人教版八年级数学上册《.. 公式法》课件

合集下载

14.3.2公式法-完全平方公式法 课件人教版数学八年级上册

14.3.2公式法-完全平方公式法 课件人教版数学八年级上册

5.如果x2+mxy+9y2是一个完全平方式,那么m的值为( B ) A.6 B.±6 C.3 D.±3
6.已知a、b、c是三角形的三边,请你判断a2-b2-c2-2bc的值的正负.
7.说明无论a、b为何值,代数(a+b)²+2(a+b)+5 的值均为正值.
8.若a+b=1,a+c=2,b+c=3,利用因式分解求值: a2+b2+c2+ab+ac+bc.
自 学 检 查
1.下列各式是不是完全平方式?
(1)a2-ab+b2 × (2)a2-4a+4 =a2 -4a +22 √ (3)x2+4xy+4y2=x2+4xy + (2y)2√ (4)x2-6x-9 =x2-6x-32 ×
2.按照完全平方公式填空:
(1)a2-10a+( 25 )=( a-5 )2
(4)原式=(2x +y-3) 2
总结:①因式分解的一般思路: 一提(提公因式法) 二套(套用公式法)
②整体思想,例如:把 2x+y 看做一个整体。
巩固练习
1.(1)若x2+2kx+9是一个完全平方式,则k= ___±___3__ (2)若x2+8x+k2是一个完全平方式,则k= __±___4___.
( (23))1(a2-y2()+r2s)a+yr+21s2==((
ay+1)2
½ - rs)2
4
自 3.把下列各式因式分解 1 x2 12x 36 2 2xy x2 y2
学 (3) 3ax2﹢6axy﹢3ay2
检 查

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)
--因式分解的平方差公式
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2

人教版八年级数学上册14.《公式法》第2课时教学课件

人教版八年级数学上册14.《公式法》第2课时教学课件

创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考
你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积 吗?
a a²
ab a
a
b
同学们拼出的图形为:
ab a b
b² b b
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
观察思考 这个大正方形的面积可以怎么求?
b ab
做一做
分解因式: (1) 3a²x²24a²x48a²
(2)412(xy)+9(xy)²
解:(1)原式 3a²(x²8x16) 3a²(x4)²
有公因式要先提公因式.
(2)原式=2²2×2×3(xy)+3(xy)² 23xy² 23x3y²
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个 数的和(或差)的平方.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
完全平方式:a²2abb²
完全平方式的特点: 1.必须是三项式(或可以看成三项的); 2.有两个同号的数或式的平方; 3.中间有两底数之积的±2倍.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
延伸
1.计算 : (1)100²21009999²
解:(1)原式(10099)² =1
(2)原式(3416)² 2500
(2)34²+3432+16²
利用完全平方公式分解因式, 可以简化计算
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
延伸
2.如果x²6x+N是一个完全平方式,那么N是( B )

因式分解(2)——公式法(人教版)八年级数学上册PPT课件

因式分解(2)——公式法(人教版)八年级数学上册PPT课件
原式=(x-y)(a2-b2) =(x-y)(a+b)(a-b).
13. 分解因式:n2(m-2)+(2-m).
解:原式=(m-2)(n+1)(n-1).
三级检测练
一级基础巩固练
14. 分解因式:
(1)x2-25=
(x+5)(x-5)

(2)4b2-a2=
(2b+a)(2b-a)

(3)9b2-4a2=
5. 分解因式:
(1)x2-25=
(x+5)(x-5)Biblioteka ;(2)x2-36=
(x+6)(x-6)
.
6. (例 2)分解因式:
(1)4x2-25=
(2x+5)(2x-5)

(2)9x2-16y2=
(3x+4y)(3x-4y)
.
7. 分解因式:
(1)16x2-1=
(4x+1)(4x-1)

(2)36x2-25y2=
)2.
知识点.公式法(平方差公式)
3. 平方差公式:
整式乘法:(a+b)(a-b)= a2-b2

分解因式:a2-b2=
(a+b)(a-b)
.
4. (例 1)分解因式:
(1)x2-4=
(x+2)(x-2)

(2)x2-9=
(x+3)(x-3)
.
总结:能用平方差公式分解因式的条件: ①二项式;②能化成两个平方相减.
(1)设 S1,S2 分别是图 1,图 2 的面积,若用
含 a,b 的代数式表示它们的面积,则
S1=
a2-b2

人教八年级数学上册《公式法》课件

人教八年级数学上册《公式法》课件
公式法(1)
一、情景导入 问题情景1:
看谁算得最快:①982-22 ②已知x+y=4,x-y=2,则x2-y2=______
问题情景2: 你能将多项式x2-4与多项式y2-25分解因
式吗?这两个多项式有什么共同的特点吗?
这两个多项式都可写成两个数的 平方差的形式。
二、回顾与思考
1、什么叫因式分解? 把一个多项式化成几个整式的积的形式,这种变形叫做把这
整式乘法
因式分解两个数ຫໍສະໝຸດ 平方差,等于这两个数的和 与这两个数的差的积。
a2-b2 =(a+b)(a-b)
这就是用平方差公式进行因式分解。
四、应用新知,尝试练习
例1、因式分解(口答): ① x2-4=_(_x_+_2_)(_x_-_2) ②9-t2=_(_3_+_t)_(_3_-t_)_
例2、下列多项式能用平方差公式因式分解吗?
例4 分解因式:
(1)x4-y4; (2) a3b – ab.
分析:(1)x4-y4可以写成(x2)2-(y2)2的形式,这样 就可以利用平方差公式进行因式分解了。
解:(1) x4-y4
(2) a3b-ab=ab(a2-1)
= (x2+y2)(x2-y2) = (x2+y2)(x+y)(x-y)
=ab(a+1)(a-1).
比如:①a3b – ab=ab(a2-1)=ab(a+1)(a-1) ②x(x-y)2-x=x[(x-y)2-1]=x(x-y+1)(x-y-1)
3、因式分解应分解到每一个因式都不能分解 为止。 比如:x3-x=x(x2-1),做完了吗?
=x(x+1)(x-1)

14.3.2公式法 课件 2024—2025学年人教版数学八年级上册

14.3.2公式法 课件 2024—2025学年人教版数学八年级上册
13.在括号内填上适当的数,使之能用完全平方公式进行因式分解.
(1)x2 ( )xy+25y2; (2) 9a2 36ab ( ) .
14.已知a,b,c为三角形的三边,且a2 b2 c2 ab bc ac 0
判断此三角形的形状.
15.证明:无论a,b为何值,a2 b2 6a 10b 40 的值都大于0.
(1)a2b2 10ab 25;
(2) 16m2 40mn 25n2 ;
(3) x2 y2 8xy3 16 y4;
(4) x4 6x2 y2 9 y4 ;
(5) (m n)2 8(m n) 16 ; (6) (x y)2 4xy ;
(7) x2 4x 4;
(8) m2 12m 36 ;
16.若x 2z 3y,求 x2 9 y2 4z2 4xz 的值.
(3) x2 2x 1 ;
(6) 1 x2 x 1; 4
(9) a2 1 ab 1 b2 ; 24
(12) a2b2 6ab 9
2.把下列各式分解因式:
(1)a2 12a 36; (3) 9x2 12xy 4 y2 ; (5) 3x2 6xy 3y2; (7)(a b)2 6(a b) 9; (9) x4 2x2 1 ;
把(a-b)看作一个整体,这个多项式恰好是
(a-b)与5的平方,及(a-b)与5的乘积的2
倍,这样就可以利用完全平方公式分解因式了.
解:(1)m2 10mn 25n2 (m)2 2 (m)(5n) (5n)2 (m 5n)2
(3)(a b)2 1(0 a b) 25 (a b)2 2 5(a b) 52 (a b 5)2
(4)
x2 4x
2
8
x2 4x

人教版八年级数学上册课件:14.3.2公式法(第一课时)

人教版八年级数学上册课件:14.3.2公式法(第一课时)
1450
7.(1)若x2-4=(x-2)(x+a),则a= 2 ; (2)若a2-b2=10,a+b=-2,则a-b的值为 -5 .
1
9.分解因式: (1)25a2-4; 解:原式=(5a+2)(5a-2);
(2)m3-m; 解:原式=m(m+1)(m-1);
(3)-9n2+16m4; 解:原式=(4m2+3n)(4m2-3n);
(2x+5y)(2x-5y)
12.已知a、b、c为△ABC的三边长,且满足a2c2b2c2=a2b2-a4,则△ABC的形状是 等腰三角.形
13.老师在黑板上写出几个算式: 52-32=8×2,92-72=8×4,152-32=8×27, 王华接着又写了两个具有同样规律的算式: 112-52=8×12,152-72=8×22,… (1)请再写出两个具有上述规律的算式(不同于上面算式); (2)用文字写出上述算式的规律;
(4)3ax2-3ay2; 解:原式=3a(x+y)(x-y);
(5)(x+2)2-9. 解:原式=(x+5)(x-1).
10.将下列各式因式分解. (1)(2x+3)2-25x2; 解:原式=(2x+3+5x)(2x+3-5x) =(7x+3)(3-3x) =-3(x-1)(7x+3);
Hale Waihona Puke (2)9(a+b)2-4(a-b)2;
14.3.2 公式法(第一课时)
1.平方差公式法
两个数的平方差等于这两个数的和与这两个数的差的 积.即:a2-b2=(a+b)(a-b).
注:(1)公式特点:公式的左边是一个二项式,都能写成 平方形式且符号相反;公式的右边是两个二项式的积, 其中一个二项式是两个底数的和,另一个二项式是两 个底数的差;

八年级数学人教版(上册)14.3.2《公式法》第2课时PPT课件

八年级数学人教版(上册)14.3.2《公式法》第2课时PPT课件

1 -2
1 -1 1×(-1)+1×(-2)=5
课堂小结

式 x2+(p+q)x+pq型 分 式子的因式分解
十字相乘法

1p
1q 1×q+1×p=q+p 一次项系数
拓展提升
1.(2020·内江)分解因式:b4-b2-12 .
分析:将b2看成一个整体a,则原式变形为(b2)2-b2-12,
1.(2019·淄博)分解因式:x3+5x2+6x=_x_(_x_+_2_)(_x_+_3_)_.
分析:x3+5x2+6x =x(x2+5x+6) =x(x+2)(x+3).
12
13 1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=_2_(_x_-1_)_(_x_-2_)_.
分析:2x2-6x+4 =2(x2-3x+2) =2(x-1)(x-2).
新知探究 知识点 运用x2+(p+q)x+pq分解因式
x2+(p+q)x+pq型式子的因式分解 因式分解与整式乘法是方向相反的变形,利用这种关 系可以得出:
x2+(p+q)x+pq=(x+p)(x+q)
利用上式,可以将某些二次项系数为1的二次三项式进 行因式分解.
十字相乘法分解因式的步骤:
(1)分解二次项系数,分别写在十字交叉线的左上角和左
新知探究 跟踪训练
例 分解因式: (1) x2-3x+2;
分析:(1) 1 -1
(2) x2+3x-10. (2) 1 -2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


8.对某方面的知识有强烈兴趣时,自 己解决 某个问 题时, 学习中 找到志 趣相投 的同伴 时,发 现自己 的潜能 时我们 都可以 体味到 学习带 来的快 乐。
4.若a+b=4,a2+b2=10 求a3+a2b+ab2+b3的值.
解:原式=(a3+a2b)+(ab2+b3) =a2(a+b)+b2(a+b) =(a+b)(a2+b2)
∵a+b=4,a2+b2=10 ∴原式=4×10=40
5.已知(x+y)2-2x-2y+1=0,求2x2+4xy+2y2的值.
解: x2-y2-2y+2x =x2-y2+(2x-2y) =(x +y)( x -y )+2(x-y) =( x -y )( x +y +2) =5×9=45
(x+a)(x+b) = x2+(a+b)x+ab 1.(x+2)(x+1) = x2+3x+2 2.(x+2)(x-1) = x2+x-2 3.(x-2)(x+1) = x2-x-2 4. (x-2)(x-1) = x2-3x+2 5.(x+2)(x+3) = x2+5x+6 6.(x+2)(x-3) = x2-x-6 7.(x-2)(x+3)= x2+x-6 8. (x-2)(x-3) = x2-5x+6
旧知
回顾
运用提公因式法分解因式的步骤
是什么?
你能将a2-b2分解因式吗?你是 如何思考的?
例1 把下列各式因式分解:
(1)( x + z )²- ( y + z )²
解:原式=[(x+z)+(y+z)][(x+z)-(y+z)] =(x+y+2z)(x-y)
(2)4( a + b)²- 25(a - c)²

2.以中央和上级指示为内容写评论。 这种评 论能起 到传达 上级指 示精神 的作用 ,是报 纸上很 常见的 评论样 式。而 写这类 评论, 一要吃 透精神 ,二要 上下结 合。

3.配合中心任务和重大决策写的指导 性评论 。这要 要求作 者要注 意任务 明确, 道理要 讲清。

4.我国的改革在不断深化,那种什么 事情都 由政府 包揽的 现象正 在改变 ,各种 社会组 织纷纷 成立, 这有利 于社会 矛盾和 社会责 任的分 担。
知识要 点
x2+(p+q)x+pq
=(x+p)(x+q)
x2+px+q= x2+(a+b)x+ab= (x+a)(x+b)
x
a
x
ax +
b
bx = (a+b)x
步骤: ①竖分二次项与常数项; ②交叉相乘,和相加; ③检验确定,横写因式.
顺口溜: 竖分常数交叉验, 横写因式不能乱.
将下列各式因式分解: 1.x2+8x+12= (x+2)(x+6) 2.x2-11x-12= (x-12)(x+1) 3.x2-7x+12= (x-3)(x-4) 4.x2-4x-12= (x-6)(x+2) 5.x2+13x+12= (x+1)(x+12) 6.x2-x-12= (x-4)(x+3)
原式=4( a + b)²- 25(a - c)² =[2(a+b) +5(a-c)][2(a+b)-5(a-c)] =(7a+2b-5c)(-3a+2b+5c)
(3)4a³- 4a
(3)原式=4a(a²-1)
=4a(a+1)(a-1)
(4)(x+y + z)²- (x-y-z )²
原式=[(x+y+z)+(x-y-z)]×[(x+y+z)- (x-y-z)]
(6)原式=5x3y(x-y)-10x4y3(x-y)2
=5x3y(x-y)[1-2xy2(x-y)] =5x3y(x-y)(1-2+1)2-(2n-1)2 是8的倍数.
证明: (2n+1)2-(2n-1)2 =(2n+1+2n-1)(2n+1-2n+1) =4n×2 =8n
=2x (2y + 2z) =4x (y + z )
(5)9(m+n)2-(m-n)2
(5)原式=[3(m+n)]2-(m-n)2
=[3(m+n)+(m-n)][3(m+n)-(m-n)]
=(3m+3n+m-n) (3m+3n-m+n)
=(4m+2n) (2m+4n) =4 (2m+n) (m+2n) (6)5x3y(x-y)-10x4y3(y-x)2
因为n是整数,所以原式是8的倍数.
例3 计算下列各式的值:
(1) 652-642
(2) 5.42-4.62
解:652-642 =(65+64)(65-64) =129×1 =129
解:5.42-4.62 =(5.4+4.6)(5.4-4.6) =10×0.8 =80
已知,x+ y =7,x-y =5,求代数式 x2- y22y+2x的值.

5.国家元首从表面上看是个人,但事 实上, 是一个 国家机 关,是 一个国 家在实 质上或 形式上 的对内 和对外 的最高 代表。

6.我们经历了学习的辛苦,收获学习 的成果 时,那 种发自 内心的 愉悦让 我们体 验到学 习的美 好,它 是学习 过程带 给我们 的美妙 享受。

7.学习过程中需要集中注意力、耗费 精力, 遇到困 难和阻 挠时需 要调节 不良情 绪等, 这些都 需要我 们凭借 坚强的 意志作 出努力 。
解:由题意:(x+y)2-2(x+y)+1=0 ∴(x+y-1)2=0即x+y-1=0 ∴x+y=1 ∴2x2+4xy+2y2=2(x+y)2 =2×12=2

1.新闻评论,是社会各界对新近发生 的新闻 事件所 发表的 言论的 总称。 新闻和 评论, 构成报 纸的两 大文体 。新闻 评论是 一种写 作形式 ,一种 传播力 量,一 种社会 存在, 以传播 意见性 信息为 主要目 的和手 段。
相关文档
最新文档