专升本高等数学测试题(答案)
专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。
A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。
专升本高数考试题及答案

专升本高数考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2的导数是()A. 2x+3B. x^2+3C. 2x+6D. 2x2. 极限lim(x→0) (sin(x)/x)的值是()A. 0B. 1C. 2D. 33. 以下哪个选项是无穷小量()A. 1/xB. x^2C. sin(x)/xD. x^34. 曲线y=x^3在点(1,1)处的切线斜率是()A. 3B. 1C. 3/2D. 1/35. 定积分∫(0 to 1) x dx的值是()A. 1/2B. 1C. 2D. 0二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的极值点是______。
2. 函数f(x)=e^x的不定积分是______。
3. 函数y=ln(x)的导数是______。
4. 函数y=x^2-4x+4的最小值是______。
5. 曲线y=x^2在点(2,4)处的法线方程是______。
三、解答题(每题10分,共60分)1. 计算极限lim(x→2) (x^2-4)/(x-2)。
2. 求函数f(x)=x^3-3x+1在区间[-1,2]上的最大值和最小值。
3. 计算定积分∫(0 to 2) (2x+3) dx。
4. 求曲线y=x^3-6x^2+9x+1在点(1,4)处的切线方程。
5. 计算二重积分∬(D) xy dA,其中D是由x=0, y=0, x=2, y=2x围成的区域。
6. 解微分方程dy/dx=2x+y。
四、附加题(每题10分,共10分)1. 证明:如果函数f(x)在区间[a,b]上连续,并且f(a)f(b)<0,则至少存在一个c∈(a,b),使得f(c)=0。
答案:一、选择题1. A2. B3. C4. A5. A二、填空题1. x=1, x=22. e^x+C3. 1/x4. 05. x+2y-8=0三、解答题1. 极限lim(x→2) (x^2-4)/(x-2) = 42. 最大值f(2)=3,最小值f(-1)=-53. 定积分∫(0 to 2) (2x+3) dx = 84. 切线方程:y-4=12(x-1),即y=12x-85. 二重积分∬(D) xy dA = 46. 解微分方程dy/dx=2x+y,得到y=e^(-2x)(C-1)+1四、附加题1. 证明略。
专升本高数试题及答案

专升本高数试题及答案一、选择题1.已知函数f(x)=log₁₀(2x-1),则f(2)的值为多少?A) 0B) 1C) log₁₀3D) log₁₀2答案:D2.若f(x)在点x=a处可导,且f'(a)=3,则f(x)在点x=a处的切线斜率为多少?A) 3B) aC) f(a)D) 0答案:A3.已知集合A={1,2,3,4},集合B={3,4,5,6},则A∪B的结果为:A) {1,2,3,4,5,6}B) {1,2,3,4}C) {1,2,5,6}D) {3,4,5,6}答案:A二、计算题1.计算limₓ→∞(3x³+2x²-5x+1)的值。
答案:无穷大2.已知函数f(x)=x²+2x+1,求f'(x)的值。
答案:f'(x)=2x+23.已知三个数的平均值为85,其中两个数为60和90,求第三个数的值。
答案:第三个数的值为95三、证明题证明:对于任意实数x,若x²=x,则x=0或x=1。
证明:假设x²=x,则将方程两边移项得到x²-x=0,再因式分解得到x(x-1)=0,根据零乘法,得到x=0或x-1=0,即x=0或x=1。
由此可证明对于任意实数x,若x²=x,则x=0或x=1。
四、应用题某公司员工工资调整规则如下:每个员工的基本工资为3000元,年龄每增加1岁,工资增加50元;工龄每增加1年,工资增加100元。
现有一名员工,年龄为30岁,工龄为5年,请计算该员工的总工资。
答案:年龄增加的工资 = (30-20) * 50 = 500元工龄增加的工资 = 5 * 100 = 500元总工资 = 基本工资 + 年龄增加的工资 + 工龄增加的工资 = 3000 + 500 + 500 = 4000元总结:本文提供了专升本高数的试题及答案,包括选择题、计算题、证明题和应用题。
通过对这些题目的解答,读者可以巩固和提升自己在高等数学方面的知识和技能。
专升本数学卷子试题及答案

专升本数学卷子试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C2. 已知等差数列的前三项分别为2,5,8,该数列的公差d为:A. 1B. 3C. 4D. 5答案:B3. 以下哪个选项不是三角函数的基本性质:A. 周期性B. 奇偶性C. 有界性D. 连续性答案:D4. 曲线y=x^3-6x^2+9x在点(1,2)处的切线斜率是:A. -2B. 0B. 2D. 4答案:B5. 圆的方程为(x-1)^2+(y-2)^2=9,圆心坐标是:A. (1,2)B. (-1,2)C. (1,-2)D. (-1,-2)答案:A6. 函数y=sin(x)的值域是:A. (-1,1)B. [-1,1]C. (0,1)D. [0,1]答案:B7. 已知向量a=(3,2),b=(-1,4),向量a与b的夹角θ满足:A. cosθ=1B. cosθ=0C. cosθ=-1D. cosθ=-1/2答案:D8. 矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\],矩阵A的行列式det(A)是:A. 0B. 1C. 2D. 5答案:D9. 微分方程dy/dx + 2y = 4x的通解是:A. y = 2x^2 - x + CB. y = 2x^2 + x + CC. y = 2x^2 - x - CD. y = 2x^2 + x - C答案:B10. 曲线y=x^2与直线y=4x-5的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C二、填空题(每题2分,共20分)1. 函数f(x)=x^3-3x^2+2x-1的导数f'(x)是________。
答案:3x^2-6x+22. 等比数列的前n项和公式是________。
答案:S_n = a(1-q^n)/(1-q)3. 已知函数y=2x+3,当x=2时,y的值是________。
专升本高等数学测试题(答案)

专升本高等数学测试题1.函数x y sin 1+=是( D ).(A) 奇函数; (B ) 偶函数; (C ) 单调增加函数; (D ) 有界函数.解析 因为1sin 1≤≤-x ,即2sin 10≤+≤x , 所以函数x y sin 1+=为有界函数.2。
若)(u f 可导,且)e (xf y =,则有( B );(A)x f y x d )e ('d =; (B )x f y x x d e )e ('d =;(C)x f y x x d e )e (d =; (D )x f y x x d e )]'e ([d =.解析 )e (x f y =可以看作由)(u f y =和x u e =复合而成的复合函数 由复合函数求导法 ()x xu f u f y e )(e )(⋅'=''=', 所以 x f x y y x x d e )e ('d d =⋅'=.3。
⎰∞+-0d e x x =( B );(A )不收敛; (B)1; (C )-1; (D )0。
解析 ⎰∞+-0d e x x ∞+--=0ex 110=+=. 4。
2(1)e x y y y x '''-+=+的特解形式可设为( A );(A )2()e x x ax b + ; (B) ()e x x ax b +;(C) ()e x ax b +; (D ) 2)(x b ax +.解析 特征方程为0122=+-r r ,特征根为 1r =2r =1.λ=1是特征方程的特征重根,于是有2()e x p y x ax b =+. 5.=+⎰⎰y x y x D d d 22( C ),其中D :1≤22y x +≤4;(A) 2π4201d d r r θ⎰⎰; (B) 2π401d d r r θ⎰⎰; (C ) 2π2201d d r r θ⎰⎰; (D) 2π201d d r r θ⎰⎰. 解析 此题考察直角坐标系下的二重积分转化为极坐标形式.当⎩⎨⎧==θθsin cos r y r x 时,d d d d x y r r θ=,由于1≤22y x +≤4,D 表示为 21≤≤r ,02πθ≤≤,故=+⎰⎰y x y x D d d 22d d D r r r θ⋅=⎰⎰2π2201d d r r θ⎰⎰.6。
专升本高等数学习题集及参考答案

第一章 函数一、选择题1. 下列函数中,【 C 】不是奇函数A. x x y +=tanB. y x =C. )1()1(-⋅+=x x yD. x xy 2sin 2⋅=2. 下列各组中,函数)(x f 与)(x g 一样的是【 】A.33)(,)(x x g x x f == B.x x x g x f 22tan sec )(,1)(-==C. 1)(,1)(2-=-=x x g x x fD. 2ln )(,ln 2)(x x g x x f ==3. A. y C. y4. A. y C. y5. 函数A. C. [6. A. y C. y7. A. (C. (8. A. (C. (9. A. fC.()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x =10. 设下列函数在其定义域内是增函数的是【 】A. ()cos f x x =B. ()arccos f x x =C. ()tan f x x =D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】A. (,22ππ-B. (0,)πC. (,)-∞+∞D. [1,1]-12. 下列函数是奇函数的是【 】A. arcsin y x x =B.arccos y x x =C.arccot y x x = D. 2arctan y x x =13. 函数53sin ln x y=的复合过程为【 A 】A.x w w v v u u y sin ,,ln ,35==== B.x u u y sin ln ,53==C.x u u ysin ,ln 53== D.x v v u u y sin ,ln ,35===二、填空题1. 函数5arctan 5arcsin x x y +=的定义域是___________.2.()arcsin3xf x =的定义域为 ___________.3.函数1()arcsinx f x +=的定义域为 ___________。
专升本试题及答案数学

专升本试题及答案数学一、选择题(每题2分,共20分)1. 已知函数 \( f(x) = 3x - 2 \),求 \( f(-1) \) 的值。
A. -5B. -3C. 1D. 32. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。
A. 相离B. 相切C. 相交D. 内切3. 已知等差数列的首项为3,公差为2,求第10项的值。
A. 23B. 21C. 19D. 174. 函数 \( y = x^2 + 2x + 1 \) 的图像关于哪条直线对称?A. x = -1B. x = 0C. x = 1D. x = 25. 一个正方体的体积为64立方厘米,求其边长。
A. 4 cmB. 8 cmC. 2 cmD. 16 cm6. 已知 \( \sin(\alpha) = \frac{3}{5} \),且 \( \alpha \) 在第一象限,求 \( \cos(\alpha) \) 的值。
A. \( \frac{4}{5} \)B. \( \frac{1}{5} \)C. \( \frac{3}{4} \)D. \( \frac{1}{4} \)7. 一个等腰三角形的底边长为6,两腰长为5,求其面积。
A. 12B. 15C. 18D. 208. 已知 \( \log_{2}8 = 3 \),求 \( 2^3 \) 的值。
A. 4B. 8C. 16D. 329. 一个数列的前三项为1,1,2,且每一项是前两项的和,求第5项的值。
A. 3B. 4C. 5D. 610. 已知 \( e^x = 2 \),求 \( x \) 的值。
A. ln2B. ln4C. ln8D. ln16二、填空题(每题2分,共20分)11. 圆的面积公式为 \( \pi r^2 \),若半径为4,则面积为________。
12. 函数 \( y = \sin(x) \) 的周期为________。
13. 已知 \( \cos(\theta) = \frac{1}{3} \),求 \( \sin(\theta) \) 的值(假设 \( \theta \) 在第一象限)。
《高等数学》(专升本)试题及参考答案

《高等数学》(专升本)习题答案一、单选题1、若无穷级数收敛,而发散,则称称无穷级数(C)A发散 B收敛 C条件收敛 D绝对收敛2、点x=0是函数y=x^4的(D)A驻点但非极值点 B拐点 C驻点且是拐点 D驻点且是极值点3、极限(B)A B C1 D04、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、(C)A B C0 D16、曲线y=1/∣x∣的渐近线情况是(C)A只有水平渐近线 B只有垂直渐近线C既有水平渐近线又有垂直渐近线 D既无水平渐近线又无垂直渐近线7、函数的定义域为(D)A B C D8、y=x/(x^2-1)的垂直渐近线有(B)条A1 B2 C3 D49、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件D既非充分又非必要条件10、当x→0时,下列函数不是无穷小量的是(D)Ay=x By=0 Cy=ln(x+1) Dy=e^x11、,则(D)A BC D12、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷13、(A)A0 B C D14、若f(x)在x=x0处可导,则∣f(x)∣在处(C)A可导 B不可导 C连续但未必可导 D不连续15、直线上的一个方向向量,直线上的一个方向向量,若与平行,则(B)A BC D16、设函数y=f(x)在点x0处可导,且f′(x)>0, 曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为{C}A0 B∏/2 C锐角 D钝角17、设,则(A)A B C D18、函数y=x^2*e^(-x)及图象在(1,2)内是(B)A单调减少且是凸的 B单调增加且是凸的C单调减少且是凹的 D单调增加且是凹的19、和在点连续是在点可微分的(A)A充分条件 B必要条件 C充要条件 D无关条件20、以下结论正确的是(C )A 若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.21、无穷大量减去无穷小量是(D)A无穷小量 B零 C常量 D未定式22、下列各微分式正确的是(C)Axdx=d(x^2) Bcos2x=d(sin2x) Cdx=-d(5-x) Dd(x^2)=(dx^2)23、已知向量两两相互垂直,且,求(C)A1 B2 C4 D824、函数y=ln(1+x^2)在区间[-1,-2]上的最大值为(D)A4 B0 C1 Dln525、在面上求一个垂直于向量,且与等长的向量(D)A B C D26、曲线y=xlnx的平行于直线x-y+1=0的切线方程是(C)Ay=x By=(lnx-1)(x-1) Cy=x-1 Dy=-(x-1)27、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件28、曲线y=e^x-e^-x的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)29函数在区间上极小值是(D)A-1 B1 C2 D030函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D331、若,则(A)A4 B0 C2 D32、已知y=xsin3x ,则dy=(B)A(-cos3x+3sin3x)dx B(3xcos3x+sin3x)dxC(cos3x+3sin3x)dx D(xcos3x+sin3x)dx33、二重极限(D)A等于0 B等于1 C等于 D不存在34、曲线 y=x^3+x-2 在点(1,0)处的切线方程是(B)Ay=2(x-1) By=4(x-1) Cy=4x-1 Dy=3(x-1)35、设,则(C)A BC D36、曲线y=2+lnx在点x=1处的切线方程是(B)Ay=x-1 By=x+1 Cy=x Dy=-x37、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D38、半径R为的金属圆片,加热后伸长了R,则面积S的微分dS是(B)A∏RdR B2∏RdR C∏dR D2∏dR39、设在处间断,则有(D)A在处一定没有意义;B;(即);C不存在,或;D若在处有定义,则时,不是无穷小40、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=141、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛42、函数y=(x^2-1)^3的驻点个数为(B)A4 B3 C1 D243、曲线在点处的切线斜率是(A)A B C2 D44、M1(2,3,1)到点M2(2,7,4)的距离∣M1M2∣=(C)A3 B4 C5 D645、利用变量替换,一定可以把方程化为新的方程表达式(A)A B C D46、两个向量a与b垂直的充要条件是(A)Aab=0 Ba*b=0 Ca-b=0 Da+b=047、已知向量,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,25 48、求抛物线 y=x^2与y=2-x^2 所围成的平面图形的面积(B)A1 B8/3 C3 D249、若,为无穷间断点,为可去间断点,则(C)A B C D50、要用铁板做一个体积为2m^3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?(A)A均为³√2m时,用料最省. B均为³√3m时,用料最省.C均为√3m时,用料最省. D均为√2m时,用料最省.二、判断题1、设,则(错)2、已知曲线y=f(x)在x=2处的切线的倾斜角为5/6∏,则f′(2)=-1(错)3、对于无穷积分,有(对)4、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)5、函数的定义域是(对)6、函数就是映射,映射就是函数(错)7、设,且满足,则(错)8、函数有界,则界是唯一的(错)9、设是曲线与所围成,则,是否正确(错)10、极限存在,则一定唯一(对)11、在处二阶可导,且,若,则为极小值点(对)12、1/x的极限为0(错)13、设,其中,则,是否正确(对)14、1/n-1的极限为0(错)15、,是否正确(对)16、对于函数f(x),若f′(x0)=0,则x0是极值点(错)17、,是否正确(对)18、无界函数与其定义域没有关系(错)19、齐次型微分方程,设,则(对)20、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)21、函数可微可导,且(对)22、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)23、微分方程的通解为,是否正确(对)24、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)25、设是由所确定,函数在上连续,那么(对)26、有限个无穷小的和仍然是无穷小(对)27、是齐次线性方程的线性无关的特解,则是方程的通解(对)28、函数在一点的导数就是在一点的微分(错)29、设表示域:,则(错)30、方程x=cos在(0,∏/2)内至少有一实根(错)31、设,则,是否正确(对)32、f〞(x)=0对应的点不一定是曲线的拐点(对)33、设,其中,则(错)34、y=ln(1-x)/(1+x)是奇函数(对)35、设由所确定,则(对)36、方程x=cos在(0,∏/2)内至少有一实根(错)37、设在区间上连续,是的内点,如果曲线经过点时,曲线的凹凸性改变了,则称点为曲线的拐点(对)38、无穷间断点就是函数在该点的极限是无穷(对)39、设是圆周围成的区域,是否正确(对)40、定积分在几何上就是用来计算曲边梯形的面积(对)41、,是否正确(对)42、数列要么收敛,要么发散(对)43、函数在点可导(对)44、函数在一点处极限存在的充要条件是函数在该点的左极限等于右极限(对)45、在的邻域内可导,且,若:当时,;当时,则为极小值点(错)46、定积分在几何上就是用来计算曲边梯形的面积(对)47、二元函数的最小值点是(对)48、任何函数都可以求出定积分(错)49、设为,与为顶点三角形区域,则积分方程(对)50、若被积函数连续,则原函数不一定存在(错)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12. lim(1 1 ) x . (第二个重要极限)
x
x2
解一 原式= lim(1 1 ) x (1 1 ) x lim(1 1 ) x lim[(1 1 ) x ]1 = ee1 1,
x
x
x
x0
x x
x
解二
原式= lim[(1 x
1 x2
)(
x2 )
(
]
1)
x=
e0
1.
13. lim[ 1 x0 x
解: 特征方程 r 2 2r 1 0 , 特征根 r1 r 2 1, 通解为 y (C1 C2 x)e x.
11. 交错级数 (1) n1
1
的敛散性为
n1
n(n 1)
(4) (1) n1
1
=
1
,
n1
n(n 1) n1 n(n 1)
而级数
1 收敛,故原级数绝对收敛.
n1 n(n 1)
用分离变量法,得 两边求不定积分,得 于是所求方程的通解为 即
e y dy ex dx ,
ey 1
ex 1
ln(ey 1) ln(ex 1) ln C ,
ey 1 C , ex 1
ey C 1. ex 1
19.
u
e
x sin
xy
,
求 u x
(0,1)
, u y
(1,0)
.
解:因 u e xsin xy e cxos xy y e (sxin xy y cos xy) , x
u e x cos xy x , y
u e0 (sin 0 cos 0) 1, x (0,1)
u e(cos 0 1) e .
y (1,0)
20.画出二次积分
20dy
f 2 4 y 2 x, y dx 的积分区域 D 并交换积分次序.
2 4 y 2
0 y 2,
解:
D
:
2
原式= 12tt
dt
= 2
t
11 1 t
dt
= 2[ dt
1dtt ] = 2t
2ln1
t
C
= 2 1 x 2 ln1 1 x C .
17.求定积分 41 x dx .
01 x
解:(1)利用换元积分法,注意在换元时必须同时换限.
令 t x , x t 2 ,dx 2tdt , 当 x 0 时, t 0 ,当 x 4 时, t 2 ,于是
x2 2 x 2
1
=.
(恒等变换之后“能代就代”)
4
x
sinπ t dt
8.求极限lim 1
=
x1 1 cosπ x
解:此极限是“ 0”型未定型,由洛必达法则,得 0
x
x
sinπ t dt ( sinπ t dt)
lim 1
= lim 1
= lim
sinπ x
x1 1 cosπ x x1 (1 cosπ x) x1 π sinπ x
x2 y 2 dxdy
r rdrd
2π
d
r
2
dr
.2
0
1
D
D
1 r 2 , 0 2π ,故
6.函数 y = 1 arcsin( x 1)的定义域
3 x2
2
解由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小 于等于 1.可建立不等式组,并求出联立不等式组的解.即
专升本高等数学测试题
1.函数 y 1 sin x 是( D ).
(A) 奇函数; (B) 偶函数; (C) 单调增加函数; (D) 有界函数.
解析 因为1 sin x 1,即 0 1 sin x 2 , 所以函数 y 1 sin x 为有界函数.
2.若 f (u) 可导,且 y f (e x ) ,则有( B );
lim( 1 ) 1
x1 π
π
9.曲线
x y
t, t 3,
在点(1,1)处切线的斜率
解:由题意知:
1 t, 1 t3, t 1 , dy (t 3) dx t 1 (t) t1 3t 2 t1 3,
曲线在点(1,1)处切线的斜率为 3
10. 方程 y''2 y' y 0 , 的通解为
y f (u) e x f (u) e x ,
所以
dy y dx f '(e x )e xdx .
3. ex dx =( B ); 0
(A)不收敛;
(B)1;
(C)-1;
解析
edxx e
x 0 1 1.
0
0
(D)0.
4. y 2 y y (x 1)ex 的特解形式可设为( A );
(A) x2 (ax b)ex ;
(B) x(ax b)ex ;
(C) (ax b)ex ;
(D) (ax b)x 2 .
解析
yp
x
2(ax
b)e
.
x
特征方程为 r2 2r 1 0 ,特征根为
r1 = r2 =1. =1 是特征方程的特征重根,于是有
5. x 2 y 2 dxdy ( C ),其中 D :1≤ x 2 y 2 ≤ 4 ;
(A) dy f '(ex )dx ;
(B) dy f '(e x )e xdx ;
(C)dy f (e x )e x dx ;
(D) dy [ f (e x )]'e xdx .
解析 y f (e x ) 可以看作由 y f (u) 和 u e x 复合而成的复合函数
由复合函数求导法
3 x 0,
3 x2 0,
x 1 1, 2
推得
3 x
3,
0x4,
即 0 x 3 , 因此,所给函数的定义域为 [0 , 3) .
7. 求极限lim 2
x 2
=
x2 2 x
解:原式=lim (2 x 2)(2 x 2) x2 (2 x)(2 x 2)
1 = lim
由于平面平行于 y 轴,所以 B 0 ,原方程变为 Ax Cz D 0 ,又所求平面过点 A (1, 5, 1)与 B (3 , 2, 3),
将
A,
B
的坐标代入上述方程,得
A 3A
CD0, 3C D 0
,
解之得
A 2C , D 3C ,代入所设方程,故所求平面方程为
2x z 3 0.
A 与 B ,所以必有 n AB .于是,取 n = j AB ,
ij k 而 AB ={2,7,4} ,所以 n = 0 1 0 = 4i 2k ,
2 7 4
因此,由平面的点法式方程,得 4(x 1) 0( y 5) 2(z 1) 0 ,即 2x z 3 0 .
解二 利用平面的一般式方程。设所求的平面方程为 Ax By Cz D 0 ,
1 x2
ln(1
x)]
解 所求极限为 型 ,不能直接用洛必达法则,通分后可变成 0 或 型. 0
lim
x
ln(1
x)
lim
1
1 1
x
x0
x2
x0 2x
lim 1 x 1 lim 1 1 . x0 2x(1 x) x0 2(1 x) 2
x
14.设 f (x) xe ,求 f '(x) .
41
x dx =
21 t 2tdt =
2
[4
2t
4
]dt
01 x
01t
0
1 t
4t t 2 4ln1 t 2 4 4ln 3. 0
18. 求方程 (ex y ex )dx (ex y ey )dy 0 的通解;
解 整理得
ex (ey 1)dx ey (ex 1)dy ,
∵ f (5) 50 ,
f (5) 200 .
∴ 比较 f (5), f (2), f (0), f (5) 的大小可知: f ( x) 最大值为 200, 最小值为 50 .
16.求不定积分
1 dx .
1 1 x
解 : 令 1 x t , 则 x t 2 1 , dx 2tdt , 于 是
4
y2
xLeabharlann 24y2y
的图形如右图,由图可知, D 也可表为0 x 4,
0 y 4x x ,
2
所以交换积分次序后,得 4dx 4 x x f x, ydy .
2
0
0
O 24
x
21.求平行于 y 轴,且过点 A (1,5,1) 与 B (3, 2 , 3) 的平面方程.
解一
利用向量运算的方法。关键是求出平面的法向量 n .因为平面平行于 y 轴,所以 n j .又因为平面过点
解: f (x) 3x 2 6x , 令 f (x) 0 , 得 x 0, x 2,
1
2
f (x) 6x 6 , f (0) 6 0 , f (2) 6 0 ,
∴ f (x) 的极大值为 f (2) 4,极小值为 f (0) 0 .
lim[ 1 1 ln(1 x)] x0 x x2
D
2π
(A) d
4 r 2d r ;
0
1
2π
4
(B) d r d r ;
0
1
2π
(C) d
2 r 2d r ;
0
1
2π
2
(D) d r d r .
0
1
解析 此题考察直角坐标系下的二重积分转化为极坐标形式.
当
x
y
r r