2015-2016学年九年级上《圆的基本性质》单元测试卷含答案
数学九年级上学期《圆》单元检测卷(带答案)

∵OP=1,∠POE=45°,
∴OE=PE= ,即点P的坐标为( , ),
则第2秒P点为(0,1),
根据题意可知,第3秒P点为(- , ),第4秒P点为(-1,0),第5秒P点为(- ,- ),第6秒P点为(0,-1),
第7秒P点为( ,- ),第8秒P点为(1,0),
2018÷8=252……2,
A. B. πC. πD. π
11.如图,A B是⊙O的直径,C,D是圆上两点,连接A C,B C,A D,C D.若∠C A B=55°,则∠A D C的度数为( )
A. 55°B. 45°C. 35°D. 25°
12.如图,在矩形A B C D中,A B=3,B C=4,O为矩形A B C D对角线的交点,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为()
A. 44°B. 54°C. 62°D. 72°
3.如图,A B、C D分别与半圆OO切于点A,D,B C切⊙O于点E,若A B=4,C D=9,则⊙O 半径为( )
A. 12B. C. 6D. 5
4.如图,△A B C是⊙O的内接三角形,A B为⊙O的直径,点D为⊙O上一点,若∠A C D=40°,则∠B A D的大小为( )
16.如图,Rt△A B C中,A B⊥B C,A B=6,B C=4,P是△A B C内部的一个动点,且满足∠PA B=∠PB C,则线段CP长的最小值为_____.
17.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接A D,则图中阴影部分面积是_____.
第3章 圆的基本性质单元测试卷(含解析)

绝密★启用前第三章圆的基本性质单元测试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,每小题3分,共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断2.如图,AB是直径,,∠BOC=40°,则∠AOE的度数为()A.30°B.40°C.50°D.60°3.如图,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径是()A.cm B.cm C.cm D.cm4.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100°D.130°5.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cm B.cm C.cm D.1cm6.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3 C.S1<S3<S2D.S3<S2<S17.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)为()A.10 cm B.16 cm C.24 cm D.26 cm9.如图的矩形ABCD中,E为的中点,有一圆过C、D、E三点,且此圆分别与、相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:(甲)作∠DEC的角平分线L,作的中垂线,交L于O点,则O即为所求;(乙)连接、,两线段交于一点O,则O即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确10.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,每小题3分,共24分)11.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C12.如图,四边形ABCD是⊙O的内接四边形,点D是的中点,点E是上的一点,若∠CED=40°,则∠ADC=度.13.如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.14.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.15.在Rt△ABC中,∠ACB=90°,在斜边AB上分别截取AD=AC,BE=BC,DE=6,点O是△CDE的外心,如图所示,则点O到△ABC的三边的距离之和是.16.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,17.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是.18.如图,⊙O的半径是8,AB是⊙O的直径,M为AB上一动点,==,则CM+DM 的最小值为.评卷人得分三.解答题(共6小题,共46分)19.(6分)如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.20.(6分)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA=AF,求证:CF⊥AB.21.(8分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.(1)若∠ADC=86°,求∠CBE的度数;(2)若AC=EC,求证:AD=BE.22.(8分)已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.23.(8分)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).24.(10分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.参考答案与试题解析1.解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选:A.2.解:∵,∠BOC=40°,∴∠BOC=∠COD=∠EOD=40°,∴∠AOE=180°﹣∠BOE=60°.故选:D.3.解:设AP=x,则PB=5x,那么⊙O的半径是(x+5x)=3x ∵弦CD⊥AB于点P,CD=10cm∴PC=PD=CD=×10=5cm由相交弦定理得CP•PD=AP•P B即5×5=x•5x解得x=或x=﹣(舍去)故⊙O的半径是3x=3cm,故选:C.4.解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.5.解:∵正六边形的任一内角为120°,∴∠1=30°(如图),∴a=2cos∠1=,6.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.∴S扇形AOC=;S扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC =,S弓形==,>>,∴S2<S1<S3.故选:B.7.解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.8.解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.9.解:甲,∵=,∴△DEC为等腰三角形,∴L为之中垂线,∴O为两中垂线之交点,即O为△CDE的外心,∴O为此圆圆心.乙,∵∠ADC=90°,∠DCB=90°,∴、为此圆直径,∴与的交点O为此圆圆心,因此甲、乙两人皆正确.故选:A.10.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选:B.11.解:如图,连接OA.∵OC⊥AB,∴=,∴∠AOC=∠COB=70°,∴∠ADC=AOC=35°,故答案为35.12.解:如图,连接AE,∵点D是的中点,∴∠AED=∠CED,∵∠CED=40°,∴∠AEC=2∠CED=80°,∵四边形ADCE是圆内接四边形,∴∠ADC+∠AEC=180°,∴∠ADC=180°﹣∠AEC=100°,故答案为:100.13.解:连接OC,如图,∵OA=OC,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.14.解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.15.解:由题意点O是EC、CD垂直平分线的交点,∵AD=AC,BE=BC,∴EC的垂直平分线经过B且平分∠B,CD的垂直平分线经过A且平分∠A,∴O是△ABC的内心,则r=(AC+BC﹣AB)=(AD+BE﹣AB)=DE=3,∴点O到△ABC的三边的距离之和是3r=9,故答案为9.16.解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOG=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+2b2,故③正确.故答案为:①②③.17.解:如图,连接CE.∵AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,∴∠ACB=90°,OB=OC=OD=2,BC=CE=4.又∵OE∥AC,∴∠ACB=∠COE=90°.∴在直角△OEC 中,OC=2,CE=4, ∴∠CEO=30°,∠ECB=60°,OE=2∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =﹣π×22﹣×2×2=﹣2,故答案为:﹣2.18.解:如图,作点C 关于AB 的对称点C′,连接C′D 与AB 相交于点M , 此时,点M 为CM +DM 的最小值时的位置, 由垂径定理,=,∴=,∵==,AB 为直径,∴C ′D 为直径,∴CM +DM 的最小值是16. 故答案是:16.19.证明:连接OC , ∵=,∴∠AOC=∠BOC .∵CD ⊥OA 于D ,CE ⊥OB 于E , ∴∠CDO=∠CEO=90° 在△COD 与△COE 中, ∵,∴△COD ≌△COE (AAS ), ∴OD=OE ,∵AO=BO,∴AD=BE.20.解:(1)∵AB是⊙O直径,∴∠ACB=90°,∵△AEF为等边三角形,∴∠CAB=∠EFA=60°∴∠B=30°,∵∠EFA=∠B+∠FDB,∴∠B=∠FDB=30°,∴△DFB是等腰三角形;(2)过点A作AM⊥DF于点M,设AF=2a,∵△AEF是等边三角形,∴FM=EM=a,AM=a,在Rt△DAM中,AD=AF=2a,AM=,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=2a,∴CE=AC﹣AE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.21.(1)解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,又∵∠ADC=86°,∴∠ABC=94°,∴∠CBE=180°﹣94°=86°;(2)证明:∵AC=EC,∴∠E=∠CAE,∵AC平分∠BAD,∴∠DAC=∠CAB,∴∠DAC=∠E,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,又∵∠CBE+∠ABC=180°,∴∠ADC=∠CBE,在△ADC和△EBC中,,∴△ADC≌△EBC,∴AD=BE.22.解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2, ∴△DOC 为等边三角形, ∴∠DOC=60°, ∴∠CBD=30°, ∴∠ADB=90°, ∴∠BED=60°, ∴∠AEC=60°.23.解:(1)连接OD ,OC , ∵C 、D 是半圆O 上的三等分点, ∴==,∴∠AOD=∠DOC=∠COB=60°, ∴∠CAB=30°, ∵DE ⊥AB , ∴∠AEF=90°,∴∠AFE=90°﹣30°=60°; (2)由(1)知,∠AOD=60°, ∵OA=OD ,AB=4,∴△AOD 是等边三角形,OA=2, ∵DE ⊥AO , ∴DE=,∴S 阴影=S 扇形AOD ﹣S △AOD =﹣×=π﹣.24.(1)证明:∵CD ⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B,∵∠CNM=∠AND∴∠AND=∠B,∵,∴∠D=∠B,∴∠AND=∠D,∴AN=AD;(2)解:设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为.。
九年级数学:圆的基本性质检测卷(含答案)

九年级数学:圆的基本性质检测卷(含答案)一、选择题(本大题共10小题,每小题4分,共40分)1.已知⊙O 的半径为5厘米,A 为线段OP 的中点,当OP =6厘米时,点A 与⊙O 的位置关系是( )A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .不能确定 2.有下列四个命题:①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③平分弦的直径垂直于弦;④三点确定一个圆.其中正确的有( )A .1个B .2个C .3个D .4个3.如图,已知弦CD ⊥直径AB 于点E ,连结OC ,OD ,CB ,DB ,下列结论一定正确的是( ) A .∠CBD =120° B .BC =BDC .四边形OCBD 是平行四边形 D .四边形OCBD 是菱形第3题图4.在半径为3cm 的⊙O 中,45°的圆周角所对的弧长为( )A.34πB.32πC.52πD.94π 5.如图,AB 是⊙O 的一条弦,且OD ⊥AB 于点C ,BD ︵所对的圆周角∠DEB =35°,则∠AOD 的度数是( )第5题图A .35°B .55°C .70°D .110°5.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE =8个单位,OF =6个单位,则圆的直径为( )第6题图A .12个单位B .10个单位C .4个单位D .15个单位 7.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,当第24秒时,点E 在量角器上对应的读数为( )A .72°B .90°C .108°D .144°第7题图8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB ︵上一点,则∠APB 的度数为( )第8题图A .45°B .30°C .75°D .60° 8.如图,圆内接△ABC 的外角∠ACH 的平分线与圆交于点D ,DP ⊥AC ,垂足为P ,DH ⊥BH ,垂足为H ,有下列结论:①CH =CP ;②AD ︵=BD ︵;③AP =BH ;④AB ︵=BC ︵.其中一定成立的结论有( )第9题图A .1个B .2个C .3个D .4个 9.(威海中考)如图,AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为( )第10题图A.68° B.88° C.90° D.112°二、填空题(本大题共6小题,每小题5分,共30分)11.已知四边形ABCD内接于⊙O,∠A:∠C=1∶2,则∠A=____.12.已知扇形的圆心角为120°,所对的弧长为8π3,则此扇形的面积是________.13.(长沙中考)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.第13题图14.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为13,则点P的坐标为____.第14题图14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为____(结果保留π).第15题图16.在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为____.三、解答题(本大题共8小题,共80分)17.(8分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的格点A 、B 、C . (1)请完成如下操作:①以点O 为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D ,并连结AD 、CD ;(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C ____、D ____;②⊙D 的半径=____(结果保留根号).第17题图18.(8分)如图,在给定的圆上依次取点A ,B ,C ,D ,连结AB ,CD ,AC =BD ,设AC ,BD 交于点E ;第18题图(1)求证:AE =DE ;(2)若AD ︵=100°,AB =ED ,求AB ︵的度数.19.(8分)“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,求直径CD的长.”(1尺=10寸)第19题图20.(8分)如图,在△ABC中,AB=AC,BD是∠ABC的角平分线,△ABD的外接圆交BC于E.求证:AD=EC.第20题图21.(10分)(武汉中考)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.第21题图(1)如图1,若点P 是AB ︵的中点,求PA 的长; (2)如图2,若点P 是BC ︵的中点,求PA 的长.22.(12分)如图,⊙O 为四边形ABCD 的外接圆,圆心O 在AD 上,OC ∥AB .第22题图(1)求证:AC 平分∠DAB ;(2)若AC =8,AC ︵∶CD ︵=2∶1,试求⊙O 的半径;(3)若点B 为AC ︵的中点,试判断四边形ABCO 的形状.23.(14分)如图,已知AB 是⊙O 中一条固定的弦,点C 是优弧ACB 上的一个动点(点C 不与A 、B 重合).(1)如图1,CD ⊥AB 于D ,交⊙O 于点N ,若CE 平分∠ACB ,交⊙O 于点E ,求证:∠ACO =∠BCD ;(2)如图2,设AB =8,⊙O 半径为5,在(1)的条件下,四边形ACBE 的面积是否是定值?若是定值,求出这个定值,若不是定值,求出四边形ACBE 面积的取值范围.图1图2 第23题图第3章 圆的基本性质检测卷1.A 2.A 3.B 4.B 5.C 6.B 7.D 8.D 9.C 10.B 11.60° 12. 163π 13. 4 14. (3,2) 15. 52π-4 16. 3或7317. (1)略 (2)①(6,2) (2,0) ②2 518.(1)连结BC ,∵AC =BD ,∴AC ︵=BD ︵,AC ︵-AD ︵=BD ︵-AD ︵,即AB ︵=CD ︵,∴∠ACB =∠DBC,∴BE =CE ,又AC =BD ,∴AE =DE ; (2)连结AD.∵AD ︵=100°,∴∠ABD =50°,又∵AB=DE =AE ,∴∠ABD =∠AEB=50°,∠ADB =25°,AB ︵的度数为50°.19. 26寸.20.证明:连结DE ,∵四边形ABED 是圆内接四边形,∴∠EDC =∠CBA,∵AB =AC ,∴∠ACB =∠CBA,∵∠EDC =∠CBA,∠ACB =∠CBA,∴∠ACB =∠EDC,∴DE =EC ,∵BD 是∠CBA 的角平分线,∴∠DBA =∠DBC,∴AD ︵=DE ︵,∴AD =DE ,∵DE =EC ,AD =DE ,∴AD =EC.21.(1)如图1,连结PB.∵ AB 是⊙O 的直径,P 是弧AB 的中点,∴ PA =PB ,∠APB =90°.∵AB =13,∴PA =22AB =1322; (2)如图2,连结BC ,OP ,且它们交于点D ,连结PB. ∵ P 是BC ︵的中点,∴ OP ⊥BC ,BD =CD.∵ OA=OB ,∴ OD =12AC =52.∵ OP =12AB =132,∴ PD =OP-OD =132-52=4.∵ AB 是⊙O 的直径,∴ ∠ACB =90°.∵ AB =13,AC =5,∴BC =12.∴ BD=12BC =6.∴ PB=PD 2+BD 2=42+62=213.∵ AB 是⊙O 的直径,∴∠APB =90°. ∴ PA AB 2-PB 2=132-(213)2=313.第21题图22.第22题图(1)证明:∵OC∥AB,∴∠BAC=∠ACO,∵OC=OA,∴∠ACO=∠CAO.∴∠CAO=∠BAC.即:AC平分∠DAB. (2)AC=8,弧AC与CD之比为2∶1,∴∠DAC=30°,又∵AD是圆的直径,∴∠ACD=90°,∴CD=AC·tan∠DAC=833,∵∠COD=2∠DAC=60°,OD=OC,∴△COD是等边三角形.∴圆O的半径=CD=833. (3)∵点B为弧AC的中点,∴AB︵=BC︵,∴∠BAC=∠BCA,∵AC平分∠DAB,∴∠OAC=∠BAC,∴∠BAC=∠BCA=∠OAC=∠OCA.∴OA∥BC.又OC∥AB,∴四边形ABCO是平行四边形.∵AO=CO,∴四边形ABCO为菱形.23.(1)略; (2)不是定值,8<S四边形ACBE≤40.。
2016年秋季九年级上学期数学《圆》单元测试及答案

2016年秋季九年级上学期数学《圆》单元测试一、选择题 (每小题4分,共40分):1.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图(1)所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是() A .第①块 B .第②块 C .第③块 D .第④块2.下面命题中是真命题的有( )①长度相等的弧是等弧 ②平分弦的直径垂直于弦; ③相等的圆心角所对的弦相等 ④任意三点确定一个圆⑤外心在三角形的一条边上的三角形是直角三角形。
A.0个 B.1个 C.2个 D.3个 3.已知、是同圆的两段弧,且=2,则弦AB 与CD 之间的关系为( )A.AB=2CDB.AB<2CDC.AB>2CDD.不能确定4.如图(2),以点P 为圆心,以25为半径的圆弧与x 轴交于A ,B 两点,点A 的坐标为(2,0),点B 的坐标为(6,0),则圆心P 的坐标为( )A.(4, 14) B .(4,2) C.(4,4) D.(2, 26)5.如图(3),⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB , ∠AOC=84°,则∠E 等于( ) A.42 ° B.28° C.21° D.20°6.如图(4)已知⊙是以数轴的原点为圆心,半径为1的圆,,点在数轴上运动,若过点且与平行的直线与⊙有公共点, 设x OP =,则的取值范围是( ) A .-1≤≤1 B .≤≤C .0≤≤D .>7.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶18.设⊙O 的半径为2,圆心O 到直线l 的距离OP=m ,且m 使得关于x 的方程2x 2-22x+m-1=0有实数根,则直线l 与⊙O 的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.无法确定9.如图(5),在边长为20cm 的等边三角形ABC 纸片中,以顶点C 为圆心,以此三角形的高为半径画弧分别交AC BC ,于点D E ,,则扇形CDE 所围的圆锥(不计接缝)的底圆 半径为( )A .533cm B .1033cm C.53cm D .103cm 10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2017秒时,点P 的坐标是() A.(2016,0) B.(2017,-1) C. (2017,1) D. (2018,0)二、填空题(每小题4分,共40分):11.同一平面内两圆的半径是R 和r ,圆心距是d ,若以R 、r 、d 为边长,能围成一个三角形,则这两个圆的位置关系是_______.12.如图(6),四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠DCE 的度数为___50°____. 13.如图(7),AB 是⊙O 的弦,OH ⊥AB 于点H,点P 是优弧上一点,若AB=2,OH=1,则∠APB 的度数是 .14.如图(8),在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为_________.15.如图(9),Rt △ABC 中,∠C=90°,AC=6,BC=8.则△ABC 的内切圆半径r=____.16.如图(10),圆锥的母线长OA 为8,底面圆的半径为4.若一只蚂蚁在底面上点A 处,在相对母线OC 的中点B 处有一只小虫,蚂蚁要捉到小虫,需要爬行的最短距离为_______.17.如图(11),一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是______ m 2.18.如图(12),△ABC 是等腰直角三角形,∠ACB=90°,CB=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ’C ’,若AB=2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是________ (结果保留π). O O 45AOB ∠=︒P P OA O x x 2-x 2x 2x 2_______________班级:(____)班 座号:_____号 姓名:_______________________…………………………………………………………装订线………………………………………………………………………………(2)(3)(6)(7)6m 4m 5m 120° 小羊AO A C B (10) (12) (9) rB AC O ABCD E (5)(8)(11)19.如图(13)分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 ______个平方单位。
数学九年级上册《圆》单元检测带答案

(1)求证:B C平分∠A B D
(2)若D C=8,BE=4,求圆的直径.
22.如图,正方形A B C D的边长为2,点E在边A D上(不与A,D重合),点F在边C D上,且∠EBF=45°,若△A BE的外接圆⊙O与C D边相切.
A 24B.14C.10D.7
3.下列语句,错误的是( )
A.直径是弦
B.弦的垂直平分线一定经过圆心
C.相等的圆心角所对的弧相等
D.平分弧的半径垂直于弧所对的弦
4.已知,如图A B,A D是⊙O的弦,∠B=30°,点C在弦A B上,连结CO并延长交⊙O于点D,∠D=35°,则∠B A D的度数是( )
A. 1个B. 2个C. 3个D. 4个
[答案]C
[解析]
[分析]
利用确定圆的条件得到对角互补的四边形有外接圆可对①进行判断;利用切线的性质对②进行判断;根据正多边形中心角的定义和多边形外角和对③进行判断;根据切线长定理对④进行判断.
[详解]解:对角互补的四边形是圆内接四边形,所以①正确;
圆的切线垂直于过切点的半径,所以②错误;
6.如图,A B是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接B C、PA.若∠P=36°,PA与⊙O相切,则∠B等于( )
A.20°B.27°C.36°D.42°
[答案]B
[解析]
[分析]
由A B是⊙O的直径,PA切⊙O于点A,∠P=36°,可求得∠POA的度数,又由圆周角定理,可求得∠B的度数,根据等边对等角的性质,即可求得答案.
2.如图,C D为圆O的直径,弦A B⊥C D,垂足为E,CE=1,半径为25,则弦A B的长为( )
最新浙教版九年级数学上学期《圆的基本性质》单元测试卷及答案解析.docx

九年级上数学圆的基本性质单元测试卷班级 姓名一、选择题1、下列命题中不正确的是( ) A.圆有且只有一个内接三角形;B.三角形的外心是这个三角形任意两边的垂直平分线的交点;C.三角形只有一个外接圆;D.等边三角形的外心也是三角形的三条中线、高、角平分线的交点. 2、过⊙内一点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 的长为( )(A )3cm (B )6cm (C )cm (D )9cm3、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC =110°,AD ∥OC ,则∠AOD =( ) A70° B 、60° C 、50° D 、40°4、如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为弧AD 上任意一点,若AC =5,则四边形ACBP 周长的最大值是( )A 、15B 、20C 、2515+D 、5515+(第3题) (第4题) (第5题) (第6题) 5、如图,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 的路线作匀速运动,设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是()A B C D6、如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()A、35B、5 C、25D、67.如图,圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为()A. 60πcm2B. 45πcm2C. 30πcm2D15πcm2ABCP15c m3c m9c m(第7题) (第8题) (第9题)8.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA、OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A.12个单位B.10个单位C.4个单位D.15个单位9.如图,有一块边长为6 cm的正三角形ABC木块,点P是边CA延长线上的一点,在A、P 之间拉一细绳,绳长AP为15 cm.握住点P,拉直细绳,把它紧紧缠绕在三角形ABC木块上(缠绕时木块不动),则点P运动的路线长为(精确到0.1厘米,π≈3.14)( )A.28.3 cmB.28.2 cmC.56.5 cmD.56.6 cm10、如图,Rt △ABC 中,∠ACB =90°,∠CAB =30°,BC =2,O ,H 分别为边AB 、AC 的中点,将△ABC 绕点B 顺时针旋转120°到△11BC A 的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分的面积)为( )A 、38737-π B 、38734+π C 、π D 、334+π (第10题)二、填空题(每题4分,共32分)11.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为_______.12.同圆的内接正三角形与内接正方形的边长的比是______.13. 如图,△ABC 是等腰直角三角形,BC 是斜边,点P 是△ABC 内的一点,将△ABP 绕点A 逆时针旋转后与△ACP ′重合.如果AP=3,那么线段PP ′的长是______.(第13题) (第14题)14.如图,三角形ABC 是等边三角形,以BC 为直径作圆交AB ,AC 于点D ,E ,若BC=1,则DC=________.(第16题)14、如图,两正方形彼此相邻,且内接于半圆,若小正方形的面积为162cm ,则该半圆的半径为 .15、一根水平放置的圆柱形输水管道横截面中有水部分水面宽312米,半径为12米,则积水部分面积为 .16、如图所示,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为 .17、在平面直角坐标系中,已知一圆弧点A (-1,3),B (-2,-2),C (4,-2),则该圆弧所在圆的圆心坐标为 .18、如图⊙O 的半径为1cm ,弦AB ,CD 的长度分别为2cm ,1cm ,则弦AC ,BD 相交所夹的锐角 = . 三、解答题(第18题)19、已知:如图,在△ABC 中,∠ACB=90°,∠B=25°,以C 为圆心,CA 长为半径的圆交AB 于D,求的度数.DCBAE DCBA O(第19题)20、 “圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图3-2-16所示,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E, CE=1寸,求直径CD 的长.”(第20题)21、如图所示,OA 、OB 、OC 都是圆O 的半径,∠AOB=2∠BOC . 求证:∠ACB=2∠BAC.CBAO(第21题)22、如图所示,BC 是⊙O 的直径,AD ⊥BC ,垂足为D ,AB =AF ,BF 和AD 相交于E ;求证:BE =AE .(第22题)23、(1)如图1,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连结OC,若AB=10,CD=8,求AE的长;(2)如图2,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长度.24、如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(2)当AB=5,BC=6,求⊙O的半径.(第24题)25、如图所示,已知⊙O的直径为32,AB为⊙O的弦,且AB=4,P是⊙O上一动点,问是否存在以A,P,B为顶点的面积最大的三角形,试说明理由,若存在,求出这个三角形的面积.第25题26、如图所示,⊙O的直径AB=12 cm,有一条定长为8 cm的动弦CD在AB上滑动(点C与A不重合,点D与B不重合),且CE⊥CD交AB于点E,DF⊥CD交AB于点F. (1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDFE的面积是否为定值?若是定值,请给出说明,并求出这个定值;若不是,请说明理由.第26题27、一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与C D是水平的,BC与水平面的夹角为600,其中AB=60cm,CD=40cm,BC=40cm,请你做出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.40cm40cm60cm DCB A 60O参考答案:1~5:AADCC 6~10:ADBCC11. 7厘米或1厘米 12.6213.32 点拨:由旋转的性质,知∠PAP ′等于90°,AP ′=AP=3,所以PP ′=22AP AP '+ =2233+=32. 14.3215、33648-π16、2017、(1,0)18、75°19、50°20、26寸21、求证圆周角∠ACB=2∠BAC,只要证明弧AB 的度数是弧BC 度数的两倍即可,由已知条件∠AOB=2∠BOC 容易得到.22、证明:∵BC 是⊙O 的直径,∴∠BAC =90°,∵AD ⊥BC ,∴∠BAD +∠CAD =∠CAD +∠C =90°,∴∠BAD =∠C ,∵AB =AF ,∴∠ABF =∠C ,∴∠BAD =∠ABF ,∴BE =AE23、解:(1)∵AB 为⊙O 的直径,弦CD ⊥AB ,∴CE =DE ,∵AB =10,CD =8,∴OC =5,CE =4,∴OE =3,∴AE =2(2)224、(1)证明:∵AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,∴AB⌒ =AC ⌒ , ∠ABC =∠AED ,∠ABC =∠ACB ,∠ADB =∠ACB ,∴∠ADB =∠E ;(2)解:连结AO 并延长交BC 于F ,连结OB ,OC ,∵AB =AC ,OB =OC ,∴AO 垂直平分BC ,∴BF =CF =21BC =21×6=3, 在直角△ABF 中,由勾股定理可得AF =4,设⊙O 的半径为r ,在直角△OBF 中,OB =r ,BF =3,OF =4-r ,∴222)4(3r r -+=,解得825=r ,∴⊙O 的半径是825 25.解:存在以A ,P ,B 为顶点的面积最大的三角形.如答图6所示,作PD ⊥AB 于点D ,∵当点P 在优弧AB 上时,PD 可能大于⊙O 的半径,当点P 在劣弧AB 上时,PD 一定小于⊙O 的半径,且AB 的长为定值,∴当点P 在优弧AB 上且为优弧AB 的中点时△APB 的面积最大,此时PD 经过圆心O.作⊙O 的直径AC ,连结BC ,则∠ABC=90°.∴BC=22AC AB -=22(32)4-=2.∵AO=OC,AD=BD ,∴OD 为△ABC 的中位线,OD=12BC =22.∴PD=PO+OD=322+22=22.∴APB S =12AB ·PD=12×4×22=42. 26.(1)证明:过点O 作OH ⊥CD 于点H ,∴H 为CD 的中点.∵CE ⊥CD ,DF ⊥CD ,∴EC ∥OH ∥FD,则O 为EF 的中点,OE=OF.又∵AB 为直径,∴OA=OB ,∴AE=OA-OE=OB-OF=BF,即AE=BF.(2)解:四边形CDFE 的面积为定值,是216 5 cm .理由:∵动弦CD 在滑动过程中,条件EC ⊥CD ,FD ⊥CD 不变,∴CE ∥DF 不变.由此可知,四边形CDFE 为直角梯形或矩形,∴CDFE S 四边形=OH ·CD.连结OC.∴OH=22OC CH -=2212822⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=25(cm ).又∵CD 为定值8 cm,∴CDFE S 四边形=OH ·CD=25×8=165(2cm ),是常数.即四边形CDFE 的面积为定值.27.示意图略,路线的长度为140-π3103320+。
浙教版九年级数学上册《圆的基本性质》单元练习检测试卷及答案解析

浙教版九年级数学上册《圆的基本性质》单元练习检测试卷及答案解析一、选择题1、圆是轴对称图形,它的对称轴有().A.一条B.两条C.三条D.无数条2、下列说法错误的是()A.直径是圆中最长的弦B.长度相等的两条弧是等弧C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧3、如图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合()A.60°B.150°C.180°D.240°(第3题图)(第4题图)(第5题图)4、如图,AB 为⊙O 的直径,弦CD⊥AB 于E,已知CD=12,BE=3,则⊙O的直径为()A.8 B.10 C.15 D.205、如图,AB为⊙O的直径,∠ABD=38°,则∠DCB=()A.52°B.56°C.60°D.64°6、如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连结OD,若∠BAC=55°,则∠COD的大小为( )A.70°B.60°C.55°D.35°(第6题图)(第7题图)7、如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为()A.140°B.110°C.90°D.70°8、以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.二、填空题9、一个扇形的圆心角为120°,扇形的弧长12π,则扇形半径是______.10、某圆锥的底面圆的半径为3cm,它的侧面展开图是半圆,则此圆锥的侧面积是_______cm2.(结果保留π)11、如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为_________.(第11题图)(第12题图)(第13题图)12、如图,AB是半圆的直径,O是圆心,,则∠ABC=________°.13、如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是__________.14、如图,AB是⊙O直径,D是半圆弧AB中点,P是BA延长线上一点,连接PD交A⊙O于点C,连接BC,若∠P=250,则∠ABC= ______o.(第14题图)(第15题图)15、如图,将边长为的正方形绕点顺时针旋转到的位置,旋转角为30°,则点运动到点时所经过的路径长为_______.三、解答题16、已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.17、如图,某公园的石拱桥的桥拱是圆弧形(弓形),其跨度AB=24 m,拱的半径R=13 m,求拱高CD.18、如图,已知AB、AD是⊙O的弦,点C是DO的延长线与弦AB的交点,∠ABO=30°,OB=2.(1)求弦AB的长;(2)若∠D=20°,求∠BOD的度数.19、如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=4.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)参考答案1、D2、B3、D4、C5、A6、A7、D8、D9、1810、18π11、6.512、3013、60°.14、20°15、16、DB=cm17、CD=8m18、(1);(2)100°.19、(1)证明见解析;(2)8-【解析】1、试题分析:过圆心的任何一条直线都是圆的对称轴,故选D.考点:轴对称图形.2、试题解析:A、直径是圆中最长的弦,所以A选项的说法正确;B、在同圆或等圆中,长度相等的两条弧是等弧,所以B选项的说法错误;C、面积相等的两个圆的半径相等,则它们是等圆,所以C选项的说法正确;D、半径相等的两个半圆是等弧,所以D选项的说法正确.故选B.3、试题分析:根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.解:O为圆心,连接三角形的三个顶点,即可得到∠AOB=∠BOC=∠AOC=120°,所以旋转120°或240°后与原图形重合.故选:D.考点:旋转对称图形.4、试题分析:连接OC,设OC=r,则OE=r-3,CE=6,根据Rt△OCE的勾股定理可得:,解得:r=7.5,则圆的直径为7.5×2=15.考点:垂径定理5、试题分析:连结AD,先根据圆周角定理的推论得到∠ADB=90°,再根据互余计算出∠A=52°,然后根据圆周角定理求解.解:连结AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A=90°﹣∠ABD=90°﹣38°=52°,∴∠DCB=∠A=52°.故选A.考点:圆周角定理.6、试题分析:根据AC为切线,OC为半径可得∠ACB=90°,根据∠A=55°可得∠B=90°-55°=35°,根据同弧所对的圆心角与圆周角的关系可得:∠DOC=2∠B=35°×2=70°.考点:圆的基本性质7、试题分析:圆的内接四边形,对角互补.则∠BAD=180°-∠BCD=180°-110°=70°.考点:圆的内接四边形8、试题分析:如图1,∵OC=1,∴OD=1×sin30°=;如图2,∵OB=1,∴OE=1×sin45°=;如图3,∵OA=1,∴OD=1×cos30°=,则该三角形的三边分别为:、、,∵,∴该三角形是以、为直角边,为斜边的直角三角形,∴该三角形的面积是××=,故选D.考点:正多边形和圆;分类讨论.9、分析:根据扇形弧长公式求得该扇形的半径.详解:设该扇形的半径为R.则解得R=18故答案为:18.点睛:此题主要考查了弧长公式的应用,根据弧长公式,解方程即可求出半径,比较简单,熟记弧长公式是解题关键10、分析:已知底面半径为3的圆锥的侧面展开图是半圆,根据侧面展开图角度与母线,半径的关系,可求出圆锥的母线,代入侧面积公式可得答案.详解:若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的2倍,∵圆锥的底面半径为3cm,故圆锥的母线长为6cm,故圆锥的侧面积S==2π·3²=18π,故答案为18π. 点睛:本题利用了圆的周长公式和扇形面积公式求解,掌握圆锥与扇形各个元素之间的关系是解答本题的关键.11、如图,设圆弧的圆心为点O,连接AO,DO,则由题意可知:O、D、C在同一直线上,且OD⊥AB于点D,∴∠ADO=90°,AD=AB=6,设拱桥的半径为,则AO=,OD=OC-CD=,在Rt△ADO中,由勾股定理可得:,即:,解得:,∴拱桥的半径为6.5.12、试题解析:因为,所以,则,又因为,所以,则,.所以本题的正确答案为30°.13、∵CD=OD=OE,∴∠C=∠DOC=20°,∴∠EDO=∠E=40°,∴∠EOB=∠C+∠E=20°+40°=60°.故答案是:60°.14、分析:连接DB、DA,根据圆周角定理的推论,得到△ADB为等腰直角三角形,然后根据三角形的外角的性质得到∠PDA的度数,然后根据等弧所对的圆周角求解即可.详解:连接DB、DA∵D为弧AB的中点,AB为直径∴△ADB为等腰直角三角形∴∠DAB=45°∴∠P+∠PDA=45°∵∠P=25°,∴∠PDA=45°-25°=20°即∠PBC=20°.故答案为:20°.点睛:此题主要考查了圆周角定理和推论,利用三角形的外角的性质和等腰直角三角形的性质是解题关键.15、分析:连接AC,A′C,利用勾股定理可求出AC的长,即C点运动到C′点所在圆的半径,又因为旋转角为30°,所以根据弧长公式计算即可.详解:连接AC,A′C,∵AB=BC=2cm,∴AC=,∵正方形ABCD绕点A顺时针旋转到AB′C′D′的位置,∴C和C′是对应点,∵旋转角为30°,∴∠CAC′=30°,∴C点运动到C′点的路径长=cm,故答案为:.点睛:本题考查了弧长的计算公式运用,旋转的性质,正方形的性质以及勾股定理的运用,解题的关键是正确求出旋转角∠CAC′=30°.16、试题分析:由AB是⊙O的直径,弦CD⊥AB,根据垂径定理,可得CE=DE,∠AEC=∠DEB=90°,然后由含30°角的直角三角形的性质,即可求得EC与DE的长,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B=30°,继而求得DB的长.试题解析:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,∠AEC=∠DEB=90°,∵∠B=∠ACD=30°,在Rt△ACE中,AC=2AE=4cm,∴CE==2(cm),∴DE=2cm,在Rt△BDE中,∠B=30°,∴BD=2DE=4cm.∴DB的长为4cm.点睛:注意数形结合思想的应用,注意掌握垂径定理与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.17、分析:先构建直角三角形,再利用勾股定理和垂径定理计算.详解:如图:因为跨度AB=24m,拱所在圆半径R=13m,所以找出圆心O并连接OA,延长CD到O,构成直角三角形,利用勾股定理和垂径定理求出DO=(m),进而得拱高CD=CO−DO=13−5=8(m).所以拱高CD为8米.点睛:本题考查了垂径定理和勾股定理的应用.可通过作辅助线建立模形,利用垂径定理解答,也可用相交弦定理来解.18、试题分析:(1)延长BO交⊙O 于E,连结AE,由BE是⊙O的直径,可得Rt△ABE,根据已知以及勾股定理即可求得;(2)连结OA,由OA=OB,OA=OD,可得∠BAO=∠B,∠DAO=∠D,从而可得∠DAB=∠B+∠D,再由圆周角定理即可求得.试题解析:(1)延长BO交⊙O 于E,连结AE,∵BE是⊙O的直径,∴∠BAE=90°,在Rt△ABE中,∠ABE=30°,BE=4,∴AE=2,AB==;(2)如图,连结OA.∵OA=OB,OA=OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO =∠B+∠D,又∵∠B=30°,∠D=20°,∴∠DAB=50°,∴∠BOD=2∠DAB=100°.19、试题分析:(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)求出DE,解直角三角形求出OC,分别求出△ACO的面积和扇形COD的面积,即可得出答案.试题解析:(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)∵AC∥BD,∠OCA=90°,BD=4,∴∠OED=∠OCA=90°,∴DE=BD=2,∵sin∠COD=,∴OD=4,在Rt△ACO中,tan∠COA=,∴AC=4,∴S阴影=×4×4-=8-.。
2015-2016年人教版九年级数学上第24章圆单元测试题含答案

河南省西华县东王营中学2015-2016学年度九年级数学人教版上册第24章圆单元测试题一.选择题(每题3分,共30分)1.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( B )A.4个B.3个C.2个D.1个2.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=() A.3cm B.4cm C.5cm D.6c m(2题图)(3题图)(4题图)(5题图)(8题图)3.一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为()A.4 B. 6 C.8 D.94.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为() A.25°B.50°C.60°D.30°6.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定7.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是()A.相离B.相交C.相切D.外切8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2, B.2,πC.,D.2,9.下列说法不正确的是( ).A.任何一个三角形都有外接圆。
B.等边三角形的外心是这个三角形的中心C.直角三角形的外心是其斜边的中点。
D.一个三角形的外心不可能在三角形的外部10. 如图,⊙A、⊙B、⊙C、⊙D、⊙E的半径都是1,顺次连接这些圆心得到五边形ABCDE,则图中的阴影部分的面积之和为()A.πB.32πC.2πD.52π二、填空:(每题3分,共30分)11.如图,在一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读书恰好是“2”和“10”(单位:cm),那么光盘的直径是cm.12.如图,点O为优弧ACB 所在圆的圆心,AOC108∠=,点D在AB的延长线上,BD BC=,则D∠= .13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B= 度.14.已知:如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°,则∠P的度数为度.15.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为__________.(结果保留π)16.圆内接正五边形ABCDE中对角线AC和BD相交于点P,则∠APB的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南京市2015-2016学年
九年级上数学圆的基本性质单元测试卷
班级姓名
一、选择题
1、下列命题中不正确的是( )
A.圆有且只有一个内接三角形;
B.三角形的外心是这个三角形任意两边的垂直平分线的交点;
C.三角形只有一个外接圆;
D.等边三角形的外心也是三角形的三条中线、高、角平分线的交点.
2、过⊙内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()(A)3cm (B)6cm (C)cm (D)9cm
3、如图,AB是⊙O的直径,点C、D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD=()
A70°B、60°C、50°D、40°
4、如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是()
A、15
B、20
C、
D、
(第3题)(第4题)(第5题)(第6题)
5、如图,点A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿O—C—D—O的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,则下列图象中表示y与t之间函数关系最恰当的是()
A B C D
6、如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()
A、B、5 C、D、6
7.如图,圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为()
A. 60πcm2
B. 45πcm2
C. 30πcm2D15πcm2
(第7题) (第8题) (第9题)
8.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA、OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )
A.12个单位B.10个单位C.4个单位D.15个单位9.如图,有一块边长为6 cm的正三角形ABC木块,点P是边CA延长线上的一点,在A、P之间拉一细绳,绳长AP为15 cm.握住点P,拉直细绳,把它紧紧缠绕在三角形ABC木块上(缠绕时木块不动),则点P运动的路线长为(精确到0.1厘米,π≈3.14)( )
A.28.3 cm
B.28.2 cm
C.56.5 cm
D.56.6 cm
10、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O,H分别为边AB、AC的中点,将△ABC绕点B顺时针旋转120°到△的位置,则整
个旋转过程中线段OH所扫过部分的面积(即阴影部分的面积)
为()
A、B、
C、D、(第10题)
二、填空题(每题4分,共32分)
11.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为_______.
12.同圆的内接正三角形与内接正方形的边长的比是______.
13.
如图,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内的一点,将△ABP绕点A逆
时针旋转后与△ACP′重合.如果AP=3,那么线段PP′的长是______.
(第13题)(第14题)
14.如图,三角形ABC是等边三角形,以BC为直径作圆交AB,AC于点D,E,若BC=1,则DC=________.
(第16题)
14、如图,两正方形彼此相邻,且内接于半圆,若小正方形的面积为16,则该半圆的半径为.
15、一根水平放置的圆柱形输水管道横截面中有水部分水面宽米,半径为12米,则
积水部分面积为.
16、如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为.
17、在平面直角坐标系中,已知一圆弧点A(-1,3),B(-2,-2
),C(4,-2),则该圆弧所在圆的圆心坐标为.
18、如图⊙O的半径为1cm,弦AB,CD的长度分别为cm,1cm,
则弦AC,BD相交所夹的锐角=.
三、解答题
(第18题)
19、已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以C为圆心,CA长为半径的圆交AB于D,求
的度数.
(第19题)
20、“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知
大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图3-2-16所示,CD为⊙O的直径,弦AB⊥CD,垂足为E, CE=1寸,求直径CD的长.”
(第20题)
21、如图所示,OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.
求证:∠ACB=2∠BAC.
(第21题)
22、如图所示,BC是⊙O的直径,AD⊥BC,垂足为D,AB=AF,BF和AD相交于E;求证:BE=AE.
(第22题)
23、(1)如图1,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连结OC,若AB=10,CD =8,求AE的长;
(2)如图2,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长度.
24、如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.
(1)求证:∠ADB=∠E;(2)当AB=5,BC=6,求⊙O的半径.
(第24题)
25、如图所示,已知⊙O的直径为,AB为⊙O的弦,且AB=4,
P是⊙O上一动点,问是否存在以A,P,B为顶点的面积最大的三角形,试说明理由,若存在,求出这个三角形的面积.
第25题
26、如图所示,⊙O的直径AB=12 cm,有一条定长为8 cm的动弦CD在上滑动(点C与A不重合,点D与B不重合),且CE⊥CD交AB于点E,
DF⊥CD交AB于点F.
(1)求证:AE=BF;
(2)在动弦CD滑动的过程中,四边形CDFE的面积是否为定值?若是定值,请给出说明,并求出这个定值;若不是,请说明理由.
第26题
27、一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所
示,AB与C D是水平的,BC与水平面的夹角为600,其中AB=60cm,CD=40cm,BC=40cm,请你做出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.
参考答案:
1~5:AADCC 6~10:ADBCC
11. 7厘米或1厘米
12.
13. 点拨:由旋转的性质,知∠PAP′等于90°,AP′=AP=3,所以PP′=
==
.
14.
15、
16、20
17、(1,0) 18、75° 19、50° 20、26寸
21、求证圆周角∠ACB =2∠BAC ,只要证明弧AB 的度数是弧BC 度数的两倍即可,由已知条件
∠AOB =2∠BOC 容易得到.
22、证明:∵BC 是⊙O 的直径,∴∠BAC =90°,∵AD ⊥BC , ∴∠BAD +∠CAD =∠CAD +∠C =90°,∴∠BAD =∠C , ∵AB =AF ,∴∠ABF =∠C ,∴∠BAD =∠ABF ,∴BE =AE
23、解:(1)∵AB 为⊙O 的直径,弦CD ⊥AB ,∴CE =DE ,∵AB =10,CD =8,∴OC =5,CE =4,∴OE =3,∴AE =2 (2)2
24、(1)证明:∵AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,∴AB ⌒ =AC ⌒ , ∠ABC =∠AED ,∠ABC =∠ACB ,∠ADB =∠ACB ,∴∠ADB =∠E ;
(2)解:连结AO 并延长交BC 于F ,连结OB ,OC , ∵AB =AC ,OB =OC ,∴AO 垂直平分BC ,∴BF =CF =
BC =
×6=3,
在直角△ABF 中,由勾股定理可得AF =4,设⊙O 的半径为r ,在直角△OBF 中,OB =r ,B F =3,OF =4-r ,∴
,解得
,∴⊙O 的半径是
25.解:存在以A ,P ,B 为顶点的面积最大的三角形.
如答图6所示,作PD ⊥AB 于点D ,∵当点P 在优弧AB 上时,PD 可能大于⊙O 的半径,当点P 在劣弧AB 上时,PD 一定小于⊙O 的半径,且AB 的长为定值,∴当点P 在优弧AB 上且为优弧AB 的中点时△APB 的面积最大,此时PD 经过圆心O.作⊙O 的直径AC ,连结BC ,则∠ABC =90°.∴BC=
=
=2.∵AO=OC,AD=BD ,∴OD 为△ABC 的中位线
,OD==.∴PD=PO+OD=+=.∴=·PD=×4×=
.
26.(1)证明:过点O作OH⊥CD于点H,∴H为CD的中点.∵CE⊥CD,DF⊥CD,∴EC∥OH∥FD,则O为EF的中点,OE=OF.又∵AB为直径,∴OA=OB,∴AE=OA-OE=OB-OF=BF,即AE=BF.
(2)解:四边形CDFE的面积为定值,是.理由:∵动弦CD在滑动过程中,条件EC⊥CD,FD⊥CD不变,∴CE∥DF不变.由此可知,四边形CDFE为直角梯形或矩形,∴=OH·CD.连结OC.∴OH===(cm).又∵CD为定值8
cm,∴=OH·CD=×8=(),是常数.即四边形CDFE的面积为定值.
27.示意图略,路线的长度为140-。