(完整版)图论复习提纲
图论基础知识

end;
end;
end;
End; 15
End; End;
以上dfs(i)的时间复杂度为O(n*n)。 对于一个非连通图,调用一次dfs(i),即按深度优先顺序依次访问了顶点i所在的(强)连通分支,所以 只要在主程序中加上:for i:=1 to n do {深度优先搜索每一个未被访问过的顶点}
if not Visited(I) then dfs(i);
Begin
访问顶点i;Visited[i]:=true;顶点i入队q;
while 队列q非空 do
begin
从队列q中取出队首元素v;
for j:=1 to n do
begin
if (not Visited[j]) and (a[v,j]=1) then
begin
时间:O(n*n)
访问顶点j;Visited[j]:=true;顶点j入队q
强连通分支:一个有向图的强连通分支定义为该图的最大的强连通子图, 右图含有两个强连通分支,一个是1和2构成的一个子图,一个是3独立构 成的一个子图。
7
图论算法与实现
一、图论基础知识
3、图的存储结构(n阶e条边):
8
图论算法与实现
一、图论基础知识
4、图的遍历: 从图中某一顶点出发系统地访问图中所有顶点,使每个顶点恰好
11
图论算法与实现
一、图论基础知识
4、图的遍历: 图的宽(广)度优先遍历:类似于树的按层次遍历。从图中某个顶点V0出 发,访问此顶点,然后依次访问与V0邻接的、未被访问过的所有顶点,然 后再分别从这些顶点出发进行广度优先遍历,直到图中所有被访问过的顶 点的相邻顶点都被访问到。若此时图中还有顶点尚未被访问,则另选图中 一个未被访问过的顶点作为起点,重复上述过程,直到图中所有顶点都被 访问到为止。
电子科技大学《图论及其应用》复习总结--第四章欧拉图与哈密尔顿图

电⼦科技⼤学《图论及其应⽤》复习总结--第四章欧拉图与哈密尔顿图第四章欧拉图与哈密尔顿图(⼀)、欧拉图及其性质(1)、问题背景---欧拉与哥尼斯堡七桥问题问题:对于图G,它在什么条件下满⾜从某点出发,经过每条边⼀次且仅⼀次,可以回到出发点?注:⼀笔画----中国古⽼的民间游戏(存在欧拉迹)要求:对于⼀个图G, 笔不离纸, ⼀笔画成.拓展:三笔画:在原图上添加三笔,可使其变为欧拉图。
定义1 对于连通图G,如果G中存在经过每条边的闭迹,则称G为欧拉图,简称G为E图。
欧拉闭迹⼜称为欧拉环游,或欧拉回路。
定理1 下列陈述对于⾮平凡连通图G是等价的:(1) G是欧拉图;(2) G的顶点度数为偶数;(3) G的边集合能划分为圈。
推论1 连通图G是欧拉图当且仅当G的顶点度数为偶。
推论2 连通⾮欧拉图G存在欧拉迹当且仅当G中只有两个顶点度数为奇数。
证明:若G和H是欧拉图,则G×H是欧拉图。
若G是⾮平凡的欧拉图,则G的每个块也是欧拉图。
(⼆)、Fleury算法(欧拉图中求出⼀条具体欧拉环游的⽅法)⽅法是尽可能避割边⾏⾛(三)、中国邮路问题(最优欧拉环游,管梅⾕)定理2 若W是包含图G的每条边⾄少⼀次的闭途径,则W具有最⼩权值当且仅当下列两个条件被满⾜:(1) G的每条边在W中最多重复⼀次;(2) 对于G的每个圈上的边来说,在W中重复的边的总权值不超过该圈⾮重复边总权值。
(四)、哈密尔顿图的概念定义1 :如果经过图G的每个顶点恰好⼀次后能够回到出发点,称这样的图为哈密尔顿图,简称H图。
所经过的闭途径是G的⼀个⽣成圈,称为G的哈密尔顿圈。
定义2: 如果存在经过G的每个顶点恰好⼀次的路,称该路为G的哈密尔顿路,简称H路。
(五)、哈密尔顿图性质与判定1、性质定理【必要条件】;定理1 (必要条件) 若G为H图,则对V(G)的任⼀⾮空顶点⼦集S,有:w(G−S)≤|S|注:不等式为G是H图的必要条件,即不等式不满⾜时,可断定对应图是⾮H、图。
图的知识点总结归纳

图的知识点总结归纳图是计算机科学中常用的数据结构之一,它由节点和边组成。
在图论中,图被用于描述各种实际问题,如社交网络、路线规划、电子电路等。
本文将对图的基本概念、表示方法、遍历算法和常见应用进行总结和归纳。
一、基本概念1. 节点(Vertex):图中最基本的元素,也称为顶点。
每个节点可以有零个或多个与之相连的边。
2. 边(Edge):连接节点的线段,表示节点之间的关系。
边可以有方向,即有向边,也可以无方向,即无向边。
3. 路径(Path):通过一系列节点和边依次连接起来的序列,用于描述节点间的连通性。
4. 路径长度(Path Length):路径上经过的边的数量。
若路径上没有重复节点,则路径长度即为路径经过的节点数量减一。
5. 环(Cycle):起点和终点相同的路径,也称为回路。
6. 连通图(Connected Graph):图中任意两个节点之间都存在路径的图。
7. 强连通图(Strongly Connected Graph):有向图中,任意两个节点之间都存在双向路径的图。
8. 网络(Network):带有权值的图,边上的权值代表节点间的相关程度或距离。
二、表示方法1. 邻接矩阵(Adjacency Matrix):使用二维数组来表示节点之间的关系。
矩阵中的元素表示边的存在与否,可以是布尔值或权值。
2. 邻接表(Adjacency List):使用链表等数据结构来表示每个节点相邻节点的集合。
每个节点存储一个指向相邻节点的指针。
三、遍历算法1. 深度优先搜索(Depth First Search,DFS):从起始节点开始,不断沿着一条路径探索直到无法继续,然后回溯到前一个节点继续探索其他路径。
2. 广度优先搜索(Breadth First Search,BFS):从起始节点开始,逐层遍历相邻节点,保证先访问离起始节点近的节点。
四、常见应用1. 最短路径算法:用于寻找两个节点之间路径长度最短的算法,如迪杰斯特拉算法(Dijkstra's Algorithm)和弗洛伊德算法(Floyd's Algorithm)。
第8章图论方法

Page 12
【例题·计算题】某城市东到西的交通道路如下图所示,线 上标注的数字为两点间距离(单位:千米)。某公司现需从市 东紧急运送一批货物到市西。假设各条线路的交通状况相同, 请为该公司寻求一条最佳路线。
2 东3
4
3 1
7
2
5
7
3
3
4
4
7 5
6
4 6
7 3
7
西
8
【答案】
1-4-7-西 10 3
9
2
3
5
7
3.5
4
6
10
1
6
4
3
8
2
5
【答案】
2 5
4
6
1
3
5
3 3.5 4
2
Page 8
【解析】按照克鲁斯喀尔的算法很轻松得出答案。
1.(11年7月)已知连接5个城镇的公路交通图如图。为了沿公路架设5个城镇的
光缆线,并要求光缆线架设的总长度为最小,试以最小枝杈树方法求出Pa最ge优9 方 案并计算光缆线的总长度。
8.2 树和树的逐步生成法
Page 4
1、树:连通且不含圈(回路)的图称为树。 2、树的边数=结点数-1。
【选择题】以下叙述中,正确的是( ) A.树的点数为线数加1 B.图的点数小于线数 C.图的点数大于线数 D.树可能含有圈 【答案】A 【解析】树的点数和边数差1,普通图的点数和边数谁多谁少不 确定。 【知识点】图和树的基本概念
Page 22
5.(09年7月)某网络如图,线上标注的数字是单位时间通过两节点的流量。
Page 23
试求单位时间由网络始点到网络终点的最大流量(单位:吨)。
离散数学 图论总复习

3 of 220
基本要求
深刻理解握手定理及推论的内容并能灵活地应 用它们
深刻理解图同构、简单图、完全图、正则图、 子图、补图、二部图的概念以及它们的性质及 相互之间的关系
记住通路与回路的定义、分类及表示法 深刻理解与无向图连通性、连通度有关的多个
概念 会判别有向图连通性的类型 熟练掌握用邻接矩阵及其幂求有向图中通路与
情况一: +. 证明D中存在长度 +1的圈.
设 = v0v1…vl为极大路径,则l .由于d(v0) ,所以在
上存在
vi1
,
vi2Βιβλιοθήκη ,...,vi 邻接到v0,于是v0v1...vi1 ...vi2 ...vi v0
为D中长度 +1的有向圈
情况二:+ ,只需注意d+(vl) + .
2020/6/6
•解 做无向图G=<V,E>, 其中 V={v| v为与会者},
E={(u,v) | u,vV且u与v有共同语言,且u v}. 易知G为简单图且vV, d(v)4,于是,u,vV, 有d(u)+d(v) 8,由定理15.7 的推论可知G为哈密 顿图. 服务员在G中找一条哈密顿回路C,按C中 相邻关系安排座位即可.
2020/6/6
11 of 220
第十五章 欧拉图与哈密顿图
第十五章
主要内容 欧拉通路、欧拉回路、欧拉图、半欧拉图及判别法 哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图 带权图、Dijkstra最短路、货郎担问题
基本要求 深刻理解欧拉图、半欧拉图的定义及判别定理 深刻理解哈密顿图、半哈密顿图的定义. 会用哈密顿图的必要条件判断某些图不是哈密顿图. 会用充分条件判断某些图是哈密顿图. 要特别注意的
工学图论及应用考试复习总结

Meredith图是由彼得森图的每个顶点嵌入一个K3,4作成。
第17页/共81页
4、托特猜想:每个3连通3正则偶图是H图。 该猜想错误。Coxeter构图对猜想进行了否定。
Coxeter图 第18页/共81页
5、普鲁默猜想:每个2连通图的平方是H图。 该猜想是正确的,已经得到证明。
(二)、E图和H图的关系
从表面上看,E图与H图间没有联系。因为我们可以不 费力地找到: (1) E图但非H图;(2) E图且H图;(3) H图但非 E图; (4) 非E图且非H图.
E图但非H图
E且H图
H但非E图
第20页/共81页
非E且非H图
1、线图概念 定义3 设G是图,G的线图L(G)定义为:
V (L(G)) E(G)
(e1, e2 ) E(L(G)) 在G中有:边e1与e2邻接
特别地,定义G的n次迭线图Ln(G) 为:Ln (G) L(Ln1(G))
x1 x2 x3
x4 G1
x1
x2
x3
x4 G2=L(G1)
L(G2)=L(L(G1))
第21页/共81页
2、线图的性质 (1) 线图L(G)顶点数等于G的边数;若e=u v是G的边, 则e作为L(G)的顶点度数为:d(e)=d(u)+d(v)-2 .
本次课主要内容
超哈密尔顿图问题 (一)、超H图与超H迹 (二)、E图和H图的关系
第1页/共81页
(一)、超H图与超H迹
定义1 若图G是非H图,但对于G中任意点v,都有G-v是 H图,则称G是超H图。
定理1 彼得森图是超H图。
5
1 7
6 4
10
89
2
图论知识点总结笔记

图论知识点总结笔记一、图的基本概念1. 图的定义图是由节点(顶点)和连接节点的边构成的一种数据结构。
图可以用来表示各种关系和网络,在计算机科学、通信网络、社交网络等领域有着广泛的应用。
在图论中,通常将图记为G=(V, E),其中V表示图中所有的节点的集合,E表示图中所有的边的集合。
2. 节点和边节点是图中的基本单位,通常用来表示实体或者对象。
边是节点之间的连接关系,用来表示节点之间的关联性。
根据边的方向,可以将图分为有向图和无向图,有向图的边是有方向的,而无向图的边是没有方向的。
3. 度度是图中节点的一个重要度量指标,表示与该节点相连的边的数量。
对于有向图来说,可以分为入度和出度,入度表示指向该节点的边的数量,出度表示由该节点指向其他节点的边的数量。
4. 路径路径是图中连接节点的顺序序列,根据路径的性质,可以将路径分为简单路径、环路等。
在图论中,一些问题的解决可以归结为寻找合适的路径,如最短路径问题、汉密尔顿路径问题等。
5. 连通性图的连通性是描述图中节点之间是否存在路径连接的一个重要特征。
若图中每一对节点都存在路径连接,则称图是连通的,否则称图是非连通的。
基于图的连通性,可以将图分为连通图和非连通图。
6. 子图子图是由图中一部分节点和边组成的图,通常用来描述图的某个特定属性。
子图可以是原图的结构副本,也可以是原图的子集。
二、图的表示1. 邻接矩阵邻接矩阵是一种常见的图表示方法,通过矩阵来表示节点之间的连接关系。
对于无向图来说,邻接矩阵是对称的,而对于有向图来说,邻接矩阵则不一定对称。
2. 邻接表邻接表是另一种常用的图表示方法,它通过数组和链表的组合来表示图的节点和边。
对于每一个节点,都维护一个邻接点的链表,通过链表来表示节点之间的连接关系。
3. 关联矩阵关联矩阵是另一种图的表示方法,通过矩阵来表示节点和边的关联关系。
关联矩阵可以用来表示有向图和无向图,是一种比较灵活的表示方法。
三、常见的图算法1. 深度优先搜索(DFS)深度优先搜索是一种常见的图遍历算法,通过递归或者栈的方式来遍历图中所有的节点。
图论复习——精选推荐

图论复习chapter 1⼀、重要概念1. 图、简单图、图的同构、度序列与图序列、补图与⾃补图、两个图的联图、两个图的积图、偶图简单图:⽆环⽆重边的图称为简单图。
(除此之外全部都是复合图)图的同构:点对应、边对应,两个图完全⼀样!A \cong B图同构的⼏个必要条件:1. 顶点数相同;2. 边数相同;3. 度数相等的顶点个数相同。
偶图(⼆分图):可⼆分类(X, Y)的图,每条边的顶点均不属于同⼀类!指该图的点集可以分解为两个(⾮空)⼦集 X和 Y ,使得每条边的⼀个端点在 X 中,另⼀个端点在Y 中。
判定:不存在奇圈!!完全偶图:不是完全图!是指具有⼆分类(X, Y)的简单偶图,其中 X的每个顶点与 Y 的每个顶点相连记K_{m,n}度序列:图中各个顶点的度构成的⾮负正数组:(d_1, ...d_n)可图(对整数组⽽⾔):存在⼀个简单图以它为度序列可图序列:简称图序列(注意图序列判定和度序列判定的区别,前者仅针对简单图,后者不限!)图序列判定:1)度序列和为偶数2)利⽤公式计算3)简单图的度最⼤为n-1,看度序列是否符合!4)简单图⼀定存在度数相同的顶点!度序列判定:1. 度序列和为偶数!补图:完全图 - 当前图若n阶图G是⾃补的(即G \cong \bar{G},则(n~mod~4=0,1)⼀个n阶图和它的补图有相同的频序列⽣成⼦图:顶点与原图相同,边为原图边的⼦集导出⼦图:顶点为原图⾮空⼦集V',以及原图中所有以V'中顶点为两端的边,记G[V']边导出⼦图:边为原图的⾮空⼦集,以及边对应的顶点,记G[E']简单图 G 中所有不同的⽣成⼦图(包括 G 和空图)的个数是2^m个对称差:G1 △ G2 : G1 △ G2 = (G1 ⋃ G2 ) - (G1 ⋂ G2 ) = (G1 -G2 ) ⋃ (G2 -G1 )联图:设G1,G2是两个不相交的图,作G1+G2,并且将G1中每个顶点和G2中的每个顶点连接,这样得到的新图称为G1与G2的联图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习课件 数学科学学院
1
本次课主要内容 期末复习
(一)、重点概念 (二)、重要结论 (三)、应用
2
(一)、重点概念
1、图、简单图、图的同构与自同构、度序列与图序列、 补图与自补图、两个图的联图、两个图的积图、偶图;
(1) 图:一个图是一个序偶<V,E>,记为G=(V,E),其中: 1) V是一个有限的非空集合,称为顶点集合,其元素称为顶点或点。
G1 G2
例1 指出4个顶点的非同构的所有简单图。 分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。
5
(6) 补图与自补图
1) 对于一个简单图G =(V, E),令集合 E1 uv u v,u,vV
则图H =(V,E1\E)称为G的补图,记为 H G
2) 对于一个简单图G =(V, E),若 G G ,称G为自补图。
(5) 根树
一棵非平凡的有向树T,如果恰有一个顶点的入度为0,而其余所有顶 点的入度为1,这样的的有向树称为根树。其中入度为0的点称为树根, 出度为0的点称为树叶,入度为1,出度大于1的点称为内点。又将内点 和树根统称为分支点。
9
(6) 完全m元树
对于根树T,若每个分支点至多m个儿子,称该根树为m元根树; 若每个分支点恰有m个儿子,称它为完全m元树。
(2) 森林
称无圈图G为森林。
8
(3) 生成树
图G的一个生成子图T如果是树,称它为G的一棵生成树;若T 为森林,称它为G的一个生成森林。
生成树的边称为树枝,G中非生成树的边称为弦。
(4) 最小生成树
在连通边赋权图G中求一棵总权值最小的生成树。该生成树称 为最小生成树或最小代价树。
注:要求熟练掌握最小生成树的求法。
用|V|表示顶点数; 2) E是由V中的点组成的无序对构成的集合,称为边集,其元素称
为边,且同一点对在E中可以重复出现多次。用|E|表示边数。 (2) 简单图:无环无重边的图称为简单图。
3
(3) 图的度序列: 一个图G的各个点的度d1, d2,…, dn构成的非负整数组(d1, d2,…, dn)
注:要求掌握自补图的性质。
6
Байду номын сангаас
(7) 联图
设G1,G2是两个不相交的图,作G1+G2,并且将G1中每个顶点和G2 中的每个顶点连接,这样得到的新图称为G1与G2的联图。记为 :
G1 G2
(8) 积图
设 G1 (V1, E1), G2 (V2 , E2 ), 是两个图。对点集 V V1 V2
的任意两个点u=(u1,u2)与v=(v1,v2),当(u1=v1和u2adjv2)或(u2=v2和 u1adjv1)时,把u与v相连。如此得到的新图称为G1与G2的积图。
11
5、匹配、最大匹配、完美匹配、最优匹配、因子分解。 (1) 匹配
匹配 M--- 如果M是图G的边子集(不含环),且M中的任意两条边没有 共同顶点,则称M是G的一个匹配或对集或边独立集。
(2) 最大匹配与完美匹配
最大匹配 M--- 如果M是图G的包含边数最多的匹配,称M是G的一个 最大匹配。特别是,若最大匹配饱和了G的所有顶点,称它为G的一 个完美匹配。
称为G的度序列 。 注:度序列的判定问题是重点。
(4) 图的图序列: 一个非负数组如果是某简单图的度序列,我们称它为可图序列,简
称图序列。 注:图序列的判定问题是重点。
(5) 图的同构:
4
设有两个图G1=(V1,E1)和G2=(V2,E2),若在其顶点集合间存在双射,使得边
之间存在如下关系:设u1↔u2v1↔v2, u1,v1 V1, u2,v2 V2; u1v1 E1,当 且仅当u2v2 E2,且u1v1与u2v2的重数相同。称G1与G2同构,记为:
注:对于完全m元树,要弄清其结构。 3、途径(闭途径),迹(闭迹), 路(圈), 最短路,连通图,连 通分支,点连通度与边连通度。 注:上面概念分别在1和3章 4、欧拉图,欧拉环游,欧拉迹,哈密尔顿圈,哈密尔顿 图,哈密尔顿路,中国邮路问题,最优H圈。
10
(1) 欧拉图与欧拉环游
对于连通图G,如果G中存在经过每条边的闭迹,则称G为欧 拉图,简称G为E图。欧拉闭迹又称为欧拉环游,或欧拉回路。
间没有交叉,称G可以嵌入平面,或称G是可平面图。可平面图G的边 不交叉的一种画法,称为G的一种平面嵌入,G的平面嵌入表示的图称 为平面图。
13
(2) 极大平面图: 设G是简单可平面图,如果G是Ki (1≦i≦4),或者在
G的任意非邻接顶点间添加一条边后,得到的图均是非可平面图, 则称G是极大可平面图。
(2) 欧拉迹
对于连通图G,如果G中存在经过每条边的迹,则称该迹为G 的一条欧拉迹。
(3) 哈密尔顿图与哈密尔顿圈
如果经过图G的每个顶点恰好一次后能够回到出发点,称这样 的图为哈密尔顿图,简称H图。所经过的闭途径是G的一个生成圈, 称为G的哈密尔顿圈。
(4) 哈密尔顿路
图G的经过每个顶点的路称为哈密尔顿路。
极大可平面图的平面嵌入称为极大平面图。 (3) 极大外平面图:若一个可平面图G存在一种平面嵌入,使得其所有 顶点均在某个面的边界上,称该图为外可平面图。外可平面图的一种 外平面嵌入,称为外平面图。 (4) 平面图的对偶图:给定平面图G,G的对偶图G*如下构造: 1) 在G的每个面fi内取一个点vi*作为G*的一个顶点; 2) 对G的一条边e, 若e是面 fi 与 fj 的公共边,则连接vi*与vj*,且连线
(3) 最优匹配
设G=(X, Y)是边赋权完全偶图,G中的一个权值最大的完美匹配称为G 的最优匹配。
12
(4) 因子分解
所谓一个图G的因子分解,是指把图G分解为若干个边不重的因子 之并。
注:要弄清楚因子分解和完美匹配之间的联系与区别。
6、平面图、极大平面图、极大外平面图、平面图的对偶 图。
(1) 平面图: 如果能把图G画在平面上,使得除顶点外,边与边之
记为
G G1 G2
7
(9) 偶图
所谓具有二分类(X, Y)的偶图(或二部图)是指一个图,它的点 集可以分解为两个(非空)子集X和Y,使得每条边的一个端点在中,另 一个端点在Y中.
注: 掌握偶图的判定。 2、树、森林,生成树,最小生成树、根树、完全m元树。 (1) 树
不含圈的图称为无圈图,树是连通的无圈图。