误差理论与数据处理
误差理论与数据处理

YANGTZE NORMAL UNIVERSITY
4.1 测量不确定度的基本概念
测量都有误差 测量结果具有不确定性
寻找最佳评定方式
科学评价测量质量
测量不确定度
测量不确定度小
测量质量高 使用价值大 测量水平高
物理学与电子工程学院
第4章 测量不确定度
YANGTZE NORMAL UNIVERSITY
物理学与电子工程学院 第4章 测量不确定度
YANGTZE NORMAL UNIVERSITY
4.1.3 测量不确定度与误差
联系: 测量结果的精度评定 不确定度分量都用标准差表征,由随机误差或系统误差引起
误差是不确定度的基础
测量不确定度的内容不能包含更不能取代误差理论所有内容 测量不确定度是对经典误差理论的补充
4.3.1 合成标准不确定度
1.uc 的确定步骤 (1)明确影响测量结果的多个不确定度分量 给出各直接量的不确定度 (2)确定各分量与测量结果的传递关系及相关系数 (3)给出各分量标准不确定度 (4)按方和根法合成 给出间接量的标准不确定度
物理学与电子工程学院 第4章 测量不确定度
YANGTZE NORMAL UNIVERSITY
4.1.1 概述
1927年
1970年
海森堡测不准原理( p, r )
开始使用,但缺乏统一的理解和表示方法
1980年
1986年
BIPM提出《实验不确定度建议书INC-1》
ISO制定《测量不确定度表示指南》
1993年
1999年
物理学与电子工程学院
ISO颁布《测量不确定度表示指南》并实施
我国颁布《测量不确定度评定与表示》
误差理论及实验数据处理

可以设法减小或排除掉的,如对试验机和应变仪等定期校准和检验。又如单向拉伸时由于夹
具装置等原因而引起的偏心问题,可以用试样安装双表或者两对面贴电阻应变片来减少这种
误差。系统误差越小,表明测量的准确度越高,也就是接近真值的程度越好。
偶然误差是由一些偶然因素所引起的,它的出现常常包含很多未知因素在内。无论怎样
差出现的可能性小。
3)随着测量次数的增加,偶然误差的平均值趋向于零。
4)偶然误差的平均值不超过某一限度。
根据以上特性,可以假定偶然误差Δ 遵循母体平均值为零
的高斯正态分布,如图Ⅰ-1 所示。
f (Δ) =
1
− Δ2
e 2σ 2
σ 2π
图Ⅰ-1 偶然误差的正态频率曲线
·97·
材料力学实验指导与实验基本训练
Δ ≤ Δ1 + Δ2 [注]:上述法则对于两个相差甚大的数在相减时是正确的。但是对两个相互十分接近的 数,在相减时有效位数大大减少,上述结论就不适用。在建立运算步骤时要尽量避免两个接 近相等的数进行相减。 2)如果经过多次连乘除后要达到 n 个有效位数,则参加运算的数字的有效位数至少要 有 (n + 1) 个或 (n + 2) 个。例如,两个 4 位有效数的数字经过两次相乘或相除后,一般只能 保证 3 位有效数。 3)如果被测的量 N 是许多独立的可以直接测量的量 x1, x2,", xn 的函数,则一个普遍的 误差公式可表示为下列形式,即
控制实验条件的一致,也不可避免偶然误差的产生,如对同一试样的尺寸多次量测其结果的
分散性即起源于偶然误差。偶然误差小,表明测量的精度高,也就是数据再现性好。
实验表明,在反复多次的观测中,偶然误差具有以下特性:
误差理论与数据处理课程设计

误差理论与数据处理课程设计1. 引言误差理论和数据处理是物理学、化学、生物学等实验科学的基础。
在实验中,采集到的数据包含了不确定性和误差,因此需要对数据进行合理的处理和分析。
在实验室中,数据处理往往采用Excel等软件进行,但Excel只是实现了基本的统计分析,对于一些特殊数据的处理就需要借助于编程语言。
本课程设计通过Python 语言编写程序对实验数据进行处理和分析,旨在提高学生的实验操作技能和编程能力。
2. 实验目的1.熟练运用Python编程语言,实现实验数据的处理和分析。
2.掌握误差理论及其在数据处理中的应用。
3.利用统计分析方法对实验数据进行处理,深入理解数据的含义和分析方法。
3. 实验内容1.实验数据采集本实验采用一组简单的数据,包括时间、温度等基本信息。
通过Python语言编写数据采集程序,得到实验数据。
2.误差分析误差分为系统误差和随机误差两种类型。
通过统计方法可以对实验数据的误差进行分析,得到系统误差和随机误差值。
3.数据处理在实验数据中,通常需要进行平均值、中位数、标准偏差等统计计算。
通过Python编程实现这些计算过程,对实验数据进行处理。
4.数据可视化通过数据可视化方法,将处理后的数据以图表的形式呈现,包括散点图、折线图、直方图等。
4. 实验步骤1.数据采集根据实验需要,通过Python语言编写数据采集程序,得到实验数据。
可以采用硬件设备进行数据采集,也可以采用模拟数据进行模拟实验。
实验数据应包含时间、温度等基本信息。
2.误差分析将采集到的实验数据进行误差分析,先计算出整体误差和系统误差。
然后通过重复实验方法,计算随机误差。
最后得到系统误差和随机误差值。
3.数据处理通过Python编程实现平均值、中位数、标准偏差等统计计算,对实验数据进行处理。
4.数据可视化通过Python编程实现数据可视化,包括散点图、折线图、直方图等。
根据实验需要选择合适的图表进行展示,对实验数据进行可视化呈现。
误差理论及数据处理

204.94 205.63
205.71
204.7 204.86
1.修正值不要考虑了 2.算术平均值 3.计算残差
205.24
206.65 204.97 205.36 205.16
205.35
205.21 205.19 205.21 205.32
x 205.30V
vi xi x
n( x ) ( xi )
i 1 2 i i 1
i 1 n
i 1
i
i
i 1 2
i
n
B
n xi yi xi yi
i 1 i 1 i 1
n( x ) ( xi )
i 1 2 i i 1
n
n
2
A 2, B 1
第二章 测量误差理论与数据处理
2、 曲线拟合
y 2.66 0.422 x
第二章 测量误差理论与数据处理
曲线拟合例题2
[例] 已知
x y xj yj 0 100 1 223 2 497 3 1104 4 2460 5 5490
1)绘y_x曲线(a) 2)初步估计:y=ax2+b 3) 变换: y’=ax’+b (y’=y, x’=x2)
i 1 i 1 i 1 i 1 n
n
n
n
第二章 测量误差理论与数据处理
直线拟合(续)
求极值(求偏导数) n A, B [2( yi A Bxi )] 0 A i 1 n A, B [2 xi ( yi A Bxi )] 0 B i 1 求解方程
2000
1000
0
0
5
10
15
20
误差理论与数据处理

nx
×100%
◆ (4)方差(Variance) 方差( 度量随机变量和其数学期望之间的偏离程度。 度量随机变量和其数学期望之间的偏离程度。
σ2 =
就是和中心偏离的程度。 就是和中心偏离的程度。在样本容 量相同的情况下,方差越大, 量相同的情况下,方差越大,说明 数据的波动越大, 数据的波动越大,越不稳定
2 数据处理
2.1 有效数字定义、运算规则
2.1.2 运算规则 (2)运算 ) ):结果的末位数字所在的位置应按各量中存 ◆加(减):结果的末位数字所在的位置应按各量中存 疑数字所在数位最少的一个为准来决定。 疑数字所在数位最少的一个为准来决定。
a. 30.4 + 4.325 = 34.725 → 34.7 b. 26.65 -3.905 = 22.745 → 22.74
106.25=1778279.41→1.8×106; pH=10.28→[H+]=5.2×10-11
2 数据处理
2.1 有效数字定义、运算规则
2.1.2 运算规则 (2)运算 ) 对数: ◆对数: lgx的有效数字位数由 的位数决定。 的有效数字位数由x的位数决定 的有效数字位数由 的位数决定。
1 误差理论
1.2 分类
1.2.2 系统误差、随机误差、过失误差
◆(3)过失误差 又称粗大误差和疏忽误差。 又称粗大误差和疏忽误差。是由过程中 的非随机事件如工艺泄漏、测量仪表失灵、 的非随机事件如工艺泄漏、测量仪表失灵、设备故障等引发的 测量数据严重失真现象, 测量数据严重失真现象,致使测量数据的真实值与测量值之间 出现显著差异的误差。 出现显著差异的误差。
2.1 有效数字定义、运算规则
2.1.1 定义
在一个近似数中,从左边第一个不是 的数字起 的数字起, 在一个近似数中,从左边第一个不是0的数字起,到精确到 的位数止,这中间所有的数字都叫这个近似数字的有效数字。 的位数止,这中间所有的数字都叫这个近似数字的有效数字。
误差理论与数据处理课件(很实用)

报告审核与修改
对报告进行同行评审或专家审核,根据反馈 进行必要的修改和完善。
06
案例分析与实践
案例一:医学数据处理
总结词
医学数据处理是误差理论应用的重要领域,涉及临床 试验、诊断、治疗等多个方面。
详细描述
医学数据处理中,误差的来源包括测量误差、随机误 差和系统误差等。这些误差可能导致数据失真,影响 医学研究的准确性和可靠性。因此,医学数据处理需 要遵循严格的标准和规范,如临床试验数据管理规范 、医疗器械检测标准等。同时,医学数据处理也需要 采用各种误差处理技术,如数据清洗、数据变换、数 据筛选等,以减小误差对数据的影响。
数据预处理包括数据的排序、筛选、分组和编码等操作,为后续的数据分析提供 准确和一致的数据集。
03
误差的识别与控制
系统误差的识别与控制
系统误差的识别
系统误差通常表现为数据呈现一定的 规律性偏差,可以通过对比实验数据 与理论值、检查实验装置和环境条件 等方式进行识别。
系统误差的控制
控制系统误差的方法包括改进实验装 置、优化实验环境、采用标准仪器和 设备、定期校准和检测等措施,以减 小系统误差对数据的影响。
先滞后关系。
时间序列平稳性
检验时间序列数据的平 稳性,以确定是否适合
进行时间序列分析。
05
实验设计与数据分析
实验设计原则
01
02
03
04
科学性原则
实验设计应基于科学理论和实 践经验,确保实验的合理性和
可行性。
随机性原则
实验对象的分配应随机化,以 减少系统误稳定性和可靠性
案例二:金融数据分析
总结词
金融数据分析中,误差的来源包括数据采集、数据处 理和数据分析等多个环节。
对实验数值误差理论和数据处理

9 平均值的有效数字位数,通常和测量值相同。 当样本容量较大,在运算过程中,为减少舍 入误差,平均值可比单次测量值多保留一位 数。
3.3实验数据的初步整理
3.3.1实验数据的列表整理
1.数据的归类整理 2.数据的分组整理
3.3.2 分布规律判断的基本方法— —统计直方图
1.统计直方图 为了对某个随机变量的分布规律作出判断,
如0.0121×25.64×1.05782,其0.0121为三 位有效数字,故计算结果宜记0.328
5 在所有计算式中,常数π ,e的数值,以及,1/2等 系数的有效数字位数,可以认为无限制,需要几位 就可以取几位。
6 在对数计算中,所取对数位数,应与真数的有效数 字位数相等。例如,pH12.25 和 [H+]=5.6×10-13M;
3.误差与数据处理
3.1 误差及其表示方法
误差来源
设备误差 环境误差 人员误差 方法误差
误差分类
系统误差、 随机误差、 过失误差
(1)系统误差
系统误差是由某种确定的因素造成的,使测定 结果系统偏高或偏低;当造成误差的因素不存 在时,系统误差自然会消失。
当进行重复测量时,它会重复出现。系统误差 的大小,正负是可以测定的,至少在理论上说 是可以测定的,系统误差的最重要特性是它具 有‘‘单向性” 。
对于舍去的数据,在试验报告中应注明舍去的原因或所 选用的统计方法。
1).4d 法检验
根据测量值的正态分布可知,偏差大于3σ的测量 值出现的概率约为0.3%,此为小概率事件,而 小概率事件在有限次实验中是不可能发生的,如 果发生了则是不正常的。
即偏差大于3σ的测量值在有限次检验中是不可能 的,如果出现则为异常值,为过失所致应舍弃。 (概率不超过5%的事件称为小概率事件)。
误差理论与数据处理

误差理论与数据处理1. 绪论1.1 数据测量的基本概念1.1.1 基本概念(1)物理量物理量是反映物理现象的状态及其过程特征的数值量。
一般物理量都是有因次的量,即它们都有相应的单位,数值为1的物理量称为单位物理量,或称为单位;同一物理量可以用不同的物理单位来描述,如能量可以用焦耳、千瓦小时等不同单位来表述。
(2)量值一般由一个数乘以测量单位所表示的特定量的大小。
无量纲的SI单位是“1”。
(3)测量以确定量值为目的的一组操作,操作的结果可以得到真值,即得到数据,这组操作称为测量。
例如:用米尺测得桌子的长度为1.2米。
(4)测量结果测量结果就是根据已有的信息和条件对被测物理量进行的最佳估计,即是物理量真值的最佳估计。
在测量结果的完整表述中,应包括测量误差,必要时还应给出自由度及置信概率。
测量结果还具有重复性和重现性。
重复性是指在相同的测量条件下,对同一被测物理量进行连续多次测量所得结果之间的一致性。
相同的测量条件即称之为“重复性条件”,主要包括:相同的测量程序、相同的测量仪器、相同的观测者、相同的地点、在短期内的重复测量、相同的测量环境。
若每次的测量条件都相同,则在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量服从同一分布。
重现性是指在改变测量条件下,对被测物理量进行多次测量时,每一次测量结果之间的一致性,即在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量值服从同一分布。
(4)测量方法测量方法是指根据给定的测量原理,在测量中所用的并按类别描述的一组操作逻辑次序和划分方法,常见的有替代法、微差法、零位法、异号法等。
总之,数据测量就是用单位物理量去描述或表示某一未知的同类物理量的大小。
1.1.2 数据测量的分类数据测量的方法很多,下面介绍常见的三种分类方法,即按计量的性质、测量的目的和测量值的获得方法分类。
(1)按计量的性质分可分为:检定、检测和校准。
检定:由法定计量部门(或其他法定授权组织),为确定和证实计量器是否完全满足检定规程的要求而进行的全部工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要来源
测量设 备误差
测量方 法误差
测量环 境误差
测量人 员误差
误差的分类
误差
表示形式
性质特点
绝对 误差
相对 误差
系统 误差
随机 误差
粗大 误差
重点与难点
•测量、测量误差和准确度等名词术语 •测量问题按不同处理方法的分类 •测量问题的测量要素分析 •测量误差来源的分析 •测量误差按误差性质的分类处理 •如何评价测量和测量仪器的准确度指标
教学内容
1 2 3 4 5 6 7 误差、精度和不确定度概述 误差的基本性质与处理 误差的合成与分配 不确定度的评定 最小二乘法处理与组合测量 回归分析 动态测试数据处理基本方法
学时数初步安排
6学时 6学时 6学时 3学时 6学时 6学时 3学时
考核方法: 平时成绩(上课、作业)30%考试70%
主要参考书(一)
测量可以视为一种通过实验手段来获得对某 客观事物取得定量信息的过程。
测量的分类
测量
非 等 权 测 量 非 电 量 测 量
直 接 测 量
间 接 测 量
静 态 测 量
动 态 测 量
等 权 测 量
电 量 测 量
精 密 测 量
工 程 测 量
测量要素
测量要素
对象与被测量 测量资源
测量环境
计量单位
测量结果
测量设备
测量过程
与实施该测量有关的一组相互关联的资源、 活动和影响量统称为测量过程(measurement process)
实施测量是一 种操作的活动 在实施测量的整 个活动中,不是 被测量但对测量 包括实施测量中 用到的测量设备、 测量程序和操作 者,也包括准备 测量所需的资金、 技术和其他设施 等
结果有影响的量
误差理论与数据处理
开课学院:光电工程学院
主讲教师:秦 岚
本课程主要内容?
介绍几何量、机械量以及其 它一些物理量的静态/动态测量的 误差与数据处理的理论与方进行精度分 析—以误差合成为基础
(2)完成设计对精度的要 求—以误差分配为基础
学时数安排、考核方法
测量人员
测量方法
误差的定义
1953. Beers “Theory of error” Error (1) difference between a measured value and true value (2) a number such as ±u is given ,error refers to the uncertainty 误差=测得值-真值
误差的特征
①真误差△ i 恒不等于零,即误差的必然性原 理。 ②真误差△ i 之间或测得值 Xi 之间,一般不相 等,误差具有不确定性。 ③△i一般来说是未知的。 ④残余误差, ⑤可以把误差看成随机变量,借助于概率论数 理统计学这个有力工具来研究误差。
误差的来源
为了减小测量误差,提高测量准确度,就必须了解误差来 源。而误差来源是多方面的,在测量过程中,几乎所有因 素都将引入测量误差。
主要参考书(二)
6. 林 洪 桦 : 动 态 测 试 数 据 处 理 , 北 京 理 工 大 学 出 版 社,1995,10(专著) 7. 国家质量技术监督局计量司 : 测量不确定度评定与 表示指南,中国计量出版社,2005,11 8. 刘 智 敏 : 不 确 定 度 及 其 实 践 , 中 国 标 准 出 版 社,2000,6(专著) 9.黄家贤 ,黄寿荣 :机构精确度 ,西安电子科技大学出版 社,1994,12 10. 郑 文 学 , 王 金 波 : 仪 器 精 度 设 计 , 兵 器 工 业 出 版 社,1992.4
第一章 概 述
主要内容
第一节 第二节 第三节 第四节 第五节 测量的基本问题 测量误差的基本概念 测量准确度概述 灵敏度和鉴别误差 误差与测量结果的表达
本章小结
测量的定义
测量(measurement)
以确定量值为目的的一组操作,该操作可以 通过手动的或自动的方式来进行。 从计量学的角度上讲 测量就是利用实验手段,把待测量与已知的 同类量进行直接或间接的比较,将已知量作 为计量单位,求得比值的过程。
1.费业泰:《误差理论与数据处理》(第5版)北京:机 械工业出版社,2005,1 2.马宏;王金波:《仪器精度理论》,北京航空航天 大学出版社,2009,9 3.毛英泰:《误差理论与精度分析》,北京:国防工业出 版,1982 4. 梁晋文等 :《误差理论与数据处理》( 修订版 ),北京 : 计量出版社,2003,6 5.沙定国:《误差分析与测量不确定度评定(附光盘)》, 北京:中国计量出版社,2003,8