《热处理设备》第五章 可控气氛炉
可控气氛热处理炉的分类及特点

可控气氛热处理炉的分类及特点可控气氛热处理炉是一种广泛应用于金属加工行业的设备,它能够在特定的气氛条件下对金属工件进行热处理。
这种炉子具有多种不同的分类和特点。
以下是对可控气氛热处理炉的分类和特点的详细介绍。
一、分类1. 气氛控制方式分类(1)气氛控制方式分为氧化性气氛热处理炉和还原性气氛热处理炉两种。
氧化性气氛热处理炉主要用于表面处理工艺,如碳化、氮化等。
其主要特点是在炉内通入氧化性气体,如氧气、二氧化碳等,以实现对金属工件表面的氧化反应。
这种炉子适用于提高工件表面强度和硬度等特性。
还原性气氛热处理炉主要用于去除金属工件表面的氧化物,并降低工件中的氧含量。
其主要特点是在炉内通入还原性气体,如氨气、氢气等,以实现对金属工件表面的还原反应。
这种炉子适用于净化金属表面和提高金属材料的纯度。
(2)还可以根据气氛控制的方式分为氧气控制热处理炉、氮气控制热处理炉、氢气控制热处理炉等。
氧气控制热处理炉主要通过控制炉内氧气的流量和浓度,来实现不同氧化反应的控制。
这种炉子适用于表面氧化处理和改变金属工件的表面化学性能。
氮气控制热处理炉主要通过控制炉内氮气的流量和浓度,来实现不同氮化反应的控制。
这种炉子适用于表面氮化处理和提高材料硬度。
氢气控制热处理炉主要通过控制炉内氢气的流量和浓度,来实现还原反应的控制。
这种炉子适用于表面还原处理和净化金属表面。
2. 加热方式分类(1)电阻加热热处理炉:主要通过电阻加热的方式来提供炉内的热源,通过控制电阻丝的加热功率和电流,来控制炉内温度的升降。
这种炉子具有加热速度快、温度均匀性好、控制精确等特点。
(2)燃气加热热处理炉:主要通过燃气燃烧产生的高温气体来提供炉内的热源,通过控制燃气的气流量和燃烧器的火焰强度,来控制炉内的温度。
这种炉子具有操作简便、适用范围广等特点。
3. 结构形式分类(1)箱式热处理炉:是一种常用的结构形式,工作室呈箱体形状,炉门位于炉的一侧或两侧,可以方便地进行工件的装卸。
可控气氛退火炉国标

可控气氛退火炉国标可控气氛退火炉是一种具有广泛应用的工业设备,其国标是对其性能和技术要求进行规范的标准。
下面将从不同角度对可控气氛退火炉国标进行描述,以使读者对其有更深入的了解。
一、可控气氛退火炉的定义和作用可控气氛退火炉是一种专门用于热处理金属材料的设备,它可以在控制的气氛下对金属材料进行加热处理,以改变其组织结构和性能。
通过调节炉内的温度、气氛和时间等参数,可控气氛退火炉可以实现对金属材料的精确处理,以满足不同工艺要求。
二、可控气氛退火炉的技术要求1. 温度控制:可控气氛退火炉要求能够精确控制炉内的温度,以确保金属材料得到适当的加热处理。
2. 气氛控制:可控气氛退火炉要求能够提供不同气氛下的加热环境,如氢气、氮气、氧气等,以满足不同金属材料的处理需求。
3. 时间控制:可控气氛退火炉要求能够精确控制加热时间,以确保金属材料得到适当的保温时间。
三、可控气氛退火炉的应用领域可控气氛退火炉广泛应用于金属材料的热处理领域,如航空航天、汽车制造、机械制造等。
它可以对各种金属材料进行退火、正火、淬火等处理,以改变其组织结构和性能,从而提高材料的强度、硬度、韧性等。
四、可控气氛退火炉的优势和发展趋势1. 提高生产效率:可控气氛退火炉可以实现自动化操作,提高生产效率和产品质量。
2. 降低能耗:可控气氛退火炉采用先进的节能技术,能够降低能耗,减少环境污染。
3. 拓宽应用范围:可控气氛退火炉正在不断发展和创新,可以适应不同材料和工艺要求的热处理需求。
可控气氛退火炉国标是对其性能和技术要求进行规范的标准,它在金属材料的热处理领域具有重要的应用价值。
通过精确的温度、气氛和时间控制,可控气氛退火炉可以改变金属材料的组织结构和性能,提高产品质量和生产效率。
随着科学技术的不断发展,可控气氛退火炉将在更多领域得到应用,并为工业生产带来更大的便利和效益。
可控气氛炉安全操作规程

可控气氛炉安全操作规程前言可控气氛炉是一种被广泛应用于各种材料热处理工艺中的高温炉具,可通过控制炉内气氛以及温度进行加热、退火、淬火等操作。
然而,在使用可控气氛炉时,由于通常需进行高温加热,操作人员应具备一定的技能和专业知识,才能确保正常使用,避免事故发生。
本文将对可控气氛炉的安全使用进行详细介绍。
安全操作规程1. 环境要求在炉子周围不得有易燃、易爆或者易腐蚀的物质,避免与气氛炉回气时产生断电、火花等现象;同时,在使用可控气氛炉时应注意通风环境,保证炉子周围空气流通,避免气体浓度过高造成安全隐患。
2. 操作前的准备2.1 清洗炉子:在启动可控气氛炉操作之前,首先需要清洗炉子内部。
经过一段时间的使用后,炉子内部可能堆积有一定数量的碎屑、氧化铁、油脂等杂质,会影响炉子加热的效率以及产生有害气体。
因此,在操作前应清洗炉子内部。
2.2 系统检测:在使用可控气氛炉前需要对系统进行检测,确保炉子功能正常。
主要包括以下几点:•为炉子设置合适的加热曲线和回气曲线,以确保炉内温度和气氛达到预期。
•对炉子的供气系统、排气系统、回气系统、冷却系统进行检测,确保全部功能正常。
•检查隔热材料是否完好。
2.3 全程监测:在炉子加热过程中应全程监测,尤其是在高温加热时更需要密切注意。
操作人员应根据工艺要求对炉内气氛进行控制,并设置安全温度带。
3. 操作过程中的注意事项3.1 启动加热前:在启动加热之前,应确认炉子内是否有其它物品或导体,保证结构不会受到损害。
启动加热后一定要进行全程监测,并确保监测数据准确。
3.2 使用期间:在加热过程中,应定期对炉内气氛进行检测,保证炉内气氛处于安全状态。
同时,应注意设置温度带,确保温度不超出设定的安全范围。
3.3停炉前:在加热完毕后,应将炉子的加热温度降至适当温度后停炉,并关闭炉子加热系统、供气系统和回气系统。
关闭过程中应缓慢降低炉内温度,避免温度急剧下降造成震荡。
4. 炉子维护和保养在使用可控气氛炉的过程中,应定期对炉子进行维护和保养,以保证炉子的正常使用寿命,同时也保障了人身和设备的安全。
什么是可控气氛炉

什么是可控气氛炉?为了防止加热工件在自然气氛的热处理炉中被氧化、脱碳和烧损,将一定的可控气氛通入炉膛内,使加热工件表面的成分不改变或者朝着期望的方向变化(如实现化学热处理),这种通了可控气氛的热处理炉简称可控气氛炉。
可控气氛的种类很多,按其制备方法,大致分为四大类:(1)原料气制备的可控气氛。
1.吸热式气氛。
采用液化石油气或天燃气等原料气,与空气按原子碳、氧为混合,送入装:育催化剂的,由外部供热的反应罐反应所制得的气氛,以丙烷为例:吸热式气氛的成分与原料气种类有关,大致为:20%~24%CO,30%~41%H2,这种气氛主要用于气体渗碳、气体软氮化和碳氮共渗,也可用于一些钢种的保护加热。
2.放热式气氛。
原料气与空气在燃烧空气系数小于1的条件下进行不完全燃烧,其燃烧产:物经冷却除水后制得的,当空气量较小,制得气氛中还原性组分CO、H2含量较高(各约占6%一14%)的,称为浓型放热式气氛;而当空气较多,所得气氛中C02含量就较高(10%一12%),这是淡型放热式气氛。
浓型放热式气氛主要用于毛坯料和一般工件的保护加热,淡型放热式气氛主要用于铜及铜合金(不含锌)的光亮热处理。
3.净化放热式气氛。
将放热式气氛经沸石分子筛净化,除去C02和H20而制得,广泛用于各类钢制工件的保护加热。
4.氨分解气和氨燃烧气。
将氨气通入有催化剂的反应罐内,在一定温度下分解所制得的虐气氛叫氨分解气。
如将氨气与空气混合燃烧,经冷却干燥除水所制得的气叫氨燃烧气氛。
这两种气氛主要成分是N2和H2,不含碳,因此特别适合低碳不锈钢、镍铬合金、硅钢片等的光亮热处理。
(2)分离空气制取氮基气氛。
氮气是一种资源丰富,对环境污染小的气氛,因此,氮基气氛热处理得到很大发展。
通常,氮气是靠空气分离技术从空气中分离出来的。
近年来已获应用的该技术主要有:1.深冷空分法。
将空气液化,利用氮、氧沸点不同,分馏出氮的一种方法,经改进后的制氮机可使其纯度达99.9%以上。
特殊热处理——可控气氛

4~8
4~15
0.5
30~60
0.1
1~5
0
75
N2 余量 余量
余量 25
露点
-10/+20 -15/+5
-30 -30
.
7
主要保护气的来源及应用
气氛的类型 放热型气体DX
吸热型气体RX
基本燃料 丙烷,丁烷,油,天
然气
丙烷,丁烷,天然气
使用范围
铁基金属光亮退火,浓 有色金属,淡 电机和变压器硅钢片的脱碳 硬钎焊烧结 渗碳 退火,淬火,普通烧结,无脱碳的硬
.
3
基本原理
分解:渗剂中生成能渗入工件表面的活性原 子的反应。
吸附:活性的原子(或离子)于表面金属的 原子产生键合而浸入其表层。
扩散:工件表面吸附活性原子(或离子)后 ,其表面浓度与内部形成浓度梯度,满足扩 散条件,渗入的元素相内部迁移形成一定厚 度的扩散层。
.Hale Waihona Puke 4可控气氛热处理目的
.
5
主要的可控气氛
材料烧结
净化的氨基气体 单组分气体NX
丙烷,丁烷,天然气 黑心可锻铸铁的退火,
油
无脱碳退火,低温退火,
炉子净化
氨基气体AX
氨(利用分解过程) 合金钢的退火和硬钎焊(存在Cr,
.
Al, Si)
8
工业使用率的统计
放热气氛25%
吸热气氛25%
净化的氮基或单组分气体气氛30%
分解氨气氛12%
其他气氛8%
氨分解气氛:
❖ H2 75%,N2 25%.
❖ 不锈钢、硅钢的退火等
.
14
特殊气氛
有机液体的滴注式气氛:
可控气氛热处理炉的分类及特点

可控气氛热处理炉的分类及特点可控气氛热处理炉是一种将金属工件加热至一定温度,并控制温度,保持特定气氛下进行热处理的设备。
根据不同的加热方式和气氛类型,可控气氛热处理炉可以分为多种类型,每种类型都有其特点和适用范围。
一、电阻加热气氛热处理炉电阻加热气氛热处理炉采用电阻加热器作为加热元件,并通过控制电流来实现加热和温度控制。
该类炉型适用于高温热处理,如退火、淬火、回火等工艺。
其特点如下:1. 温度控制精度高,可以实现精确的温度控制;2. 加热速度快,可以快速达到所需温度;3. 适用于各种气氛,如氢气、氮气等;4. 加热均匀,可以均匀加热工件表面和内部;5. 结构简单,易于维护和操作。
二、电弧加热气氛热处理炉电弧加热气氛热处理炉利用电弧作为加热方式,通过电极间的电弧放电来产生高温。
该类炉型适用于高温热处理和表面改性工艺。
其特点如下:1. 温度可调范围广,可以达到很高的温度;2. 加热速度快,可以快速达到所需温度;3. 加热均匀,可以均匀加热工件表面和内部;4. 可以适应多种气氛,如氮气、氩气等;5. 适用于大尺寸工件的加热。
三、燃气加热气氛热处理炉燃气加热气氛热处理炉利用燃气燃烧释放的热量来加热工件,通过控制燃气供应和空气供应来实现温度控制。
该类炉型适用于中低温热处理工艺,如均质化退火、硬化等。
其特点如下:1. 可调温度范围广,适合中低温热处理;2. 燃料种类多样,可以选用天然气、液化气等;3. 加热速度相对较慢;4. 加热均匀性一般,需进行较好的气氛控制;5. 结构相对复杂,维护和操作要求高。
四、电磁加热气氛热处理炉电磁加热气氛热处理炉利用电磁感应加热原理,通过在工件附近产生交变磁场来加热工件。
该类炉型适用于小尺寸工件的加热和快速加热工艺。
其特点如下:1. 加热速度快,加热效率高;2. 加热均匀性好,可以均匀加热工件表面和内部;3. 温度可调范围较窄,适合小尺寸工件的加热;4. 结构复杂,较难维护和操作;5. 适用于特殊工艺,如感应淬火等。
精选可控气氛热处理设备概述

2、液体原料——有机液﹡常用的有机液:甲醇、乙醇等。 ﹡一般做为滴注式可控气氛,即把有机液体直接滴入炉内,经高温反应生成可控气氛。
3、气体原料﹡常用的有:工业煤气、天然气、液化石油气等。
二、放热式气氛 放热式气氛的制取容易,产气量大,装置简单,成本低廉,广泛用作毛坯料和一般工件的保护加热气氛。1、定义 放热式气氛就是将原料气和空气按一定比例混合,空气过剩系数0.5~0.9,经燃烧反应制备成的气氛。由于反应温度是靠自身燃烧发热来维持的,无需外部供热,所以称为放热式气氛。
浓型放热式气氛
淡型放热式气氛
分为
2、放热式气氛的制备流程
原料气与空气按一定比例混合——燃烧室进行不完全燃烧——燃烧产物迅速冷却除水——经气水分离器进一步除水——制得放热式气氛
3、放热式气氛的特性及应用※浓型主要用于毛坯料和不重要零件的保护加热;低碳钢的光洁退火以及中碳钢短时加热淬火。※淡型放热式气氛,主要用于铜及铜合金(不含锌)的光亮热处理、可锻铸铁退火和粉末冶金烧结。
带密封罐及中央控制的立式空气循环炉用于反应气氛下的粉末硼化处理
第二节 可控气氛类型
1、固体原料——木炭﹡木炭气氛主要成分:N2和CO,还有少量H2 、CO2。 ﹡制备装置:结构简单,制取简易;﹡缺点:木炭消耗量较大,劳动条件差; 木炭气氛很不稳定,只适用于要求不严格的 工件的保护加热。
四、滴注式可控气氛
特点: 滴控热处理具有设备简单、操作方便、节能等特点,但所用的有机液体原料价格较高。
※过去,采用煤油或苯的一种滴注液进行气体渗碳,由于滴注液在炉内裂解生成CH4较多,形成的炭黑量较大,难于进行碳势控制。※1962年,瑞士马格齿轮公司的U.WYSS,发明了用两种有机液滴入炉内渗碳,成功地进行了碳势控制。※近20年来,国内外,滴注式可控气氛获得了很大发展和广泛应用。
可控气氛转炉的设计和应用

r i fc r o i r u e u t l h e a t a se i r d c d,t r i ie p r m d w l t t n o a b n d s b td s i by,t e r mn n u tn t e u e h e g a n sz e f r e e . Al ao t i a e o 1 l h s a y i rv e o n eo rd ci . t e e g e d mp o e t e p r r a c ft e p o u t n r h f m h o
廖杭 州 , 闵乃 忠 , 海军 , 黄 姚
( 州 自强链 传 动有 限公 司 , 江 杭 浙
毅, 黄果 良
杭州 3 I0 ) 1 1 2
摘
要: 针对 传 统可倾 式渗 碳 转 筒炉无 法精确 控 制碳 势的 缺 点 , 计 制 作 了可控 气氛 转 炉 并进 行 了 设
试 生产 。 实验证 明 , 可控 气氛转炉 运行 稳 定可靠 , 热处 理渗 碳 层 浓度 梯 度 合 理 , 余 奥 氏体 减 少 , 残 晶 粒细化 , 效提 高 了零件 的 力 学性 能 。 有
关键词 : 可控 气氛 、 活性 碳 原子 、 浓度 梯 度 、 碳 经济 效益
中 图分类 号 :G15 14 文 献标识 码 : T 5, + A
文章编 号 :6 3— 9 1 20 )5—05 0 17 47 (06 0 0 5— 4
De in n Ap ia i n o t r a t sg a d plc to fRo a y He rh Fur a e wih nt ol d At o ph r n c t Co r l m s e e e
e p rme th spr v d t a o to ld amo p e er tr e rh f r a e r n s b y a d r la l h e c nc — xe i n a o e tc n r le t s h r oa y h a t u c u t l n ei by,t o e h n a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
• 脱碳是钢加热时表面碳含量降低的现象。脱碳的 过程就是钢中碳在高温下与氢或氧发生作用生成 甲烷或一氧化碳。其化学方程式如下; • 2Fe3C+O2=6Fe+2CO • Fe3C+2H2=3Fe+CH4 • Fe3C+H2O=3Fe+CO+H2 • Fe3C+CO2=3Fe+2CO • 这些反应是可逆的,即氢、氧和二氧化碳使 钢脱碳,而甲烷和一氧化碳则使钢增碳。
26
二、制备气氛的种类 1、吸热式气氛
1)制备原理
吸热式气氛是原料气与≤理论空气需要量一半的空气
(n≤0.5)在高温及催化剂的作用下,不完全燃烧生成的气氛
。原料气有天然气、丙烷、液化石油气(主要是丙烷、丁 烷)、城市煤气。原料气与空气的混合气体在反应罐内进 行化学反应,以丙烷为例,其反应式为 2C3 H8+3O2+11 .28N2 → 6CO+8H2+11.28N2 - Q (10-13) 由上式可知,空气与丙烷的混合比为(3+11.28):2,当
定状态。
氧势是指在一定温度下,金属的氧化和氧化物的分解
处于平衡状态时气氛中氧的分压或氧化物的分解压。(点)
17
4.钢在CO、CO2、H2、H2O混合气体中的氧化还 原反应
当炉内气氛同时存在CO、CO2 、H2 、H2O 时,必
须综合考虑式(10—1)和(10—3),
这时要达到无氧化加热需满足如下条件,即
例如,含碳0.8%的钢在1100℃时,由于分子间作用力的
影响,只起到 ac 为0.45%的作用,故称此值为有效浓度。
2、气氛中的碳势
碳势是指一定成分的气氛,在一定温度下,气氛与钢 的脱碳增碳反应达到平衡时,钢的含碳量。 图10-1是钢在CO-CO2气氛中化学反应的平衡曲线, 条件是PCO + PCO2=98.066kPa(1大气压)。曲线上每个
24
即把有机液体直接滴入炉内,经高温反应生成可控气氛。
也可将有机液体滴入裂解装置中生成可控气氛,再将其通 入热处理炉中。 3.气体原料 气体原料主要有工业煤气,天然气、液化石油气、 氨气、氮气等,它们各自适于制备不同类型的可控气氛。 各种工业煤气由于生产过程的影响,成分不稳定,因 而制备的可控气氛也不稳定,含硫也较高。 一般液化石油气多为丙烷(C3H8)和丁烷(C4H10) 的混合物,有两种来源:一、是开采石油得到的石油气, 二、炼制石油时分离出来的气体。这两种石油气特点
200 0.616
应用平衡常数KP即可判断反应进行的方向。如在 1000℃时,KP =2.486,即当(CO)/(CO2 )=2.486时,氧化 还原处于平衡状态,当实际炉气(CO/CO2)<2.486时,为趋 于平衡(10—1)式反应向右进行, CO2使Fe氧化生成 13 FeO, CO2浓度降低,同时CO浓度增加,钢件氧化。(点)
2 PH
式中:
2O PH
PCPCO
18
2 、PH 2O、PCO 、PCO 2—表示混合炉气中各组分的分压。 PH
二、钢在炉气中的脱碳增碳反应
1、钢在CO—CO2气氛中的脱碳增碳反应 钢在CO—CO2气氛中的反应式如下:
§10—3
可控气氛的种类与制备
用于热处理的可控气氛种类很多,按照制备可控
气氛的原料气(液)不同,可控气氛分为四类:以原 料气制备的、以有机液体制备的、分离空气制备的、 瓶装高纯气体。 目前常见的可控气氛有(以原料气制取可控气氛分)
放热式气氛、吸热式气氛、滴注式气氛、氨分解气氛、
氨燃烧气氛、氮基气氛等。
2
§5.1
发生氧化和脱碳。
概述
我们知道,在一般空气介质电阻炉中加热钢件时,容易 要使钢件加热时不产生氧化和脱碳,可以采用两种方法
:
一种是向炉膛内送入保护气体,使钢件在保护气氛下加
热;为了使工件表面不发生氧化、脱碳、烧损现象或对工
件进行化学热处理,向炉内通以可进行控制成分的气氛,
称可控气氛。
另一种方法是把炉膛内空气抽除,使钢件在真空状态下 加热
3.钢在H2—CH4气氛中的脱碳增碳反应
在CO—CH4气氛中,碳势较低,生产上往往借助
CO—CO2为载体,来添加适量增碳剂CH4来增加碳势, 或者气氛中原来就有H2—CH4气氛存在。钢在H2—CH4气 氛中将发生如下脱碳增碳反应
CH4与CO的渗碳能力有所不同,CH4的渗碳能力强得多,是一种 22 强渗碳剂,而H2有脱碳能力。
10
一、钢在炉气中的氧化还原反应 1、钢在CO2-CO气氛中的反应 钢在空气中加热将与氧发生氧化反应,在 560℃以下生成Fe3O4,在560℃以上形成三种 氧化物,内层为FeO,中层为Fe3O4,外层为 Fe2O3,通常认为氧气对钢的氧化过程是不可 逆的,无法控制。 钢在CO2-CO气氛中的氧化还原反应则有 所不同,是可逆的,其反应速度和反应方向决 定于CO/CO2比值和温度。
速度相等,这样就能实现无氧化与无脱碳加热。 无氧化加热一般可分为光亮加热和光洁加热,前 者表面未形成氧化膜,仍保持金属光泽;后者有 氧化膜生成,失去金属光泽。 可控气氛热处理炉的优越性如下:
8
(1)实现无氧化无脱碳与增碳热处理,因而提高钢件的 表面质量及机械性能,减少零件的加工余量和钢材的烧损 量,因此能节省工时及能耗,节约金属材料。 (2)实现可控渗碳,可以精确地控制零件表面的含碳量、 碳浓度梯度和渗碳层厚度,因而提高了渗碳零件的机械性 能,稳定渗碳工艺的质量。 (3)实现特殊的热处理工艺,如硅钢片的脱碳退火,轧 制钢材的复碳退火等。 (4)实现机械化与自动化,提高劳动生产率,改善劳动 条件。 总之,可控气氛热处理炉目前已成为一种先进的加热 设备。尤其是在可控气氛的应用方面可作为衡量一个国家 9 热处理技术发展水平的重要标志。
K P2
PH 2 [H 2 ] (H 2 ) PH 2O [ H 2 O] ( H 2 O)
(10 4 ) 14
式中: PH 2 、PH 2O H 2 和H 2 O的分压; [ H 2 ]、 [ H 2 O] H 2 和H 2 O气体的浓度。
(H 2)、(H 2 O) 混合气体中H 2 和H 2O的
其反应常数为: K1 P 2 CO ( / PCO 2 aC) ( 10 9) 或 aC K1 P 2 CO / PCO2 ( 10 10)
式中: [C ] — 钢中所含碳。
ac— 碳在奥氏体(γ一Fe)中的有效浓度,又称奥氏体中碳 19 的活度.(ac是在一定温度下钢的含碳量与γ一Fe中的饱和含碳量的比值 )
在一定温度状态下,平衡常数KP总保持为定值。某 一温度下的kP值,可由实验测定,也可由热力学反应自由 能计算求得。如表10-2所示
表10-2
温度 (℃)
K P1 PCO PCO2
CO和CO2对铁的氧化还原反应的平衡常数
300 0.752 400 0.815 500 0.960 600 1.116 700 1.45 800 1.795 900 2.142 1000 2.486
16
当Me和MexO2皆为化学纯的凝聚相,则反应平衡常数为
KP=1/PO2
(10一6)
式中,PO2为化学平衡系中氧的分压,即金属氧化物的分
解压。当气氛中的氧分压大于PO2时,反应向右进行,金 属被氧化成氧化物;当气氛中的氧分压小于PO2时,反应 向左进行,金属氧化物分解。各种氧化物的分解压是不 相同的,并随温度的升高而急剧增大,氧化物处于不稳
点代表一个平衡状态。例如,在0.1% C的曲线上,当温
度为900℃时,相应的CO为80%,表示在80% CO的气氛
中,含碳0.1%的钢达到平衡状态,既不脱碳也不增碳、
那么900℃下含80% CO气氛的碳势即为0.1%C。
20
图中SE线为饱和奥氏体的平衡曲线,位于其下面的是钢的不同含碳量的平衡曲线。
主讲教师:范涛
北华航天工业学院 金属材料工程教研室
1
课十二
第五章
可控气氛热处理炉
本章我们主要了解以下四个方面的内容:
一、可控气氛炉加热的基本原理;
二、可控气氛的种类、制备流程、特性与应
用; 三、可控气氛的碳势测量及氧势控制。 四、可控气氛热处理炉的类型、安全操作与 发展。
本次课我们先来了解前两个方面的内容。
§10—2
可控气氛加热的基本原理
在这一节里,我们通过钢在可控气氛中加
热所发生的化学反应,来了解可控气氛中各种
组分的性质与作用以及对钢在加热过程中发生
氧化还原、脱碳增碳反应的影响,进而确定可
控气氛中的控制对象。
常用的可控气氛主要由CO、H2和少量的
CO2、H2O和CH4、CnHm等气体组成。在热处
理温度条件下,气体与钢进行化学反应。
此外,虚线AK表示氧化 一还原平衡曲线。在AK线 下方Fe将发生氧化反应;在 AK线上方的气氛是还原性 的,能防止氧化,但不能 防止脱碳。这是因为在 700℃以上脱碳反应的平衡 条件所需要CO%含量远比氧化反应为高。也就是说,不
脱碳的条件比不氧化的条件要严格得多。因此,如果进行 既不氧化又不脱碳的光亮热处理时,则应使气氛中CO含 量保持在相应含碳量的钢的平衡曲线以上,亦即将气氛的 21 碳势维持在钢的相应含碳量以上。
11
其反应方程式如(10-1),反应方向由平衡常数来判断.
在一定温度下,反应达平衡时,气氛中各种气体浓度 不再改变,其平衡常数为
K P1
式中:
PCO [CO] (CO) PCO2 [CO2 ] (CO2 )
(10 2)
PCO、PCO2—CO和CO2气体的分压; [CO]、[CO2]— CO和CO2气体的浓度; (CO),(CO2)混合气体中CO和CO2的体积百分含量 12 .