹣n)就是椭圆C上两个定点,A、B就是椭圆C上位于直线PQ两侧得动点.①若直线AB得斜率为,求四边形APBQ面积得最大值;②当A、B两点在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB得斜率就是否为定值,说明理由.解:(Ⅰ)设C方程为由已知b=2,离心率…(3分)得a=4,所以,椭圆C得方程为…(4分)(Ⅱ)①由(Ⅰ)可求得点P、Q得坐标为P(2,3).Q(2,﹣3),则|PQ|=6,设A(x1,y1),B(x2,y2),直线AB得方程为,代入,得x2+tx+t2﹣12=0 由△>0,解得﹣4<t<4,由根与系数得关系得,四边形APBQ得面积…(6分)故,当t=0时,…(7分)②∠APQ=∠BPQ时,PA、PB得斜率之与为0,设直线PA得斜率为k,则PB得斜率为﹣k,PA得直线方程为y﹣3=k(x﹣2)与,联立解得(3+4k2)x2+8(3﹣2k)kx+4(3﹣2k)2﹣48=0,.…(9分)同理PB得直线方程y﹣3=﹣k(x﹣2),可得所以,…(11分)==,所以直线AB得斜率为定…(13分)2.已知椭圆得离心率为,且经过点.(1)求椭圆C得方程;(2)已知A为椭圆C得左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN得斜率k1,k2满足k1+k2=m(定值m≠0),求直线l得斜率.解:(1)∵椭圆离心率为,∴,∴(2分)又椭圆经过点,∴解得c=1,∴(3分)∴椭圆C得方程就是…(4分)(2)若直线l斜率不存在,显然k1+k2=0不合题意…(5分)设直线方程为l:y=k(x﹣1),M(x1,y1),N(x2,y2)3.如图,在平面直角坐标系xOy 中,椭圆得焦距为2,且过点.(1)求椭圆E 得方程;(2)若点A,B 分别就是椭圆E 得左、右顶点,直线l 经过点B 且垂直于x 轴,点P 就是椭圆上异于A,B 得任意一点,直线AP 交l 于点M.(ⅰ)设直线OM 得斜率为k 1,直线BP 得斜率为k 2,求证:k 1k 2为定值;(ⅱ)设过点M 垂直于PB 得直线为m.求证:直线m 过定点,并求出定点得坐标.解:(1)由题意得2c=2,∴c=1,又,a 2=b 2+1.消去a 可得,2b 4﹣5b 2﹣3=0,解得b 2=3或(舍去),则a 2=4,∴椭圆E 得方程为.(2)(ⅰ)设P(x 1,y 1)(y 1≠0),M(2,y 0),则,,∵A,P,M 三点共线,∴,∴,∵P(x 1,y 1)在椭圆上,∴,故为定值.联立方程组得(3+4k 2)x 2﹣8k 2x+4k 2﹣12=0…(7分)∴…(8分)∴k 1+k 2=====k()=﹣∵k 1+k 2=m,∴﹣=m, ∴k=.(ⅱ)直线BP得斜率为,直线m得斜率为,则直线m得方程为,====, 即.所以直线m过定点(﹣1,0).4.已知F1,F2分别就是椭圆(a>b>0)得左、右焦点,半焦距为c,直线x=﹣与x轴得交点为N,满足,设A、B就是上半椭圆上满足得两点,其中.(1)求椭圆得方程及直线AB得斜率k得取值范围;(2)过A、B两点分别作椭圆得切线,两切线相交于一点P,试问:点P就是否恒在某定直线上运动,请说明理由.解:(1)由于,∴解得a2=2,b2=1,从而所求椭圆得方程为=1.∵三点共线,而点N得坐标为(﹣2,0).设直线AB得方程为y=k(x+2),其中k为直线AB得斜率,依条件知k≠0.由消去x得,即.根据条件可知解得,依题意取.设A(x1,y1),B(x2,y2),则根据韦达定理,得,又由,得(x1+2,y1)=λ(x2+2,y2),∴从而从而消去y2得.令,则.由于,所以φ'(λ)<0.∴φ(λ)就是区间上得减函数,从而,即,∴,解得,而,∴.故直线AB得斜率得取值范围就是.(2)设点P得坐标为(x0,y0),则可得切线PA得方程就是,而点A(x1,y1)在此切线上,有即x0x1+2y0y1=x12+2y12,又∵A在椭圆上,∴有x0x1+2y0y=2,①同理可得x0x2+2y0y2=2.②根据①与②可知直线AB得方程为,x0x+2y0y=2,而直线AB过定点N(﹣2,0),∴﹣2x0=2⇒x0=﹣1,因此,点P恒在直线x=﹣1上运动.5.在平面直角坐标系xOy中,已知椭圆(a>b>0)得离心率为,其焦点在圆x2+y2=1上.(1)求椭圆得方程;(2)设A,B,M就是椭圆上得三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB得斜率之积为定值;(ii)求OA2+OB2.解:(1)依题意,得c=1.于就是,a=,b=1. …(2分)所以所求椭圆得方程为. …(4分)(2)(i)设A(x1,y1),B(x2,y2),则①,②.又设M(x,y),因,故…(7分)因M在椭圆上,故.整理得.将①②代入上式,并注意cosθsinθ≠0,得.所以,为定值. …(10分)(ii),故y12+y22=1.又,故x12+x22=2.所以,OA2+OB2=x12+y12+x22+y22=3. …(16分)6.已知椭圆得左焦点为F(﹣,0),离心率e=,M、N就是椭圆上得动点.(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON得斜率之积为﹣,问:就是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2得坐标,若不存在,说明理由.(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上得射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.(Ⅰ)解:由题设可知:,∴a=2,c=…2分∴b2=a2﹣c2=2…3分∴椭圆得标准方程为:…4分(Ⅱ)解:设P(x P,y P),M(x1,y1),N(x2,y2),由可得:①…5分由直线OM与ON得斜率之积为可得:,即x1x2+2y1y2=0②…6分由①②可得:x P2+2y P2=(x12+2y12)+(x22+2y22)∵M、N就是椭圆上得点,∴x12+2y12=4,x22+2y22=4∴x P2+2y P2=8,即…、、8分由椭圆定义可知存在两个定点F1(﹣2,0),F2(2,0),使得动点P到两定点距离与为定值4;…、9分;(Ⅲ)证明:设M(x1,y1),B(x2,y2),则x1>0,y1>0,x2>0,y2>0,x1≠x2,A(x1,0),N(﹣x1,﹣y1)…、、10分由题设可知l AB斜率存在且满足k NA=k NB,∴….③k MN•k MB+1=+1④…12分将③代入④可得:k MN•k MB+1=+1=⑤ (13)∵点M,B在椭圆上,∴k MN•k MB+1==0∴k MN•k MB+1=0∴k MN•k MB=﹣1∴MN⊥MB…14分.7.一束光线从点F1(﹣1,0)出发,经直线l:2x﹣y+3=0上一点P反射后,恰好穿过点F2(1,0).(1)求P点得坐标;(2)求以F1、F2为焦点且过点P得椭圆C得方程;(3)设点Q就是椭圆C上除长轴两端点外得任意一点,试问在x轴上就是否存在两定点A、B,使得直线QA、QB得斜率之积为定值?若存在,请求出定值,并求出所有满足条件得定点A、B得坐标;若不存在,请说明理由.解:(1)设F1关于l得对称点为F(m,n),则且,解得,,即.由,解得.(2)因为PF1=PF,根据椭圆定义,得2a=PF1+PF2=PF+PF2=FF2=,所以a=.又c=1,所以b=1.所以椭圆C得方程为.(3)假设存在两定点为A(s,0),B(t,0),使得对于椭圆上任意一点Q(x,y)(除长轴两端点)都有k Qt•k Qs=k(k为定值),即•,将代入并整理得(*).由题意,(*)式对任意x∈(﹣,)恒成立,所以,解之得或.所以有且只有两定点(,0),(﹣,0),使得k Qt•k Qs为定值﹣.8.已知椭圆得离心率为,且经过点.(1)求椭圆C得方程;(2)设直线l:y=kx+t(k≠0)交椭圆C于A、B两点,D为AB得中点,k OD为直线OD得斜率,求证:k•k OD为定值;(3)在(2)条件下,当t=1时,若得夹角为锐角,试求k得取值范围.解:(1)根据题意有:解得:∴椭圆C得方程为=1(2)联立方程组消去y得:(4+k2)x2+2kx+t2﹣4=0①设A(x1,y1),B(x2,y2),AB中点坐标为(x0,y0)则有:∴,故为定值(3)当t=1时,①式为(4+k2)x2+2kx﹣3=0故∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1∴若得夹角为锐角,则有,即,解得,且k≠0,∴当k∈时,得夹角为锐角9.如图所示,椭圆C:得焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py(p>0)得焦点与F1重合,过F2得直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l得斜率为定值;(2)当λ∈[2,4]时,求椭圆得离心率e得取值范围.(1)证明:∵椭圆C:得焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线P:x2=2py(p>0)得焦点与F1重合,∴,∴抛物线P:x2=4cy.设过F2得直线l得方程为y+c=kx,与抛物线联立,可得x2﹣4kcx+4c2=0,∵过F2得直线l与抛物线P相切,切点E在第一象限,∴△=16k2c2﹣16c2=0,k>0∴k=1,即切线l得斜率为定值;(2)解:由(1),可得直线l得方程为y=x﹣c,代入椭圆方程可得(a2+b2)x2﹣2b2cx+b2c2﹣a2b2=0设A(x1,y1),B(x2,y2),则①,②∵∴x2=﹣λx1③由①②③可得=∵f(λ)=,当λ∈[2,4]时,单调递增,∴f(λ)∈∴∵0<e<1∴椭圆得离心率e得取值范围就是[].10.已知椭圆(a>b>0)得右焦点为F1(2,0),离心率为e.(1)若e=,求椭圆得方程;(2)设A,B为椭圆上关于原点对称得两点,AF1得中点为M,BF1得中点为N,若原点O在以线段MN为直径得圆上.①证明点A在定圆上;②设直线AB得斜率为k,若k,求e得取值范围.解:(1)由=,c=2,得a=,b==2.故所求椭圆方程为.(2)设A(x1,y1),则B(﹣x1,﹣y1),故,.①由题意,得.化简,得,∴点A在以原点为圆心,2为半径得圆上.②设A(x1,y1),则得到.将,,代入上式整理,得k2(2e2﹣1)=e4﹣2e2+1;∵e4﹣2e2+1>0,k2>0,∴2e2﹣1>0,∴.∴≥3.化简,得.解之,得,.故离心率得取值范围就是.11.在平面直角坐标系xOy中,椭圆=1(a>b>0)得焦点为F1(﹣1,0),F2(1,0),左、右顶点分别为A,B,离心率为,动点P到F1,F2得距离得平方与为6.(1)求动点P得轨迹方程;(2)若,,Q为椭圆上位于x轴上方得动点,直线DM•CN,BQ分别交直线m于点M,N.(i)当直线AQ得斜率为时,求△AMN得面积;(ii)求证:对任意得动点Q,DM•CN为定值.(1)解:设P(x,y),则,即(x+1)2+y2+(x﹣1)2+y2=6,整理得,x2+y2=2,所以动点P得轨迹方程为x2+y2=2.…(4分)(2)解:由题意知,,解得,所以椭圆方程为. …(6分)则,,设Q(x0,y0),y0>0,则,直线AQ得方程为,令,得,直线BQ得方程为,令,得,( i)当直线AQ得斜率为时,有,消去x0并整理得,,解得或y0=0(舍),…(10分)所以△AMN得面积==. …(12分) (ii),,所以.所以对任意得动点Q,DM•CN为定值,该定值为. …(16分)12.(1)如图,设圆O:x2+y2=a2得两条互相垂直得直径为AB、CD,E在弧BD上,AE交CD于K,CE交AB于L,求证:为定值(2)将椭圆(a>b>0)与x2+y2=a2相类比,请写出与(1)类似得命题,并证明您得结论.(3)如图,若AB、CD就是过椭圆(a>b>0)中心得两条直线,且直线AB、CD得斜率积,点E就是椭圆上异于A、C得任意一点,AE交直线CD于K,CE交直线AB于L,求证:为定值.解答:解:(1)如图所示,过点E作EF⊥AB,垂足为F点,∵CD⊥AB,∴EF∥CD,∴,,又EF2+FO2=OE2=a2,∴====1.为定值.(2)如图,设椭圆(a>b>0),椭圆得长轴、短轴分别为AB、CD,E在椭圆得BD部分上,AE交CD于K,CE 交AB于L,求证:为定值.证明:过点E作EF⊥AB,垂足为F点,∵CD⊥AB,∴EF∥CD,∴,,∴===1.为定值.(3)如图所示,过点E分别作EF∥CD交AB与点F,EM∥AB交直线CD于点M.∴,.设A(x1,y1),C(x2,y2),D(﹣x2,﹣y2),B(﹣x1,﹣y1).E(x0,y0).则.设直线AB得方程为y=kx(k≠0),则直线CD得方程为.直线EF得方程为,直线EM得方程为y﹣y0=k(x﹣x0).联立解得x F=.联立,解得x M=.联立解得.联立,解得=.∴==.同理.∴====.为定值.13.作斜率为得直线l与椭圆C:交于A,B两点(如图所示),且在直线l得左上方.(1)证明:△PAB得内切圆得圆心在一条定直线上;(2)若∠APB=60°,求△PAB得面积.(1)证明:设直线l:,A(x1,y1),B(x2,y2).将代入中,化简整理得2x2+6mx+9m2﹣36=0.于就是有,. 则,上式中,分子====,从而,k PA+k PB=0.又P在直线l得左上方,因此,∠APB得角平分线就是平行于y轴得直线,所以△PAB得内切圆得圆心在直线上.(2)解:若∠APB=60°时,结合(1)得结论可知.直线PA得方程为:,代入中,消去y得.它得两根分别就是x1与,所以,即.所以.同理可求得.=••=.14.设椭圆C:+=1(a>b>0)得左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直得直线交x轴负半轴于点Q,且2+=.(1)若过A.Q.F2三点得圆恰好与直线l:x﹣y﹣3=0相切,求椭圆C得方程;(2)在(1)得条件下,过右焦点F2作斜率为k得直线l与椭圆C交于M.N两点.试证明:+为定值;②在x轴上就是否存在点P(m,0)使得以PM,PN为邻边得平行四边形就是菱形,如果存在,求出m得取值范围,如果不存在,说明理由.解:(1)由知:F1为F2Q中点.又∵,∴|F1Q|=|F1A|=|F1F2|,即F1为△AQF2得外接圆圆心而|F1A|=a,|F1F2|=2c,∴a=2c,又圆心为(﹣c,0),半径r=a,∴,解得a=2,∴所求椭圆方程为.(5分)(2)①由(1)知F2(1,0),y=k(x﹣1),,代入得(3+4k2)x2﹣8k2x+4k2﹣12=0,设M(x1,y1),N(x2,y2),则,,又∵|F2M|=a﹣ex1,|F2N|=a﹣ex2,∴=,,∴为定值.(10分)②由上可知:y1+y2=k(x1+x2﹣2),=(x1+x2﹣2m,y1+y2),由于菱形对角线垂直,则,故k(y1+y2)+x1+x2﹣2m=0,则k2(x1+x2﹣2)+x1+x2﹣2m=0,+,由已知条件知k≠0且k∈R,,∴,故存在满足题意得点P且得取值范围就是.(15分)15.已知A,B分别就是椭圆C1:=1得左、右顶点,P就是椭圆上异与A,B得任意一点,Q就是双曲线C2:=1上异与A,B得任意一点,a>b>0.(I)若P(),Q(,1),求椭圆C l得方程;(Ⅱ)记直线AP,BP,AQ,BQ得斜率分别就是k1,k2,k3,k4,求证:k1•k2+k3•k4为定值;(Ⅲ)过Q作垂直于x轴得直线l,直线AP,BP分别交l于M,N,判断△PMN就是否可能为正三角形,并说明理由.解答:(Ⅰ)解:∵P()在椭圆上,Q(,1)在双曲线上,则,①+②×3得:,a2=5,把a2=5代入①得,b2=4.所以椭圆C l得方程为;(Ⅱ)证明:由A(﹣a,0),B(a,0),设P(x1,y1),Q(x2,y2),则,,,k1•k2+k3•k4==∵设P(x1,y1)在椭圆上,Q(x2,y2)在双曲线上,∴,则k1•k2+k3•k4===.所以k1•k2+k3•k4为定值;(Ⅲ)假设△PMN就是正三角形,∴∠MPN=∠PMN=60°,又∵MN⊥x轴,∴∠PAN=30°,∠PBA=30°,∴△PAB为等腰三角形,∴点P位于y轴上,且P在椭圆上,∴点P得坐标为(0,±b),此时,即a=.综上,当a=,且点P得坐标为(0,±b)时,△PMN为正三角形.16.已知椭圆=1得焦点坐标为(±1,0),椭圆经过点(1,)(1)求椭圆方程;(2)过椭圆左顶点M(﹣a,0)与直线x=a上点N得直线交椭圆于点P,求得值.(3)过右焦点且不与对称轴平行得直线l交椭圆于A、B两点,点Q(2,t),若K QA+K QB=2与l得斜率无关,求t得值.解:(1)由题意得解得a2=2,b2=1故椭圆方程为(2)设N(),P(X,Y)则MN得方程为由得由韦达定理得所以代入直线方程得P()∴,∴(3)AB得方程为x=my+1,设A(e,f),B(g,h)由得(m2+2)y2+2my﹣1=0所以f+h=,fh=====2∵K QA+K QB=2与l得斜率无关∴2t=2,即t=1.17.如图,已知椭圆得焦点为F1(1,0)、F2(﹣1,0),离心率为,过点A(2,0)得直线l交椭圆C于M、N两点.(1)求椭圆C得方程;(2)①求直线l得斜率k得取值范围;②在直线l得斜率k不断变化过程中,探究∠MF1A与∠NF1F2就是否总相等?若相等,请给出证明,若不相等,说明理由.解:(1)由已知条件知,,解得,又b2=a2﹣c2=1,所以椭圆C得方程为;(2)设直线l得方程为y=k(x﹣2),联立,得(1+2k2)x2﹣8k2x+8k2=2=0,①由于直线l与椭圆C相交,所以△=64k4﹣4(1+2k2)(8k2﹣2)>0,解得直线l得斜率k得取值范围就是;②∠MF1A与∠NF1F2总相等.证明:设M(x1,y1),N(x2,y2),则,所以tan∠MF1A﹣tan∠NF1F2====,所以tan∠MF1A=tan∠NF1F2,又∠MF1A与∠NF1F2均为锐角,所以∠MF1A=∠NF1F2.18.已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之与为,离心率为,左、右焦点分别为F1,F2,点P就是右准线上任意一点,过F2作直线PF2得垂线F2Q交椭圆于Q点.(1)求椭圆E得标准方程;(2)证明:直线PQ与直线OQ得斜率之积就是定值;(3)点P得纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.解:(1)由题意可得,解得,c=1,所以椭圆E:.(2)由(1)可知:椭圆得右准线方程为,设P(3,y0),Q(x1,y1),因为PF2⊥F2Q,所以,所以﹣y1y0=2(x1﹣1)又因为且代入化简得.即直线PQ与直线OQ得斜率之积就是定值.(3)设过P(3,3)得直线l与椭圆交于两个不同点M(x1,y1),N(x2,y2),点H(x,y),则,.设,则,∴(3﹣x1,3﹣y1)=﹣λ(x2﹣3,y2﹣3),(x﹣x1,y﹣y1)=λ(x2﹣x,y2﹣y)整理得,,∴从而,由于,,∴我们知道与得系数之比为2:3,与得系数之比为2:3.∴,所以点H恒在直线2x+3y﹣2=0上.19.如图,双曲线C1:与椭圆C2:(0<b<2)得左、右顶点分别为A1、A2第一象限内得点P在双曲线C1上,线段OP与椭圆C2交于点A,O为坐标原点.(I)求证:为定值(其中表示直线AA1得斜率,等意义类似);(II)证明:△OAA2与△OA2P不相似.(III)设满足{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R} 得正数m得最大值就是b,求b得值.(I)解:由已知得A1(﹣2,0),A2(2,0).设A(x1,y1),P(x2,y2),由题意知A、P均在第一象限,且满足,.则=…(3分)而Q、O、A、P在同一直线上,所以x1y2=x2y1故…(4分)(II)证明:设,P(x,y),则A(tx,ty)且,解之得:,且…(6分)OA•OP﹣OA22=tOP2﹣OA22=,其中0<t<1所以f′(t)=恒成立,,函数f(t)在区间(0,1)上就是减函数,因此当0<t<1时,f(t)>f(1)=,即故:△OAA2与△OA2P不相似.…(9分)(III)解:由得,由得.∴{(x,y)|,x∈R,y∈R}⊆{(x,y)|,x∈R,y∈R}因此∀y≠0,⇔⇔m2≤3所以b=因此b得值为…(13分)20.已知椭圆得中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点与短轴得两个端点恰为一个正方形得顶点.过右焦点F与x轴不垂直得直线l交椭圆于P,Q两点.(1)求椭圆得方程;(2)当直线l得斜率为1时,求△POQ得面积;(3)在线段OF上就是否存在点M(m,0),使得以MP,MQ为邻边得平行四边形就是菱形?若存在,求出m得取值范围;若不存在,请说明理由.解:(1)由已知,椭圆方程可设为.(1分)∵两个焦点与短轴得两个端点恰为正方形得顶点,且短轴长为2,∴.所求椭圆方程为.(4分)(2)右焦点F(1,0),直线l得方程为y=x﹣1.设P(x1,y1),Q(x2,y2),由得3y2+2y﹣1=0,解得.∴.(9分)(3)假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边得平行四边形就是菱形.因为直线与x轴不垂直,所以设直线l得方程为y=k(x﹣1)(k≠0).由可得(1+2k2)x2﹣4k2x+2k2﹣2=0.∴..其中x2﹣x1≠0以MP,MQ为邻边得平行四边形就是菱形⇔(x1+x2﹣2m,y1+y2)(x2﹣x1,y2﹣y1)=0⇔(x1+x2﹣2m)(x2﹣x1)+(y1+y2)(y2﹣y1)=0⇔(x1+x2﹣2m)+k(y1+y2)=0⇔2k2﹣(2+4k2)m=0.∴.(14分)21.已知椭圆得离心率为,且椭圆上得点到两个焦点得距离与为2.斜率为k(k≠0)得直线l过椭圆得上焦点且与椭圆相交于P,Q两点,线段PQ得垂直平分线与y轴相交于点M(0,m).(Ⅰ)求椭圆得方程;(Ⅱ)求m得取值范围;(Ⅲ)试用m表示△MPQ得面积,并求面积得最大值.解:(Ⅰ)椭圆上得点到两个焦点得距离与为2,即2a=2,∴a=椭圆得离心率为,即e=∵e=,∴,∴c=1又∵a2=b2+c2,∴b=1.又斜率为k(k≠0)得直线l过椭圆得上焦点,即椭圆得焦点在Y轴上∴椭圆方程为.(Ⅱ)设直线l得方程为y=kx+1,由可得(k2+2)x2+2kx﹣1=0. 设P(x1,y1),Q(x2,y2),则△=8k2+8>0,..设线段PQ中点为N,则点N得坐标为,∵M(0,m),∴直线MN得斜率k MN=∵直线MN为PQ得垂直平分线,∴k MN•k=﹣1,可得.即,又k≠0,∴k2+2>2,∴,即.(Ⅲ)设椭圆上焦点为F,∵y轴把△PQM分成了△PMF与△QMF,∴=|FM||x 1|+|FM||x2|=|FM|(|x1|+|x2|) ∵P,Q在y轴两侧,∴|x1|+|x2|=||(x1﹣x2)∴,∵,由,可得.∴.又∵|FM|=1﹣m,∴.∴△MPQ得面积为().设f(m)=m(1﹣m)3,则f'(m)=(1﹣m)2(1﹣4m).可知f(m)在区间单调递增,在区间单调递减.∴f(m)=m(1﹣m)3有最大值.此时∴△MPQ得面积为×=∴△MPQ得面积有最大值.22.已知椭圆E:得左焦点,若椭圆上存在一点D,满足以椭圆短轴为直径得圆与线段DF1相切于线段DF1得中点F.(Ⅰ)求椭圆E得方程;(Ⅱ)已知两点Q(﹣2,0),M(0,1)及椭圆G:,过点Q作斜率为k得直线l交椭圆G于H,K两点,设线段HK得中点为N,连接MN,试问当k为何值时,直线MN过椭圆G得顶点?(Ⅲ) 过坐标原点O得直线交椭圆W:于P、A两点,其中P在第一象限,过P作x轴得垂线,垂足为C,连接AC并延长交椭圆W于B,求证:PA⊥PB.解:(Ⅰ)连接DF2,FO(O为坐标原点,F2为右焦点),由题意知:椭圆得右焦点为因为FO就是△DF1F2得中位线,且DF1⊥FO,所以|DF2|=2|FO|=2b,所以|DF1|=2a﹣|DF2|=2a﹣2b,故.…(2分)在Rt△FOF1中,即b2+(a﹣b)2=c2=5,又b2+5=a2,解得a2=9,b2=4,所求椭圆E得方程为.…(4分)(Ⅱ) 由(Ⅰ)得椭圆G:设直线l得方程为y=k(x+2)并代入整理得:(k2+4)x2+4k2x+4k2﹣4=0由△>0得:,…(5分)设H(x1,y1),K(x2,y2),N(x0,y0)则由中点坐标公式得:…(6分)①当k=0时,有N(0,0),直线MN显然过椭圆G得两个顶点(0,﹣2),(0,2).…(7分)②当k≠0时,则x0≠0,直线MN得方程为此时直线MN显然不能过椭圆G得两个顶点(0,﹣2),(0,2);若直线MN过椭圆G得顶点(1,0),则,即x0+y0=1,所以,解得:(舍去),…(8分)若直线MN过椭圆G得顶点(﹣1,0),则,即x0﹣y0=﹣1,所以,解得:(舍去).…(9分)综上,当k=0或或时,直线MN过椭圆G得顶点.…(10分) (Ⅲ)法一:由(Ⅰ)得椭圆W得方程为,…(11分)根据题意可设P(m,n),则A(﹣m,﹣n),C(m,0)则直线AC得方程为,…①过点P且与AP垂直得直线方程为,…②①×②并整理得:,又P在椭圆W上,所以,所以,即①、②两直线得交点B在椭圆W上,所以PA⊥PB.…(14分)法二:由(Ⅰ)得椭圆W得方程为根据题意可设P(m,n),则A(﹣m,﹣n),C(m,0),。