高中数学计算题新版
2024高考数学计算题型训练

专题1 集合的运算 1专题2 解一元二次不等式 7专题3 复数的四则运算 14专题4 函数定义域的相关计算 20专题5 指数与对数运算 26专题6 数列求和的运算 36专题7 导数计算 43专题8 向量运算的坐标表示 50专题9 诱导公式的化简求值 55专题10 三角恒等变换 63专题11 排列组合数的计算 67专题12 二项式定理的相关计算 72专题1集合的运算1已知集合A =x ∣x 2-4x ≤0,x ∈Z ,B ={x ∣-1≤x <4},则A ∩B =()A.[-1,4] B.[0,4) C.{0,1,2,3,4}D.{0,1,2,3}2设全集U =-2,-1,0,1,2 ,集合A =x ∈N y =lg 2-x +1x +2,则∁U A =()A.-2,-1,2 B.-2,2 C.∅D.-2,-1,0,2 3已知集合A =0,1,a 2 ,B =0,2-a ,A ∪B =A ,则a =()A.1或-2 B.-2 C.-1或2D.24已知集合A =x |x 2<2x ,集合B =x log 2x -1 <1 ,则A ∩B =()A.x 0<x <3 B.x 1<x <2 C.x 2≤x <3D.x 0<x <2 5已知集合A =x x 2-x -6<0 ,B =x 2x +3>0 ,则A ∩B =()A.-2,-32 B.32,3 C.-32,3 D.-32,2 6已知集合A ={x |-2≤x <7},B =x 2x≥1 ,则A ∩∁R B 为()A.{x |-2≤x <7} B.{x |-2≤x <0或2<x <7}C.{x |-2≤x ≤0或2<x <7}D.{x |-2≤x <0或2≤x <7}7已知集合A ={x ∣-2<x ≤3,x ∈R },B =0,2,4,6 ,则A ∩B =.计算专题训练1集合的运算临渊羡鱼不如退而结网8已知集合A =1,3 ,B =2,+∞ ,则A ∩B =.9已知A =x x -1x ≤0 ,B =x x ≥1 ,则A ∩B =.10已知集合A =x x 2-x -2≤0 ,B =x x -1≤2 ,则A ∩B =11设全集U =R ,集合A =x y =1-lg 1-2x ,B =x ∈Z x 2+2x -3≤0 ,则B ∩∁U A =12若集合A =x x -x >0 ,B =x x >2 ,则A ∩∁R B =13已知集合A =x x <3 ,B =x y =2-x ,则A ∪B =.14设集合A ={1,3,5,7,9},B ={x ∣2≤x ≤5},则A ∩B =.15已知集合A =x ∈N x ≤2 ,B =y |y =e 2x -x 2,x ∈A ,则A ∩∁R B =16设集合U =x ∈N x ≤6 ,M =1,2,3,5 ,N =2,3,4 ,则∁U M ∪N =.17已知集合A ={1,2,3},B ={x |-3x +a =0},若A ∩B ≠∅,则a 的值为.18已知集合A =x ∣x 2-6x +8≤0 ,B =x x -3 <2,x ∈Z ,则A ∩B =.19已知集合A =x |x >1,x ∈Z ,B =x |0<x <4 ,则A ∩B =.20已知集合A ={1,2,3},B ={x |x <2},则A ∩B =.21已知全集U =R ,集合A =x y =lg x ,集合B =y y =x +1 ,那么A ∩∁U B =.22若集合A =x |3x 2-14x +16≤0 ,B =x 3x -7x >0 ,则A ∩B =.23已知全集U =R ,集合A =x 1+x >2x +4 ,则∁U A =.24已知集合A ={x |x ≤1},集合B ={x |x ≥-2},则A ∩B =.25已知集合A =x 1<x <3 ,B =x 2<x <4 ,则A ∩B =.26设集合A =x 2+x ≥4 ,集合B =x -1≤x ≤5 ,则A ∩B =.27函数y =2x +1+log 22-x 的定义域为.计算专题训练1集合的运算临渊羡鱼不如退而结网28已知集合A =x |-2≤x ≤5 ,集合B =x |m +1≤x ≤2m -1,m ∈R ,若A ∩B =B ,则实数m 的取值范围是.29已知集合A =x -2<x <1 ,B =x x >-1 ,则A ∪B =.30设集合M =1,2,3,4,5 ,集合N =2,4,6 ,集合T =4,5,6 ,则M ∩T ∪N =.31集合M =y ∣y =-x 2+2 ,N ={x ∣y =3x -1},则M ∩N =.32已知集合A ={-1,0,1},B =[0,+∞),则A ∩B =.33若A =1,a ,B =a 2 ,且A ∩B =B ,则实数a 的值为.34设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则∁U A ∩B =.35定义M -N ={x x ∈M 且x ∉N },若集合A =1,3,5,6,8 ,B =2,3,4,6 ,A -B =.36已知全集U =R ,A =x 2x -1x +1≥1 ,则∁U A =.37设集合A =x x +1≤0 ,B =x lg x 2-2 =lg x ,则A ∪B =.38已知A =y y =3x ,B =x y =ln (2-x ) ,则A ∩B =.39设集合A =x ||2x -1|≤3 ,B =x y =lg x -1 ,则A ∩B =.40设全集U =R ,若集合A ={0,1,2},B ={x |-1<x <2},A ∩(∁U B )=.41已知集合A =x x >1 ,B =x -1≤x ≤3 ,则A ∩B =;42若集合A ={x ∣1≤x ≤3,x ∈R },B =Z ,则A ∩B =.43已知全集为R ,A =x log 2x +1 <2 ,则∁R A =.44已知集合A =x ∣x 2+4x +3=0 ,B =x ∣x 2=1 ,则A ∩B =.45已知集合A =x x x -1≥0,x ∈R ,B =y y =x 2+1,x ∈R ,则A ∩B =.46集合A ={x |0≤x <3且x ∈Z },B ={x |x 2≤9且x ∈Z },则A ∩B =.47已知全集U =R ,A =x x -3x ≤0 ,B ={x |x >2},则A ∩∁U B =.计算专题训练1集合的运算临渊羡鱼不如退而结网48已知集合M ={x ||x -1|≤3},N =x |3x ≥1 ,则M ∩N =.(用区间作答)49已知集合A =x x 2-3x -18≤0 ,B =x y =ln x -2 ,则A ∩B =.50已知集合A =x -2<x <0 ,集合B =x 0≤x ≤1 ,则A ∪B =.51已知集合A ={-1,0,1,2},B ={x ∈R ||3x -2∣≤4},则A ∪B =.52已知集合A ={x ∣x 2-x -2<0},B =x ∣y =11-x ,则A ∩B =.53已知全集U ={x ∈Z |-1≤x ≤3},集合A ={x ∈Z |0≤x ≤3},则∁U A =54若集合A =0,1,2,3 ,B =x x <2 ,则A ∩B =.专题2解一元二次不等式1解不等式(1)-x2+3x+40>0(2)3x+1<12解不等式:(1)-x2+x≥3x+1;(2)x2-2x>2x2+2.3解一元二次不等式:(1)4x2+4x+1>0;(2)2x2-x-3≤0.4解下列不等式:(1)x-13+2<x-3<2x+32;(2)3x+4-x2<0.5求解下列不等式的解集:(1)-x2+4x+5<0;(2)2x2-5x+2≤0;(3)4x-1-7≤0;(4)x+1x-52x-2<0;(5)4-x2x+3≥1. 6解下列不等式:(1)x2-5x+6<0;(2)-x2+2x+3<0;(3)3x+13-x >-1;(4)x+1x-3≥0.7解下列不等式(1)log2x2-2≤1;(2)x-1x-4≥0;(3)-3x2-2x+8≥0;计算专题训练1解一元二次不等式临渊羡鱼不如退而结网8解下列关于x的不等式:(1)-x2+2x+4>0;(2)2x-3x+1≥1 9求下列不等式的解集:(1)4x+3x-1>5;(2)2x-3<3x-210解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)x+5x-3≤12;(4)x-1x-2<x2x-5+311解下列不等式:(1)x2<3x+4;(2)2+x-x2≥0;(3)x9-x>0.12求下列不等式的解集:(1)x2-3x-10>0;(2)-3x2+5x-4>013解下列不等式:(1)2+3x-2x2>0;(2)x2-2x+3>0.14解不等式:(1)x2+x-6≤0;(2)6-2x2-x<0.15解下列不等式:(1)2+3x-2x2>0;(2)x3-x≤x x+2-1.16解下列不等式.(1)x2-5x+6>0;(2)-3x2+5x-2>0.17解下列不等式:(1)2x2+x-3>0;(2)-4x2+4x-1≥0;(3)-4x2+3x-2<0 18求下列不等式的解集:(1)-x2+3x+2<6x-2;(2)2x+1x-3>3x2+219解下列不等式:(1)2x-1x+2≤0;(2)|1-2x|>3.20解下列关于x的不等式:(1)-x2+4x-4<0;(2)1-xx-5>021(1)4x-2x-2<0;(2)log2x2-5log2x+6≥0.22求下列不等式的解集:(1)-3x2-2x+8≥0;(2)3x2x+1≤1.23解下列不等式的解集:(1)x2-4x+4>0;(2)-3x2+5x-2>0;(3)2x2+7x+3>0;(4)2x2<x-1.计算专题训练1解一元二次不等式临渊羡鱼不如退而结网24解下列不等式:(1)4x 2-4x +1>0;(2)x 2-6x +9≤0;(3)-x 2+2x -3>0;(4)(x +2)(x -3)<6.25解下列不等式.(1)-2x 2+3x -1<0;(2)x 2+x +2<0.26求下列不等式的解集.(1)-2x 2+5x -3≤0;(2)x +4x +1≥227解下列不等式:(1)x 2+x -2<0;(2)x +2 3-x ≤028解下列不等式(1)-2x 2+x +3<0;(2)2x -13-4x≥1;(3)x -2 x -1 <x .29求下列不等式的解集(1)x -1x>2;(2)-x 2+5x +6x -1≥0.30解下列不等式(组)(1)-2<1-3x ≤4;(2)1-2x ≤52x -3 >1;(3)2x +5>5x -1-x 2+23x ≤331解关于x 的不等式.(1)2x 2-x -6>0;(2)-2x 2+x +3≥0;(3)x 2-3x -2<0.32解下列不等式:(1)-2x2+x+1<0;(2)x-2x-1≥2.33求下列不等式的解集:(1)2x 2-5x+3<0;(2)3x+12-x<0.34求下列不等式的解集:(1)(x+1)(x-4)>0;(2)-x2+4x-4<035解下列关于x的不等式:(1)x2-3x+2>0;(2)x2+x+1>0.36利用函数解下列不等式:(1)2x2+7x+3>0;(2)x2-4x-5≤0;(3)-12x2+3x -5>0;(4)x-3x+7<0;(5)x-43-x≥137解关于x的不等式:(1)x2-14x+45≤0;(2)2x+1x-1≤1 38求下列不等式和不等式组的解集(1)2x-1x+3≤1(2)x x+2>0x2<1计算专题训练1解一元二次不等式临渊羡鱼不如退而结网39解不等式:(1)x2-2x-3>0;(2)x-12x<140解不等式-x2+2x+3<0.41解下列不等式(1)2x2-x<4;(2)2x-13x+1>142解下列不等式5-xx+3>043解下列不等式:(1)3x2+5x-2>0;(2)-2x2x-1>1.44求下列不等式的解集(1)x-1x-2<0;(2)x2-5x+4≤0;(3)1-2x≥3;(4)2x+1x-3>045求下列不等式的解集:(1)x2-5x+6>0;(2)-12x2+3x-5>0;(3)2x+3x-1≥146解下列关于x的不等式:(1)x2-3x<10;(2)1-2xx+2≥047解下列不等式(1)1x <4;(2)2x-1<7.48解下列不等式:(1)x-2x+1<4;(2)x-2x +1≥0.49解下列不等式;(1)-x2+2x-3>0;(2)x-21-3x>2;(3)x+1x-2≥3计算专题训练1解一元二次不等式临渊羡鱼不如退而结网专题3复数的四则运算1i3+i4的共轭复数为()A.1+iB.1-iC.-1+iD.-1-i2若z =2i+i21+i,则z=()A.12+32i B.12-32i C.-12+32i D.-12-32i3已知z+i=z i,则z =()A.22B.0 C.12D.14已知iz=1+i(其中i为虚数单位),若z 是z的共轭复数,则z-z =()A.-1B.1C.-iD.i554-3i=()A.-4+3iB.4+3iC.-45+35i D.45+35i6若复数z满足i⋅z=4+3i,则z =()A.2B.5C.3D.57若a 为实数,且7+a i3+i=2-i ,则a =()A.2B.1C.-1D.-28(1+3i )2=()A.2+23iB.2-23iC.-2+23iD.-2-23i9已知复数z =3+i1+2i+2i ,则z =()A.1B.2C.2D.2210z 1-i =1-3i ,则z=()A.1+iB.1-iC.2+2iD.2-2i11设z =11+i,则z -z =()A.-iB.iC.1D.012已知i 为虚数单位,复数z =1-3i2+i ,则z =()A.2B.3C.2D.513已知i 为虚数单位,复数z 满足(1+3i )z=3+i ,则z =()A.-iB.3-iC.32-12i D.32+12i 计算专题训练3复数的四则运算临渊羡鱼不如退而结网14若复数z=4-3ii,则z =()A.25B.20C.10D.515设复数z满足z1-i=4,则z =()A.22B.1C.2D.216已知复数z=1-i2+a ia∈R在复平面对应的点在实轴上,则a=()A.12B.-12C.2D.-217已知复数z满足(z-1)(2-3i)=3+2i,则z=()A.0B.iC.-1+iD.1+i18若复数z满足i⋅z =1-2i,则z=()A.-2-iB.-2+iC.2+iD.2-i19设i为虚数单位,若复数z满足zi =3-i1-i,则z的虚部为()A.-2B.-1C.1D.220已知复数z满足(2+i)z=2-4i,则z的虚部为()A.-2iB.2iC.-2D.221已知z1-2i=i,i为虚数单位,则z=()A.-2+iB.2-iC.2+iD.-2-i22已知复数z 满足1-i z -2i =2i ,则z 的虚部为()A.-1B.-iC.3D.3i23已知复数z =a +i a ∈R 满足z ⋅z=5,则a 的值为()A.6B.2C.±6D.±224已知复数z 是方程x 2-2x +2=0的一个根,则z =()A.1B.2C.2D.325若复数z =a -2i2+ia ∈R 是纯虚数,则a =()A.-2B.2C.-1D.126已知复数z 满足1+i z =3-i ,则复数z =()A.2B.5C.22D.1027已知复数z =32+12i ,则z 3 =()A.34B.32C.1D.7228已知复数z 满足z⋅i =4+3i ,则z =.293+ii=计算专题训练3复数的四则运算临渊羡鱼不如退而结网30复数z 满足2z +z=6-i (i 是虚数单位),则z 的虚部为.31设复数z 满足1+i z =2i (i 为虚数单位),则z =.32复数z 1,z 2在复平面上对应的点分别为Z 12,1 ,Z 21,-2 ,则z 1+z 2=.33若复数z =21+i(i 为虚数单位),则z -i =.34若复数z 满足z (1-i )=1+2i (i 是虚数单位),则复数z =.35若z 1+2i =1+3i ,则z 1+i =36若复数z 满足2z-1=3+6i (其中i 是虚数单位),则z =.37已知复数i z2+i=-1+2i ,则z 的虚部为.38已知复数z 满足z 2+z +1=0,则z ⋅z=.39已知复数z 满足z 1-i =i (i 为虚数单位),则z 的虚部为.40在复平面内,复数z所对应的点为(1,1),则z⋅z =.41已知复数z满足z1+2i=|4-3i|(其中i为虚数单位),则复数z的共轭复数为.42复数1+2i3+i3的值是.计算专题训练3复数的四则运算临渊羡鱼不如退而结网专题4函数定义域的相关计算1函数f (x )=x -1x 2+1的定义域为.2函数f x =tan x -1+lg 1-x 2 的定义域为.3函数f x =13-x +ln x -1 的定义域为.4函数y =5-5x 的定义域是.(结果写成集合或区间)5求函数f (x )=1-2cos x +ln sin x -22 的定义域为.6函数f x =2x 2-4x +4+x 2-2x 的最小值为.7求函数y =lg sin x -22 +1-2cos x 的定义域为.8函数y =tan x -1tan x +π6 的定义域为.9函数y =3-1x 的定义域为.10函数y =12+cos x 的定义域为.11函数y =1-3x 2-2x -3的定义域为.12函数y =x +1 0x -x +1-6x 2+x -2的定义域是.13若y =x 2-9+9-x 2x -2+1,则3x +4y =.14函数y =lgsin x +12-cos x 的定义域是.15函数y =1log 52x -1 的定义域是.16函数y =1x -1+(x -3)0的定义域是.17函数f (x )=11-x 2的定义域为.计算专题训练4定义域的相关计算临渊羡鱼不如退而结网18函数f (x )=x +1x 的定义域是.19已知函数f x =16-x 2log 3(2-x )的定义域为.20函数f x =3-3-x +ln x 的定义域为.21函数f (x )=3-x 的定义域是.22函数y =x -1的定义域为.23函数f x =1e x -2+lg (2x -x 2)的定义域为.24函数y =12 x -1的定义域为.25函数y =lg (-x )+2x 2-1的定义域为.26函数f x =lg x -1 x -2的定义域为.27函数f x =3-xx+2的定义域是.28函数f(x)=8-2x+log3x-3的定义域为.29函数f(x)=ln(2x-1)的定义域为.30函数f x =1-x+1x的定义域为.31函数y=lg x+12-x的定义域是.32函数y=1x-1的定义域为.33函数f x =lg x +2+12-x的定义域为.34函数y=lg3x-1的定义域是.35函数y=4-x2+1lg2x-3的定义域为.计算专题训练4定义域的相关计算临渊羡鱼不如退而结网36函数f x =4-3x-x22x+1的定义域为.37函数y=2ln2-x的定义域是.38函数y=2x+1+log22-x的定义域为.39已知函数f x =x-2·x+5的定义域是.40函数f x =x-2+1x-3的定义域是.41函数f x =log22-x+9-x2的定义域为.42函数f x =1-2x+1x+3的定义域为.43函数f x =4-x2+1x-1的定义域为.44函数f x =x-1+1x-2的定义域为.45函数f(x)=lg4-x2+1-tan x的定义域是.46已知函数y=f2x-1的定义域为-1,2,则函数y=f x+1的定义域为.47已知函数f x =lg ax2-ax+1的定义域是R,则实数a的取值范围是.48函数f x =log3x-2+6-x的定义域为.49函数y=x+1+1-x2-x+2的定义域是.50函数y=xx-1-log24-x2的定义域是.计算专题训练4定义域的相关计算临渊羡鱼不如退而结网专题5指数与对数运算1求值:(1)23-2+5-π 0-3116 0.5;(2)e 2ln3-log 149⋅log 278+lg4+lg25.2计算(1)823-214-12+π0+-23 2(2)log 218-lg2-lg5+2log 233求值:(1)7+43 0+3235-2×18 -23+32×4-13 -1;(2)e 2ln3-log 49⋅log 278+lg4+lg25.4计算:(1)lg2-lg14+3lg5-log 32×log 49;(2)lg 1100-log 23×log 52×log 35+ln e +21+log 23.5求下列各式的值:(1)0.027 23+27125-13-279 0.5;(2)log 535-2log 573+log 57-log 51.8.6计算:(1)lg8+lg125-lg2-lg5lg 10×lg0.1;(2)log 62 2+log 63 2+3log 62×log 6318-13log 62 7计算或化简下列各式:(1)22 23-61412+ln e +3⋅33⋅63(2)(log 23+log 89)(log 34+log 98+log 32)+(lg2)2+lg20×lg58计算下列各式的值:(1)823--780+43-π 4+2-2;(2)log 327+lg 1100+ln e +2log 23.9计算下列各式的值:(1)2713-0.25+12 -2-16 0;(2)2log 32-log 332+log 38.10计算下列两个小题:(1)e ln3+2lg 2+lg15+lg 13;(2)80.25×42+(2×33)6+π0.11求下列式子的值:(1)21412+9.6 0--8 -23-31.5 6.(2)lg25+2lg2-log 316⋅log 43+e ln3.计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网12计算与化简:(1)log 427×log 58×log 325(2)a 12b 13 ⋅-2-2a 23b 12 ÷8-23a 76b -16 .(3)135 0+2-2×9412-(0.01)0.5(4)2lg5+23lg8+lg5⋅lg20+(lg2)2.13(1)214 12-(-9.6)0-338 23+(1.5)2;(2)log 535-2log 573+log 57-log 595.14化简求值:(1)8 -23-34×213+350;(2)log 327+lg25+lg4+7log 72.15化简或求值:(1)279 0.5+0.1-2-π0+13;(2)lg14-2lg 73+lg7-lg18;(3)3-2 2+3-1 2.16计算:(1)16912-3-1 0-0.25 -1+6-3 6;(2)lg4+2lg5+log 25×log 58+lg10.17计算下列各式的值:(1)6423+13-2-2e -π 0+413×512 6;(2)log 327-lg2-lg5-log 516⋅log 25+e ln2.18计算下列各题:(1)8116 0.5+-1 -1÷0.75-2+6427-23;(2)log 327+lg25+lg4+7log 72+-9.8 0.19化简求值(1)27813+(0.002)-12-10(5-2)-1;(2)1-log 63 2+log 62×log 618 ÷log 64.20(1)计算:21412-(-2.5)0-338 23+23 -2;(2)已知a x =log 327+lg25+2lg2-7log 72,求a 3x +a -3x a x +a -x的值.21求值:(1)0.027-13+25912-2-1 0;(2)log 227×log 38-2log 510-log 0.24.22求值:(1)532+823+π-4 0+49-12;(2)log 354-log 32+log 23⋅log 34.23计算下列式子(1)log 327+lg25+lg4+7log 72+-9.8 0(2)lg8+lg125lg 10×lg0.1-log 23×log 34计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网24计算:(1)3164--3220--8 13+16-34;(2)lg2+lg5+log 234-log 26.25计算:(1)3-4 3-3⋅2723+422 2+2;(2)43lg2+log 1002 +lg5 2-lg2 2.26求值:(1)0.027-13+17 0-116;(2)lg20-lg4+lg 15+e ln2.27求值:(1)-2764-23+4-29 4+3-2 20223+2 2022;(2)log 49×log 2764+3log 916+lg2×lg5+lg 21+20220 +lg5.28计算(1)2log 23-lg100+2-1 lg1(2)214 -0.5+43-π 4+8 2329计算下列各式的值:(1)412+327-18114;(2)2log 32-log 312+log 25×log 58.30求下列各式的值:(1)0.064-13--450-2-4⋅3 4(2)lg25+23lg8-log 227×log 32+2log 23.31求解下列问题:(1)(2-1)0+6427-23+(8)-43;(2)lg 1100-ln e +2log 23-log 427⋅log 98.32计算下列各式的值:(1)log 33+lg5+lg2+2log 22.(2)cos20°sin50°-cos50°cos70°.33计算下列各式,写出演算过程(1)214 12+-2 2-827 23+32-2;(2)lg4+2lg5+2log 510-log 520-ln e -log 25⋅log 58.34化简求值:(1)0.252×0.5-4-338-23-(3-π)0+0.064-13+4(-2)4;(2)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e .35求值:(1)94 12--9.3 0-23-1+log 24(2)lg2+lg5+lg1+5log 52计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网36化简求值:(1)(2-3)2+0.512+(-4)02;(2)2lg5-log 322+1lg4 -1+5log 0.25.37计算下列各式的值:(1)54 -13×-23 0+913×33-45 23;(2)log 34273+lg25-3log 3314+lg438化简求值:(1)49-12+lg2+lg5-2log 31;(2)sin 76π+cos 113π+tan 134π.39化简或求值(1)(0.064)-13--78 0+811614+|-0.1|(2)lg14-2lg 73+lg7-lg18(3)(3-π)2+3(-2)340计算求值(1)log 827×log 96÷log 166+e 2ln3;(2)log 48-log 193-log 2441计算:(1)0.01-12-3215-π+1 0+3-2 3;(2)log 28+lg2+lg5-3log 32.42计算:(1)214 12-827-13+-32 4;(2)lg2+lg2⋅lg5+(lg5)2.43化简求值:(1)3-54 3+827-23+5-2 -1+43-π 4;(2)1+12lg9-lg2401-23lg27+lg 365+9log 32.44求值:(1)332×13-(-8)23+(2-π)0;(2)(lg5)2+(lg2)2-log 827log 49+lg5×lg log 216 .45计算:(1)lg25+2lg2+e ln2(2)82723-949 -0.5+0.125 -1346(1)求值:(3)2+1634+(3-1)0;(2)求值:lg25+lg4+5log 52+log 327.47求值:(1)18-13+53×345-π-3 0;(2)log 28+log 27×log 7log 381 .计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网48(1)8116 14+316 32+120220-e ln 32(2)log 34+log 132 log 43+log 163 49计算:(1)(-1)0+32 -2⋅27823+[(-3)2]12;(2)2lg5+lg4-log 23⋅log 34+log 327.50计算下列各式的值:(1)e 2ln2-lg 12-lg20;(2)lg25+23lg8-log 227×log 32.51化简下列各式:(1)sin 7π2+cos 5π2+cos (-5π)+tan π4;(2)log 20.25+ln e +24⋅log 23+lg4+2⋅lg5-4(-2)4.52计算下列各式的值:(1)823--9.6 0-278 -23+32-2;(2)log 327+lg25+lg4+7log 72+(-9.8)0.53计算求值:(1)1200-12-102-1 +103-2 0+-8 43;(2)lg2×lg2500+8×lg 5 2+2log 49+log 29⋅log 34.54计算下列各式的值:(1)23 -3+2-3 0-21432(2)2log 34-log 33227+log 32+5log 5355求下列各式的值:(1)235 0+2-2×214 -12-42×80.25;(2)lg 1100+log 139-log 5125-log 8132.56化简求值:(1)ab -1 3a 3b -3 12a >0,b >0 ;(2)lg5+lg 22+lg2lg5+log 25×log 254+7log 75.57计算:(1)827-23-1614+π0-3125;(2)2lg4+lg 58+log 25⋅log 54+e 3ln2.58计算:(1)5log 53-log 311⋅log 1127+log 82+log 48;(2)若3m -3-m =23,求9m +9-m 的值.计算专题训练5 指数运算和对数运算临渊羡鱼不如退而结网专题6数列求和的运算1等比数列a n 的公比为2,且a 2,a 3+2,a 4成等差数列.(1)求数列a n 的通项公式;(2)若b n =log 2a n ⋅a n +1 +a n ,求数列b n 的前n 项和T n .2正项数列a n 的前n 项和为S n ,已知2a n S n =a 2n +1.(1)求证:数列S 2n 为等差数列,并求出S n ,a n ;(2)若b n =(-1)n a n,求数列b n 的前2023项和T 2023.3已知数列a n 为:1,1,2,1,1,2,3,1,1,2,1,1,2,3,4⋯.即先取a 1=1,接着复制该项粘贴在后面作为a 2,并添加后继数2作为a 3;再复制所有项1,1,2并粘贴在后面作为a 4,a 5,a 6,并添加后继数3作为a 7,⋯依次继续下去.记b n 表示数列a n 中n 首次出现时对应的项数.(1)求数列b n 的通项公式;(2)求a 1+a 2+a 3+⋯+a 63.4已知等差数列a n 的前n 项和为S n ,a 5=5,S 5=15,(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前2023项和.5已知a n 是首项为2,公差为3的等差数列,数列b n 满足b 1=4,b n +1=3b n -2n +1.(1)证明b n -n 是等比数列,并求a n ,b n 的通项公式;(2)若数列a n 与b n 中有公共项,即存在k ,m ∈N *,使得a k =b m 成立.按照从小到大的顺序将这些公共项排列,得到一个新的数列,记作c n ,求c 1+c 2+⋯+c n .6设数列a n 的前n 项和为S n ,已知S n +1=2a n n ∈N * .(1)求a n 的通项公式;(2)设b n =a n ,n =2k -1n ,n =2k 且k ∈N *,求数列b n 的前n 项和为T n .7已知数列a n 满足:a 1=2,且对任意的n ∈N *,a n +1=a n 2n,n 是奇数,2n +1a n +2,n 是偶数.(1)求a 2,a 3的值,并证明数列a 2n -1+23 是等比数列;(2)设b n =a 2n -1n ∈N * ,求数列b n 的前n 项和T n .8已知正项数列a n 的前n 项和为T n ,a 1=2且对任意n ≥2,a n T n ,a 1,a n T n -1成等差数列,又正项等比数列b n 的前n 项和为S n ,S 2=43,S 3=139.(1)求数列a n 和b n 的通项公式;(2)若数列c n 满足c n =T 2n ⋅b n ,是否存在正整数n ,使c 1+c 2+⋯+c n >9.若存在,求出n 的最大值;若不存在,请说明理由.9已知各项均为正数的等比数列a n ,其前n 项和为S n ,满足2S n =a n +2-6,(1)求数列a n 的通项公式;(2)记b m 为数列S n 在区间a m ,a m +2 中最大的项,求数列b n 的前n 项和T n .10已知等差数列a n 的公差d >0,且满足a 1=1,a 1,a 2,a 4成等比数列.(1)求数列a n 的通项公式;(2)若数列b n 满足b n =2a n,n 为奇数1a n a n +2,n 为偶数 求数列b n 的前2n 项的和T 2n .计算专题训练6数列求和计算临渊羡鱼不如退而结网11设S n 是数列a n 的前n 项和,已知a 3=0,a n +1+(-1)n S n =2n .(1)求a 1,a 2;(2)令b n =a n +1+2a n ,求b 2+b 4+b 6+⋯+b 2n .12已知a n 是递增的等差数列,b n 是等比数列,且a 1=1,b 2=a 2,b 3=a 5,b 4=a 14.(1)求数列a n 与b n 的通项公式;(2)∀n ∈N ∗,数列c n 满足c 1b 2+c 2b 3+⋅⋅⋅+c n b n +1=a n +13,求c n 的前n 项和S n .13已知数列a n 的前n 项和为S n ,且S n =2a n +2n -5.(1)求数列a n 的通项公式;(2)记b n =log 2a n +1-2 ,求数列1b n ⋅b n +1的前n 项和T n .14已知S n 为数列a n 的前n 项和,a 1=1,且na n -S n =n 2-n ,n ∈N *.(1)求数列a n 的通项公式;(2)若b n =2a n 2a n -1 2a n +1-1 ,求数列b n 的前n 项和T n .15已知函数a n 的首项a 1=35,且满足a n +1=3a n 2a n +1.(1)求证1a n-1 为等比数列,并求a n .(2)对于实数x ,x 表示不超过x 的最大整数,求1a 1+2a 2+3a 3+⋯+100a 100的值.16已知各项均为正数的数列{a n }满足a 1=1,a n =2a n -1+3(正整数n ≥2)(1)求证:数列a n +3 是等比数列;(2)求数列{a n }的前n 项和S n .17已知在数列a n 中,a 1=12,且1a n 是公差为1的等差数列.(1)求数列a n 的通项公式;(2)设b n =a n +1a n +a n ,数列b n 的前n 项和为T n ,求使得T m ≤425的最大整数m 的值;(3)设c n =1-an 2n ⋅a n,求数列c n 的前n 项和Q n18已知数列a n 各项都不为0,前n 项和为S n ,且3a n -2=S n ,数列b n 满足b 1=-1,b n +1=b n +n .(1)求数列a n 和b n 的通项公式;(2)令c n =2a n bn n +1,求数列c n 的前n 项和为T n19已知等比数列a n 的公比为2,数列b n 满足b 1=2,b 2=3,a n b n +1-a n =2n b n .(1)求a n 和b n 的通项公式;(2)记S n 为数列b na n 的前n 项和,证明:1≤S n <3.20在数列a n 中,a 1=-1,a n =2a n -1+3n -6n ≥2,n ∈N * .(1)求证:数列a n +3n 为等比数列,并求数列a n 的通项公式;(2)设b n =a n +n ,求数列b n 的前n 项和T n .21记S n 为数列a n 的前n 项和,已知a 1=1,2n a n 是公差为2的等差数列.(1)求a n 的通项公式;(2)证明:S n <4.22已知数列a n 满足a n =2a n -1-2n +4(n ≥2,n ∈N *),a 1=4.(1)求证:数列a n -2n 为等比数列,并求a n 的通项公式;(2)求数列-1 n a n 的前n 项和S n .计算专题训练6数列求和计算临渊羡鱼不如退而结网23已知数列a n 是公差为d d ≠0 的等差数列,且满足a 1=1,a n +1=xa n +2.(1)求a n 的通项公式;(2)设b n =(-1)n ⋅4na n a n +1,求数列b n 的前10项和S 10.24已知数列a n 的前n 项和为S n ,且S n =2a n -4.(1)求a n 的通项公式;(2)求数列nS n 的前n 项和T n .25已知等比数列a n 的各项均为正数,且a 2+a 3+a 4=39,a 5=2a 4+3a 3.(1)求a n 的通项公式;(2)数列b n 满足b n =n ⋅a n ,求b n 的前n 项和T n .26已知数列a n 中,a 1=1,a n =a n +12n ,n ∈N *.(1)求数列a n 的通项公式;(2)设b n =log 2a 2n +3n ,数列1b n的前n 项和S n ,求证:S n <34.27数列a n 满足a 1=3,a n +1-a 2n =2a n ,2b n=a n +1.(1)求证:b n 是等比数列;(2)若c n =nb n+1,求c n 的前n 项和为T n .28已知正数数列a n ,a 1=1,且满足a 2n -n -1 a n a n -1-na 2n -1=0n ≥2 .(1)求数列a n 的通项公式;(2)设b n =n -1a n,求数列b n 的前n 项和S n .29已知数列a n 、b n ,满足a 1=100,a n +1=a 2n ,b n =lg a n .(1)求数列b n 的通项公式;(2)若c n =log 2b n +log 2b n +1+⋯+log 2b 2n ,求数列1c n的前n 项和S n .30已知数列a n 中,a 1=1,S n 是数列a n 的前n 项和,数列2S na n是公差为1的等差数列.(1)求数列a n 的通项公式;(2)证明:1S 1+1S 2+⋯+1S n<2.31已知在等差数列a n 中,a 1+a 4+a 7=-24,a 2+a 5+a 8=-15.(1)求数列a n 的通项公式;(2)求数列-1 n a n 的前n 项和T n .32记数列a n 的前n 项和为S n ,已知a n +1=a n +1,n =2k -1,a n +t ,n =2k ,k ∈N *,S 3=7a 1,a 4=a 2+3.(1)求a 1,t ;(2)求数列a n 的通项公式;(3)求数列a n 的前n 项和S n .33数列a n 中,a 1=1,且a n +1=2a n +n -1.(1)证明:数列a n +n 为等比数列,并求出a n ;(2)记数列b n 的前n 项和为S n .若a n +b n =2S n ,求S 11.34已知数列a n 满足a 1=3,2a n +1-a n a n +1=1.(1)记b n =1a n -1求数列b n 的通项公式;(2)求数列1b n b n +1 的前n 项和.计算专题训练6数列求和计算临渊羡鱼不如退而结网35已知等比数列a n 的前n 项和为S n ,且2n +1,S n ,a 成等差数列.(1)求a 的值及数列a n 的通项公式;(2)若b n =2n -1 a n 求数列b n 的前n 项和T n36已知数列a n 和b n ,a 1=2,1b n-1a n =1,a n +1=2b n .(1)求数列a n 和b n 的通项公式;(2)求数列n b n的前n 项和T n .37等比数列a n 的前n 项和为S n ,已知a 1=1,且3a 2-1,a 3,S 3成等差数列.(1)求a n 的通项公式;(2)若a n +1=2a nb n,数列b n 的前n 项和T n .38已知数列a n 的前n 项和为S n ,a n >0,且满足4S n =a n +1 2.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1的前n 项和为T n ,求T n .39已知数列{a n }满足:a 1=3,a n +1=n +1n2a n +n .(1)证明:数列a nn+1是等比数列;(2)设c n =a n +n ,求数列{c n }的前n 项和T n .40已知正项等差数列a n 的前n 项和为S n ,其中a n +2-a n =4,4(S 2+1)=(a 2+1)2.(1)求数列a n 的通项公式及S n ;(2)若b n =a n ⋅34n -1,求数列b n 的前n 项和T n .专题7导数计算1求下列函数的导数:(1)y =cos xsin x -cos x;(2)y =x e 2x 2+1.2求下列函数的导数.(1)f x =-2x +1 2;(2)f x =ln 4x -1 ;(3)f x =23x +2;(4)f x =5x +4;3求下列函数的导数:(1)y =2x 3-3x 2+5;(2)y =2x +4x +1;(3)y =log 2x ;(4)y =x n e x ;(5)y =x 3-1sin x ;(6)y =sin xsin x +cos x.4求下列函数的导数:(1)y =(x +1)1x -1 ;(2)y =3ln x +a x (a >0,a ≠1);(3)y =x sin 2x +π2 cos 2x +π2(4)y =ln (2x +3)x 2+1.5求下列函数的导数:(1)y =3x 2+cos x ;(2)y =x +1 ln x ;(3)y =x -sinx 2cos x 2;6求下列函数的导数.(1)y =x -2+x 2;(2)y =ln xx 2+1计算专题训练7导数计算临渊羡鱼不如退而结网7求下列函数的导数:(1)f (x )=(1+sin x )(1-x 2);(2)f (x )=xx +1-3x .8求下列函数的导数:(1)y =x 2log 2(3x );(2)y =cos (2x +1)x.9求下列函数的导数:(1)y =1+x 1-x +1x;(2)y =x ln (2x +1).10求下列函数的导数:(1)y =ln 2x +1x;(2)y =ln 2x -5 ;(3)y =x sin 2x +π2 cos 2x +π2.11求下列函数的导函数.(1)y =4x 3+x 2-ln x +1;(2)y =4-cos xx 2+2;(3)y =e 2x +1sin x .12求下列函数的导数.(1)y =1-x 1+1x; (2)y =ln xx.13求下列函数的导数:(1)y =log 52x ;(2)y =8x ;(3)y =cos2x ;(4)y =2x 43.14求下列函数的导数:(1)y=x8;(2)y=4x;(3)y=log3x;(4)y=sin x+π2;(5)y=e2.15求下列函数的导数.(1)y=x12;(2)y=1x4;(3)y=3x;(4)y=ln x;(5)y=cos x.16求下列函数的导函数(1)y=x4-3x2-5x+6;(2)y=x+1x2;(3)y=x2cos x;(4)y=tan x17求下列函数的导函数.(1)f x =-2x3+4x2;(2)f x =13x3-x2+ax+1(3)f(x)=x +cos x,x∈(0,1);(4)f(x)=-x2+3x-ln x(5)y=sin x;(6)y=x+1x-118求下列函数的导数:(1)y=(2x2-1)(3x+1);(2)y=e x cos x;19求下列函数在指定点处的导数.(1)f x =xπ,x=1;(2)f x =sin x,x=π2.20求下列函数的导数.(1)y=x12;(2)y=1x4;(3)y=3x;(4)y=log5x.计算专题训练7导数计算临渊羡鱼不如退而结网21求下列函数的导数:(1)y =3x 2+cos x ;(2)y =x +1 ln x ;22求下列函数的导数.(1)y =2x 2+3 3x -1 ;(2)y =1-sin x1+cos x.23求下列函数的导数.(1)f x =x ln x +sin x ;(2)f x =2x +15e x.24求下列函数的导数:(1)f x =sin xx 2+2x(2)f x =e 3x ln 2x +425求下列函数的导数:(1)f x =ln 1+x 2;(2)y =cos 2x +1x.26求下列函数的导函数.(1)y =2x 2+3 3x -1 ;(2)y =x +3x 2+3.27求下列函数的导数:(1)y =2x 3-3x 2-4;(2)y =ln xx.28求下列函数的导数:(1)y =x 3-1e x(2)y =ln (5x +2)(3)y =cos (2x +1)x29求下列函数的导数.(1)y=ln x+1x ;(2)y=x-sin x2cos x2;(3)y=cos xe x30求下列函数的导数:(1)y=x+1x2;(2)y =e x sin x;(3)y=x ln x2+3x.31y=x ln x2+3x.32y=x+1x 2;33求下列函数的导数(1)y=(x-2)(3x+1)2;(2)y=x2cos2x34求下列函数的导数(1)f x =12x2-x-1x;(2)f x =e x+ln x+sin x35求下列函数的导数.(1)y=ln(2x+1);(2)y=sin xcos x;(3)y=x ln1+x2;(4)y=(x+1)(x+2)(x+3). 36求下列函数的导函数.(1)f x =x4+ln x;(2)f x =sin xx -cos x;(3)f x =e2x-1.计算专题训练7导数计算临渊羡鱼不如退而结网37求下列函数的导数.(1)y =x +x 5+sin xx 2;(2)y =x +1 x +2 x +3 ;(3)y =11-x +11+x.38求下列函数的导数:(1)y =x -1 x 3-1 ;(2)y =sin3x ;(3)y =x 2+1e x.39求下列函数的导数:(1)y =sin x +tan x x ∈0,π2;(2)y =ln 3x 2+5 .40求下列函数的导数:(1)y =x +1x2;(2)y =x ln x 2+3x .41求下列函数的导数.(1)f x =ln x +2xx 2;(2)f x =ln 4x +5 3.42求下列函数的导数:(1)y =3x 2+2x +1 cos x ;(2)y =3x 2+x x -5x +1x;(3)y =x 18+sin x -ln x ;(4)y =2x cos x -3x log 3x ;(5)y =3x sin x -3log 3x ;(6)y =e x cos x +tan x .43求下列函数的导数:(1)y =e -ax 2+bx ;(2)y =2sin (1-3x );(3)y =3cos 2x +x ;(4)y =ln 1+sin x ;(5)y =lg sin x 2+x 2;(6)y =cos 21+x 2e x.。
普高数学新课程标准的练习题(包含答案)

普高数学新课程标准的练习题(包含答案)一、整式的加减1. 化简下列整式,并写出结果的最高次项的系数:a) $3x^2 + 5x - 2x^2 + 4$b) $(4x^3 - 2x^2 + 3x - 1) - (x^3 + 2x^2 - 5x + 2)$2. 计算下列整式的值:a) $2x^2 - 3x + 4$,当$x=2$时;b) $3x^3 - 4x^2 + 2x - 5$,当$x=-1$时。
二、一次函数1. 已知函数$y=3x-2$,求:a) 函数的斜率;b) 函数在点$(2, 4)$处的值;c) 函数与$x$轴的交点。
2. 函数$f(x)$的图象经过点$A(1, -3)$和点$B(3, 1)$,求函数$f(x)$的解析式。
三、平面向量1. 已知向量$\vec{a} = (2, 3)$,$\vec{b} = (-1, 4)$,求:a) $\vec{a} + \vec{b}$;b) $\vec{a} - \vec{b}$;c) $2\vec{a} - 3\vec{b}$。
2. 已知向量$\vec{a} = (3, -2)$,$\vec{b} = (-1, 5)$,求向量$\vec{c}$使得$3\vec{a} + \vec{b} = 2\vec{c}$。
四、三角函数1. 化简下列三角函数的值:a) $\cos^2x - \sin^2x$;b) $\sin^2x + \cos^2x - 2\sin^2x$。
2. 已知$\sin\alpha = \frac{1}{2}$,$\cos\beta = -\frac{3}{5}$,$\alpha$和$\beta$都是锐角,求$\sin(\alpha + \beta)$的值。
五、平面几何1. 已知$\triangle ABC$中,$\angle ABC = 90^\circ$,$AB = 5$,$BC = 12$,求$\sin\angle BAC$的值。
(完整word版)高中数学计算题专项练习一(3)

高中数学计算题专项练习一高中数学计算题专项练习一一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.2.(1)若=3,求的值;(2)计算的值.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).5.计算的值.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.10.计算(1)(2).11.计算(1)(2).12.解方程:log2(x﹣3)﹣=2.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).14.求下列各式的值:(1)(2).15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.16.求值:.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.18.求值:+.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.20.计算(1)(2)(lg5)2+lg2×lg50 21.不用计算器计算:.22.计算下列各题(1);(2).23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.24.求值:(1)(2)2log525﹣3log264.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).26.计算下列各式(1);(2).27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.28.计算下列各题:(1);(2)lg25+lg2lg50.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.30.(1)计算:;(2)解关于x的方程:.高中数学计算题专项练习一参考答案与试题解析一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.考点:有理数指数幂的化简求值.专题:计算题.分析:(Ⅰ)利用对数与指数的运算法则,化简求值即可.(Ⅰ)先利用换元法把问题转化为二次方程的求解,解方程后,再代入换元过程即可.解答:(本小题满分13分)解:(Ⅰ)原式=﹣1++log2=﹣1﹣1+23=﹣1+8+=10.…(6分)(Ⅰ)设t=log2x,则原方程可化为t2﹣2t﹣3=0…(8分)即(t﹣3)(t+1)=0,解得t=3或t=﹣1…(10分)Ⅰlog2x=3或log2x=﹣1Ⅰx=8或x=…(13分)点评:本题考查有理指数幂的化简求值以及换元法解方程,是基础题.要求对基础知识熟练掌握.2.(1)若=3,求的值;(2)计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)利用已知表达式,通过平方和与立方差公式,求出所求表达式的分子与分母的值,即可求解.(2)直接利用指数与对数的运算性质求解即可.解答:解:(1)因为=3,所以x+x﹣1=7,所以x2+x﹣2=47,=()(x+x﹣1﹣1)=3×(7﹣1)=18.所以==.(2)=3﹣3log22+(4﹣2)×=.故所求结果分别为:,点评:本题考查有理数指数幂的化简求值,立方差公式的应用,考查计算能力.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:直接利用有理指数幂的运算求出a,对数运算法则求出b,然后求解a+2b的值解答:解:==.b=(log43+log83)(log32+log92)=(log23+log23)(log32+log32)==,Ⅰ,,Ⅰa+2b=3.点评:本题考查指数与对数的运算法则的应用,考查计算能力.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).考点:有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的运算法则进行化简求值即可.解答:解:(1)原式=﹣(3×1)﹣1﹣﹣10×=﹣﹣1﹣3=﹣1.(2)原式=+﹣2=+﹣2=﹣2+﹣2.点评:本题考查有理数指数幂的运算法则,考查学生的运算能力,属基础题,熟记有关运算法则是解决问题的基础.5.计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:根据分数指数幂运算法则进行化简即可.解答:解:原式===.点评:本题主要考查用分数指数幂的运算法则进行化简,要求熟练掌握分数指数幂的运算法则.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用有理指数幂的运算性质和对数的运算性质化简求值.(2)把已知的等式两边平方即可求得x2+x﹣2的值.解答:解:(1)==;(2)由x+x﹣1=3,两边平方得x2+2+x﹣2=9,所以x2+x﹣2=7.点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,是基础的计算题.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.考点:指数函数的单调性与特殊点;方根与根式及根式的化简运算.专题:计算题;转化思想.分析:(1)由﹣2x2+5x﹣2>0,解出x的取值范围,判断根号下与绝对值中数的符号,进行化简.(2)先判断底数的取值范围,由于底数大于1,根据指数函数的单调性将不等式进行转化一次不等式,求解即可.解答:解:(1)Ⅰ﹣2x2+5x﹣2>0Ⅰ,Ⅰ原式===(8分)(2)Ⅰ,Ⅰ原不等式等价于x<1﹣x,Ⅰ此不等式的解集为(12分)点评:本题考查指数函数的单调性与特殊点,求解本题的关键是判断底数的符号,以确定函数的单调性,熟练掌握指数函数的单调性是正确转化的根本.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用分数指数幂的运算法则即可得出;(2)利用对数的运算法则和lg2+lg5=1即可得出.解答:解:(1)原式==4a.(2)原式=+50×1=lg102+50=52.点评:本题考查了分数指数幂的运算法则、对数的运算法则和lg2+lg5=1等基础知识与基本技能方法,属于基础题.9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)先将每一个数化简为最简分数指数幂的形式,再利用运算性质化简.(2)先将每一个对数式化简,再利用对数运算性质化简.解答:解:(1)===﹣45;(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006=(3lg2+3)•lg5+3(lg2)2﹣lg6+(lg6﹣3)=3lg2•lg5+3lg5+3(lg2)2﹣3=3lg2(lg5+lg2)+3lg5﹣3=3lg2+3lg5﹣3=3﹣3=0.点评:本题考察运算性质,做这类题目最关键的是平时练习时要细心、耐心、不怕麻烦,考场上才能熟练应对!10.计算(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.分析:(1)利用指数幂的运算性质即可得出;(2)利用对数函数的运算性质即可得出.解答:解:(1)原式=|2﹣e|﹣+﹣=e﹣2﹣+=e﹣2﹣e+=﹣2.(2)原式=+3=﹣4+3=2﹣4+3=1.点评:熟练掌握指数幂的运算性质、对数函数的运算性质是解题的关键.11.计算(1)(2).考点:对数的运算性质;有理数指数幂的运算性质.专题:计算题.分析:(1)直接利用对数的运算法则求解即可.(2)直接利用有理指数幂的运算法则求解即可.解答:解:(1)==(2)==9×8﹣27﹣1=44.点评:本题考查对数的运算法则、有理指数幂的运算法则的应用,考查计算能力.12.解方程:log2(x﹣3)﹣=2.考点:对数的运算性质.专题:计算题.分析:由已知中log2(x﹣3)﹣=2,由对数的运算性质,我们可得x2﹣3x﹣4=0,解方程后,检验即可得到答案.解答:解:若log2(x﹣3)﹣=2.则x2﹣3x﹣4=0,…(4分)解得x=4,或x=﹣1(5分)经检验:方程的解为x=4.…(6分)点评:本题考查的知识点是对数的运算性质,其中利用对数的运算性质,将已知中的方程转化为整式方程是解答醒的关键,解答时,易忽略对数的真数部分大于0,而错解为4,或﹣1.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算的性质可得结果;(Ⅰ)利用指数幂的运算性质可得结果;解答:解:(Ⅰ)lg24﹣(lg3+lg4)+lg5=lg24﹣lg12+lg5=lg=lg10=1;(Ⅰ)=×+﹣﹣1=32×23+3﹣2﹣1=72.点评:本题考查对数的运算性质、指数幂的运算性质,考查学生的运算能力,属基础题.14.求下列各式的值:(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据对数和指数的运算法则进行求解即可.解答:解:(1)原式==log﹣9=log39﹣9=2﹣9=﹣7.(2)原式=== =.点评:本题主要考查对数和指数幂的计算,要求熟练掌握对数和指数幂的运算法则.15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.分析:(1)利用指数幂的运算性质即可;(2)利用指数式和对数式的互化和运算性质即可.解答:解:(1)原式===3.(2)由xlog34=1,得x=log43,Ⅰ4x=3,,Ⅰ4x+4﹣x==.点评:熟练掌握对数和指数幂的运算性质是解题的关键.16.求值:.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的定义,及对数的运算性质,即可求出的值.解答:解:原式…(4分)…(3分)=…(1分)点评:本题考查的知识点是对数的运算性质,有理数指数幂的化简求值,其中掌握指数的运算性质和对数的运算性质,是解答本题的关键.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质可求;(2)利用对数运算性质可求;解答:解:(1)原式==0.4﹣1+8+=;(2)原式=lg25+2lg5•lg2+lg22=(lg5+lg2)2=(lg10)2=1点评:本题考查对数的运算性质、有理数指数幂的运算,属基础题,熟记有关运算性质是解题基础.18.求值:+.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:直接利用对数的运算法则,求出表达式的值即可.解答:解:原式==3+9+2000+1=2013.点评:本题考查对数的运算法则的应用,基本知识的考查.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.考点:对数的运算性质.专题:计算题.分析:(1)通过a>b>1利用,平方,然后配出log a b﹣log b a的表达式,求解即可.(2)直接利用对数的运算性质求解的值解答:解:(1)因为a>b>1,,所以,可得,a>b>1,所以log a b﹣log b a<0.所以log a b﹣log b a=﹣(2)==﹣4.点评:本题考查对数与指数的运算性质的应用,整体思想的应用,考查计算能力.20.计算(1)(2)(lg5)2+lg2×lg50考点:对数的运算性质;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:计算题.分析:(1)把根式转化成指数式,然后利用分数指数幂的运算法则进行计算.(2)先把lg50转化成lg5+1,然后利用对数的运算法则进行计算.解答:解:(1)===(6分)(2)(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+lg10)=(lg5)2+lg2×lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(12分)点评:本题考查对数的运算法则和根式与分数指数幂的互化,解题时要注意合理地进行等价转化.21.不用计算器计算:.考点:对数的运算性质.专题:计算题.分析:,lg25+lg4=lg100=2,,(﹣9.8)0=1,由此可以求出的值.解答:解:原式=(4分)=(8分)=(12分)点评:本题考查对数的运算性质,解题时要认真审题,注意公式的灵活运用.22.计算下列各题(1);(2).考点:对数的运算性质.专题:计算题.分析:(1)直接利用对数的运算性质求解表达式的值.(2)利用指数的运算性质求解表达式的值即可.解答:解:(1)==9+﹣1=(2)===﹣45.点评:本题考查指数与对数的运算性质的应用,考查计算能力.23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.考点:对数的运算性质.专题:计算题.分析:(1)先根据对数运算性质求出x,再根据对数的真数一定大于0检验即可.(2)设log3x=y,得出2y2﹣y﹣1=0,求出y的值,再由对数的定义求出x的值即可.解答:解:(1)原方程可化为lg(x﹣1)(x﹣2)=lg(x+2)所以(x﹣1)(x﹣2)=x+2即x2﹣4x=0,解得x=0或x=4经检验,x=0是增解,x=4是原方程的解.所以原方程的解为x=4(2)设log3x=y,代入原方程得2y2﹣y﹣1=0.解得y1=1,.log3x=1,得x1=3;由,得.经检验,x1=3,都是原方程的解.点评:本题主要考查对数的运算性质和对数函数的定义域问题.属基础题.24.求值:(1)(2)2log525﹣3log264.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)首先变根式为分数指数幂,然后拆开运算即可.(2)直接利用对数式的运算性质化简求值.解答:解:(1)====.(2)2log525﹣3log264==4﹣3×6=﹣14.点评:本题考查了对数式的运算性质,考查了有理指数幂的化简求值,解答的关键是熟记有关性质,是基础题.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质化简即可;(2)利用对数的运算性质化简即可.解答:解:(1)原式=﹣b﹣3÷(4)…..3分=﹣…..7分(2)解原式=…..2分=…..4分=…..6分=….7分.点评:本题考查对数的运算性质,考查有理数指数幂的化简求值,熟练掌握其运算性质是化简的基础,属于基础题.26.计算下列各式(1);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则和换底公式即可得出.解答:解:(1)原式=﹣1﹣+=.(2)原式=+lg(25×4)+2+1==.点评:本题考查了指数幂的运算法则、对数的运算法则和换底公式,属于基础题.27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(1)把第一、三项的底数写成平方、立方的形式即变成幂的乘方运算,第二项不等于0根据零指数的法则等于1,化简求值即可;(2)把第一项利用换底公式换成以2为底的对数,第二项利用对数函数的运算性质化简,log23整体换成a即可.解答:解:(1)原式=+1+=+1+=4;(2)原式=﹣3log22×3=log23﹣3(1+log23)=a﹣3(1+a)=﹣2a﹣3.点评:本题是一道计算题,要求学生会进行根式与分数指数幂的互化及其运算,会利用换底公式及对数的运算性质化简求值.做题时注意底数变乘方要用到一些技巧.28.计算下列各题:(1);(2)lg25+lg2lg50.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数的运算法则,直接求解表达式的值即可.(2)利用对数的运算性质,直接化简求解即可.解答:解:(1)原式===.(5分)(2)原式lg25+lg2lg50=lg25+2lg2lg5+lg25=(lg2+lg5)2=1 (5分)点评:本题考查对数的运算性质,有理数指数幂的化简求值,考查计算能力.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:(1)直接利用对数的运算性质即可求解(2)直接根据指数的运算性质即可求解解答:解:(1)原式=lg25+lg2(1+lg5)=lg25+lg2lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(2)原式=1+3+36﹣36=4.…(14分)点评:本题主要考查了对数的运算性质及指数的运算性质的简单应,属于基础试题30.(1)计算:;(2)解关于x的方程:.考点:对数的运算性质;有理数指数幂的运算性质;有理数指数幂的化简求值;函数的零点.专题:计算题.分析:(1)根据分数指数幂运算法则进行化简即可.(2)利用对数函数的性质和对数的运算法则进行计算即可.解答:解:(1)原式==﹣3;(2)原方程化为log5(x+1)+log5(x﹣3)=log55,从而(x+1)(x﹣3)=5,解得x=﹣2或x=4,经检验,x=﹣2不合题意,故方程的解为x=4.点评:本题主要考查分数指数幂和对数的运算,要求熟练掌握分数指数幂和对数的运算法则.。
新高三数学测试题及答案

新高三数学测试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 6x + 8,则f(3)的值为:A. -1B. 1C. 9D. 11答案:B2. 已知等差数列{a_n}中,a_1 = 2,公差d = 3,求a_5的值。
A. 14B. 17C. 20D. 23答案:A3. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,圆心坐标为:A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)答案:A4. 函数y = sin(x) + cos(x)的值域为:A. [-1, 1]B. [-√2, √2]C. [0, 2]D. [1, 2]答案:B5. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B =:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B6. 已知向量a = (3, 4),b = (-4, 3),则向量a与向量b的夹角θ满足:A. cosθ = 1/7B. cosθ = -1/7C. cosθ = 7/√50D. cosθ = -7/√50答案:A7. 函数y = x^3 - 3x^2 + 4x的导数y'为:A. 3x^2 - 6x + 4B. x^2 - 3x + 4C. 3x^2 - 6x + 1D. x^2 - 3x + 2答案:A8. 已知复数z = 2 + 3i,求|z|的值。
A. √13B. √19C. √7D. √17答案:A9. 已知双曲线方程为x^2/9 - y^2/16 = 1,求其渐近线方程。
A. y = ±(4/3)xB. y = ±(3/4)xC. y = ±(16/9)xD. y = ±(9/16)x答案:A10. 已知等比数列{b_n}中,b_1 = 2,公比q = 2,求b_4的值。
A. 16B. 32C. 64D. 128答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = _______。
高三数学指数练习题

高三数学指数练习题1. 指数的基础计算a) 计算:2^5 × 2^3b) 计算:3^4 ÷ 3^2c) 计算:(4^2)^32. 指数的乘法法则a) 计算:(2^3) × (2^4) × (2^2)b) 计算:(5^2) × (5^3)c) 计算:(10^3) × (10^(-2))3. 指数的除法法则a) 计算:(3^6) ÷ (3^4)b) 计算:(4^5) ÷ (4^2)c) 计算:(6^(-3)) ÷ (6^(-5))4. 指数的幂乘法则a) 计算:(2^3)^4b) 计算:(3^2)^5c) 计算:(5^(-2))^(-3)5. 指数函数方程a) 求解方程:2^(x+2) = 8b) 求解方程:5^(2x) = 125c) 求解方程:3^(3x-1) = 96. 科学计数法a) 将6,750,000以科学计数法表示b) 将0.0000375以科学计数法表示c) 将5.2 × 10^(-4)与2.6 × 10^2相乘,并以科学计数法表示答案7. 算术平方根与指数运算a) 计算:√(4^4)b) 计算:√(6^3)c) 将2^4 + 2^3化简为幂指数形式8. 指数运算的应用a) 用指数运算表示2的平方b) 用指数运算表示1/4的平方c) 根据指数运算的性质,比较3^5和5^3的大小9. 指数函数的图像与性质a) 描绘y = 2^x的图像b) 描绘y = 1/3^x的图像c) 描述指数函数的增减性和奇偶性10. 实际问题中的指数应用a) 某城市种植的植物数量每年以10%的速度递增,如果初始时有1000棵,则经过5年将有多少棵?b) 某药物的剂量每4小时减少一半,如果初始剂量是100毫克,则经过8小时后剩余多少毫克?c) 某货币每年贬值5%,如果初始价值为5000元,则经过10年后价值约为多少元?这是一个高三数学指数练习题的题目清单,通过解答这些问题,你可以巩固和提高自己在指数运算方面的理解和运用能力。
高中数学计算题

高中数学计算题高中数学计算题1. 假如一辆汽车以每小时60公里的速度行驶,问它在4小时内能走多远?解析:根据速度公式,速度等于路程除以时间,所以路程等于速度乘以时间,即60公里/小时乘以4小时等于240公里。
所以,这辆汽车在4小时内能走240公里。
2. 有一个三角形ABC,已知AB=5cm,AC=8cm,角BAC为90°,问三角形的周长是多少?解析:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方之和,所以BC的平方等于AB的平方加上AC的平方,即BC的平方等于5cm的平方加上8cm的平方,即BC的平方等于25+64,即BC的平方等于89,所以BC等于√89cm。
因此,三角形的周长等于AB加上BC加上AC,即5cm加上√89cm加上8cm,即5+√89+8,所以三角形的周长等于13+√89cm。
3. 有一条铁路,全长120千米,A、B 两车站距离为80千米,B、C 两车站距离为40千米,问从A 站到C 站的距离是多少?解析:从题目中我们可以得到的信息是A站到B站的距离是80千米,B站到C站的距离是40千米,所以从A站到C站的距离就是这两段距离的和,即80千米加上40千米,即80+40=120千米。
所以,从A站到C站的距离是120千米。
4. 有一条直角边长为3cm的等腰直角三角形,问其斜边长是多少?解析:由题可知,这是一个直角三角形,其中直角边的边长是3cm,根据勾股定理,斜边的平方等于直角边的平方之和,所以斜边等于直角边的开方,即斜边等于√(3^2+3^2),即斜边等于√18,所以斜边等于3√2cm。
所以,这个等腰直角三角形的斜边长是3√2cm。
5. 如果一块正方形的面积是100平方厘米,问这个正方形的边长是多少?解析:正方形的面积等于边长的平方,所以边长等于正方形的面积的开方,即边长等于√100平方厘米,即边长等于10厘米。
所以,这个正方形的边长是10厘米。
综上所述,以上是高中数学计算题的解答。
2024年高一数学真题汇编(北京专用)平面向量的数量积及其应用(含坐标)5种常考题型归类(解析版)
专题02平面向量的数量积及其应用(含坐标)5种常考题型归类向量数量积的运算1.(2023春•西城区校级期中)向量||||2a b == ,a与b 的夹角为34π,则a b ⋅ 等于()A .-B .C .2-D .4【解析】 ||||2a b == ,a与b 的夹角为34π,∴32||||cos 22()42a b a b π⋅==⨯⨯-=-.故选:A .2.(2023春•西城区校级期中)已知向量a,b ,c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c -⋅=;a b ⋅=.【解析】如图建立平面直角坐标系,所以(2,1)a = ,(2,1)b =- ,(0,1)c =,所以(0,2)a b -= ,()2a b c -⋅= ,221(1)3a b ⋅=⨯+⨯-=.故答案为:2;3.3.(2023春•东城区校级期中)已知菱形ABCD 边长为1,60BAD ∠=︒,则(BD DC ⋅=)A B .C .12D .12-【解析】60BAD ∠=︒ ,由菱形的几何性质可得:1AB BD DC ===,,120BD DC 〈〉=︒,故111cos1202BD DC ⋅=⨯⨯︒=- .故选:D .4.(2023春•怀柔区校级期中)已知菱形ABCD 的边长为a ,60ABC ∠=︒,则(DA CD ⋅=)A .212a -B .214a -C .214a D .212a 【解析】已知菱形ABCD 的边长为a ,60ABC ∠=︒,则2211||||cos(180)()22DA CD DA CD ADC a a ⋅=︒-∠=⨯-=- .故选:A .5.(2021秋•西城区校级期中)在ABC ∆中,90C =︒,4AC =,3BC =,点P 是AB 的中点,则(CB CP ⋅= )A .94B .4C .92D .6【解析】在ABC ∆中,90C =︒,则0CB CA ⋅=,因为点P 是AB 的中点,所以1()2CP CB CA =+ ,所以222111119[()]||222222CB CP CB CB CA CB CB CA CB CB ⋅=⋅+=+⋅=== .故选:C .6.(2015秋•北京校级期中)ABC ∆外接圆的半径为1,圆心为O ,且20OA AB AC ++= ,||||OA AB =,则CA CB等于()A .32B C .3D .【解析】 20OA AB AC ++=,∴0OA AB OA AC +++= ,∴OB OC =- .O ∴,B ,C 共线,BC 为圆的直径,如图AB AC ∴⊥. ||||OA AB = ,∴||||1OA AB == ,||2BC =,||AC =,故6ACB π∠=.则||||cos303CA CB CA CB =︒= ,故选:C .7.(2023春•房山区期中)在梯形ABCD 中,//AB CD ,2CD =,4BAD π∠=,若2AB AC AB AD ⋅=⋅ ,则(AD AC ⋅= )A .12B .16C .20D .10【解析】因为2AB AC AB AD ⋅=⋅,所以()AB AC AB AD AB AC AD AB DC AB AD ⋅-⋅=⋅-=⋅=⋅ ,所以2||AB AB AD =⋅ ,可得||cos 24AD π= ,解得||22AD = ,所以22()(22)222cos 124AC AD AD AD DC AD AD DC π⋅=⋅+=+⋅=+⨯= .故选:A .8.(2023秋•大兴区期中)已知等边ABC ∆的边长为4,E ,F 分别是AB ,AC 的中点,则EF EA ⋅=;若M ,N 是线段BC 上的动点,且||1MN =,则EM EN ⋅的最小值为.【解析】以BC 所在直线为x 轴,BC 的中垂线所在直线为y 轴,建立平面直角坐标系,如图所示,因为等边ABC ∆的边长为4,E ,F 分别是AB ,AC 的中点,所以(2,0)B -,(2,0)C ,(0A ,23),(3)E -,3)F ,所以(2,0)EF = ,3)EA =,所以21032EF EA ⋅=⨯+=;不妨设M 在N 的左边,则设(M m ,0)(21)m - ,则(1,0)N m +,所以(1,3)EM m =+ ,(2,3)EN m =+,所以22311(1)(2)335(24EM EN m m m m m ⋅=+++=++=++ ,所以当32m =-时,EM EN ⋅ 有最小值为114.故答案为:2;114.9.(2023春•西城区校级期中)已知正方形ABCD 的边长为2,P 为正方形所在平面上的动点,且||BP =,则DB AP ⋅的最大值是()A .0B .4C .D .8【解析】已知正方形ABCD 的边长为2,P 为正方形所在平面上的动点,且||BP =,建立如图所示的平面直角坐标系,则(0,0)B ,(0,2)A ,(2D ,2(2,2)2))θθ=--⋅-,P θ)θ,[0θ∈,2]π,则(2,2)2)444sin(4DB AP πθθθθθ⋅=--⋅-=--=-+ ,又[0θ∈,2]π,则[0DB AP ⋅∈,8],则DB AP ⋅的最大值是8.故选:D .10.(2023春•顺义区期中)已知P 是ABC ∆所在平面内一点,||3AB = ,||1AP = ,6AC AB ⋅=,则AB CP ⋅的最大值是()A .3B .2C .2-D .3-【解析】||3AB = ,||1AP = ,6AC AB ⋅=,∴()AB CP AB AP AC ⋅=⋅- AB AP AB AC =⋅-⋅ ||||cos 6AB AP BAP =∠-3cos 6BAP =∠-,cos 1BAP ∴∠=时,AB CP ⋅取最大值3-.故选:D .11.(2023秋•通州区期中)在等腰ABC ∆中,2AB AC ==,2BA BC ⋅=,则BC =2;若点P满足122CP CA CB =-,则PA PB ⋅ 的值为.【解析】在等腰ABC ∆中,2AB AC ==,又2BA BC ⋅=,则()2AB AC AB ⋅-=-,则222AB AC AB ⋅=-= ,即||||cos 2AB AC BAC ∠=,即1cos 2BAC ∠=,即3BAC π∠=,即ABC ∆为等边三角形,即2BC =;又点P 满足122CP CA CB =-,则221111111()()(2)(3)664422242242422PA PB CA CP CB CP CB CA CB CA CB CA CB CA ⋅=-⋅-=+⋅-=-+⋅=⨯-⨯+⨯⨯⨯= 故答案为:2;24.向量的模12.(2023秋•东城区校级期中)已知向量a 与向量b 的夹角为120︒,||||1a b == ,则|2|(a b += )A .3B C .2D .1【解析】已知向量a与向量b 的夹角为120︒,||||1a b == ,则1111()22a b ⋅=⨯⨯-=-,则|2|a b +=== .故选:B .13.(2023春•海淀区校级期中)已知平面向量a ,b 满足||2a = ,||1b = ,且a与b 的夹角为23π,则||(a b += )A B C .D .3【解析】 ||2a = ,||1b = ,且a与b 的夹角为23π,∴平面向量的数量积运算可知,221cos 13a b π⋅=⨯⨯=-,∴222222||()222113a b a b a a b b +=+=+⋅+=-⨯+= ,∴||a b +=故选:A .14.(2022春•东城区校级期中)已知a ,b 是单位向量,2c a b =+ ,若a c ⊥,则||(c = )A .3BC D【解析】 a ,b 是单位向量,2c a b =+ ,a c ⊥,∴2(2)20a c a a b a a b ⋅=⋅+=+⋅=,∴21a b ⋅=-,||c = ==.故选:C .15.(2014秋•西城区校级期中)已知向量a与b 的夹角是120︒,||3a = ,||a b + ,则||b =.【解析】向量a与b 的夹角是120︒,||3a = ,||a b += ,则2()13a b +=,即有22213a b a b ++=,即29||23||cos12013b b ++⨯︒=,即2||3||40b b --=,即有||4(1b =-舍去),故答案为:4.16.(2020春•朝阳区校级期中)设向量a ,b 满足||2a = ,||1b = ,a < ,60b >=︒,则|2|a b += .【解析】由||2a = ,||1b = ,a <,60b >=︒ ,则1||||cos ,2112a b a b a b ⋅=<>=⨯⨯=,则|2|a b +==故答案为:.17.(2023春•海淀区校级期中)已知||1a =,||b = 1a b ⋅=,则|2|(a b -= )A .3BC .5D .9【解析】 222222|2|(2)441414(5a b a b a a b b -=-=-⋅+=-⨯+⨯=,∴|2|a b -=.故选:B .18.(2023春•东城区校级期中)若向量,,a b c满足:,||1a b c ≠= ,且()()0a c b c -⋅-= ,则||||a b a b ++-的最小值为()A .52B .2C .1D .12【解析】设a OA =,b OB = ,c OC = ,设M 为AB 的中点,已知向量,,a b c满足:,||1a b c ≠= ,且()()0a c b c -⋅-= ,则||1OC = ,CA CB ⊥ ,则||||2||||2||2||2(||||)2||2a b a b OM BA OM CM OM CM OC ++-=+=+=+=,当且仅当O 在线段CM 上时取等号,即||||a b a b ++-的最小值为2.故选:B .19.(2023秋•丰台区期中)已知平面向量,a b满足||2a = ,||1b = ,且1a b ⋅= ,则|2|(a b += )A .12B .4C .D .2【解析】已知平面向量,a b满足||2a = ,||1b = ,且1a b ⋅= ,则|2|2a b +=故选:C .20.(2022春•东城区校级期中)已知向量(1,1)a =,(2,3)b =- ,那么|2|(a b -= )A .5B .C .8D【解析】向量(1,1)a =,(2,3)b =- ,那么|2||(5a b -= ,5)|-==.故选:B .21.(2022春•西城区校级期中)已知向量a ,b满足||5a = ,(3,4)b = ,0a b ⋅= .则||a b -= .【解析】因为||5a = ,(3,4)b = ,所以2223425b =+= ,所以||5b = ,又因为0a b ⋅=,所以222()225202550a b a a b b -=-⋅+=-⨯+= ,所以||a b -=.故答案为:.22.(2023秋•西城区校级期中)已知向量,a b满足(2,),(2,1)a b x a b +=-=- ,且22||||1a b -=- ,则(x =)A .3-B .3C .1-D .1【解析】因为(2,),(2,1)a b x a b +=-=-,所以2222||||()()41a b a b a b a b x -=-=+⋅-=-+=-,解得:3x =.故选:B .23.(2017春•东城区校级期中)设x ,y R ∈,向量(,1)a x = ,(1,)b y = ,(2,4)c =- ,且a c ⊥ ,//b c,则||(a b += )A B C .D .10【解析】 (,1),(2,4)a x c ==- ,且a c ⊥,21(4)0x ∴+-= ,解得2x =.又 (1,),(2,4)b y c ==-,且//b c ,1(4)2y ∴-= ,解之得2y =-,由此可得(2,1)a =,(1,2)b =- ,∴(3,1)a b +=-,可得||a b +=.故选:B .向量的垂直问题24.(2023春•大兴区校级期中)已知向量(,2),(1,1)a x b ==- ,若a b ⊥,则(x =)A .1B .1-C .2D .2-【解析】因a b ⊥ ,则20a b x ⋅=-+=,得2x =.故选:C .25.(2023春•昌平区校级期中)向量(,1),(2,4)a t b == ,若a b ⊥,则实数t 的值为()A .1B .1-C .2D .2-【解析】因为(,1),(2,4)a t b == ,且a b ⊥,所以240a b t ⋅=+=,得2t =-.故选:D .26.(2023春•通州区期中)已知向量(2,4)a =,(1,)b m =- ,则“3m =”是“()a b b -⊥ ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】根据题意,当3m =时,向量(2,4)a =,(1,3)b =- ,则(3,1)a b -= ,有()330a b b -⋅=-+= ,则有()a b b -⊥,反之,若()a b b -⊥ ,则()3(4)0a b b m m -⋅=-+-=,解可得3m =或1,3m =不一定成立;故“3m =”是“()a b b -⊥”的充分不必要条件.故选:A .27.(2023春•东城区校级期中)已知向量(1,2)a =- ,(,1)b m = .若向量a b + 与a垂直,则(m =)A .6B .3C .7D .14-【解析】已知向量(1,2)a =- ,(,1)b m = ,若向量a b + 与a垂直,则2()5(2)0a b a a a b m +=+=+-+=,求得7m =,故选:C .28.(2023秋•东港区校级期中)已知向量(1,0),(0,1)a b == ,若()()a b a b λμ-⊥+,其中λ,R μ∈,则()A .1λμ+=-B .1λμ+=C .1λμ⋅=-D .1λμ⋅=【解析】(1,0),(0,1)a b ==,则(1,)a b λλ-=- ,(1,)a b μμ+=,()()a b a b λμ-⊥+,则110λμ⨯-⋅=,解得1λμ⋅=.故选:D .29.(2023秋•西城区校级期中)如果平面向量(2,0)a =,(1,1)b = ,那么下列结论中正确的是()A .||||a b = B .a b =C .()a b b -⊥D .//a b【解析】由平面向量(2,0)a =,(1,1)b = ,知:在A 中,||2a =,||b = ||||a b ∴≠ ,故A 错误;在B 中,2a b =,故B 错误;在C 中, (1,1)a b -=- ,()0a b b ∴-= ,()a b b ∴-⊥,故C 正确;在D 中, 2011≠,∴a与b 不平行,故D 错误.故选:C .30.(2023春•海淀区校级期中)已知平面向量11(,),)2222a b =-=-,则下列关系正确的是()A .()a b b +⊥B .()a b a +⊥C .()()a b a b +⊥-D .()//()a b a b +-【解析】平面向量11()22a b =-=-,则a b ⋅=-=,22||1b b == ,22||1a a == ,对于A ,2()0a b b a b b +⋅=⋅+≠,故A 错误;对于B ,2()0a b a a a b +⋅=+⋅≠,故B 错误;对于C ,向量1(,)22a =-,1()22b =- ,则||||1a b == ,则有22()()||||0a b a b a b +⋅-=-= ,即()()a b a b +⋅-,故C 正确;对于D ,12a b += 1)2,1(2a b -=1)2+,易得()a b + 与()a b - 平行不成立,故D 错误.故选:C .31.(2021春•东城区校级期中)已知向量(1,0)a = ,(,1)b m = ,且a与b 的夹角为4π.(1)求m 及|2|a b -;(2)若a b λ+与b 垂直,求实数λ的值.【解析】(1)根据题意,向量(1,0)a =,(,1)b m = ,则a b m ⋅= ,||1a =,||b = ,又由a与b 的夹角为4π,则有||||cos a b a b θ⋅= ,即2m =,解可得:1m =,则2(1,2)a b -=-- ,故|2|a b -==;(2)由(1)的结论,1m =,则(1,1)b =,若a b λ+与b 垂直,则()120a b b λλ+⋅=+= ,解可得:12λ=-.向量的夹角问题32.(2023春•仓山区校级期中)若||1a = ,||b = ,2a b ⋅= ,则a,b 的夹角为()A .0B .4πC .2πD .34π【解析】cos a b a b θ⋅=⨯⨯,将已知代入可得:21cos θ=⨯,解得:2cos 2θ=,[0θ∈ ,]π,故4πθ=,故选:B .33.(2023春•顺义区期中)若1e ,2e 是夹角为3π的两个单位向量,则12a e e =+ 与122b e e =- 的夹角为()A .6πB .3πC .23πD .56π【解析】根据题意,设12a e e =+与122b e e =- 的夹角为θ,[0θ∈,]π,1e ,2e 夹角为3π的两个单位向量,则1212e e ⋅= ,12a e e =+,122b e e =- ,则有221212322a b e e e e ⋅=--⋅=- ;又由2212||()3a e e =+=,2212||(2)3b e e =-= ,则有||a =,||b = ,则1cos 2||||a b a b θ⋅==- ,则23πθ=.故选:C .34.(2023秋•朝阳区期中)已知单位向量a ,b 满足(2)2a a b ⋅+= ,则向量a与b 的夹角为.【解析】因为a,b 是单位向量,且(2)2a a b ⋅+= ,所以222a a b +⋅= ,所以12a b ⋅= ,所以1cos ,2||||a b a b a b ⋅<>==,因为,[0,]a b π<>∈,所以,3a b π<>=.故答案为:3π.35.(2023春•房山区期中)已知向量(3,1)a =,(2,1)b =- .则a b ⋅= ;a <,b >=.【解析】向量(3,1)a =,(2,1)b =- ,所以321(1)5a b ⋅=⨯+⨯-=;计算cos a <,2||||a b b a b ⋅>=== ,又因为a <,[0b >∈ ,]π,所以a <,4b π>= .故答案为:5;4π.36.(2023春•通州区期中)已知向量(1,2)a =- ,(2,4)b = ,则向量a与b 夹角的余弦值为()A .35-B .35C .1-D .1【解析】根据题意,设向量a与b 夹角为θ,向量(1,2)a =-,(2,4)b = ,则||a ==,||b == ,286a b ⋅=-=-,则3cos 5||||a b a b θ⋅===- .故选:A .37.(2023春•海淀区校级期中)已知a ,b 是单位向量,2c a b =+ .若a c ⊥ ,则a与b 的夹角为()A .6πB .3πC .23πD .56π【解析】设a与b 的夹角为θ,[0θ∈,]π, 2c a b =+ ,a c ⊥,∴2(2)20a c a a b a a b ⋅=⋅+=+⋅=,a,b 是单位向量,12cos 0θ∴+=,解得1cos 2θ=-,∴23πθ=.故选:C .38.(2023春•东城区校级期中)平面向量||2a = ,||2b = ,()a b a -⊥ ,则a与b 的夹角是()A .512πB .3πC .4πD .6π【解析】()a b a -⊥,()0a b a ∴-⋅= ,即20a a b -⋅=,∴22a b a ⋅==,2cos ,2||||a b a b a b ⋅∴<>==⋅,,[0,]a b π<>∈,∴,a b的夹角是4π.故选:C .39.(2022春•西城区校级期中)已知向量a ,b 在正方形网格中的位置如图所示,那么向量a ,b的夹角为()A .45︒B .60︒C .90︒D .135︒【解析】根据题意,如图,建立坐标系,设小正方形的边长为1,向量a,b 的夹角为θ,则(3,1)a =,(2,4)b = ,则||10a = ||4165b =+ 10a b ⋅=,则102cos 2||||1025a b a b θ⋅===⨯ ,则45θ=︒,故选:A .40.(2023春•海淀区校级期中)已知向量(1,0)a =,(2,a b += ,则向量a与b 的夹角为()A .3π-B .6πC .3πD .23π【解析】向量(1,0)a =,(2,a b +=,所以(1,b = ,所以1,||1,||2a b a b ⋅===,设向量a与b 的夹角为α,则1cos 2||||a b a b α⋅== ,因为[0α∈,]π,故3πα=.故选:C .41.(2013秋•宣武区校级期中)若向量a 、b 满足(2,1)a b +=- ,(1,2)a = ,则向量a与b 的夹角等于()A .135︒B .120︒C .60︒D .45︒【解析】向量a、b 满足(2,1)a b +=- ,(1,2)a = ,则(1,3)b =- ,165a b =-=-,||a =,||b =即有cos ,2||||a b a b a b <>===,由于0,180a b ︒<>︒,则有向量a与b 的夹角等于135︒.故选:A .42.(2023秋•通州区期中)已知向量(2,0)a =- ,(1,2)b =,c =,则下列结论中正确的是()A .//a bB .2a b ⋅= C .||2||b c = D .a 与c的夹角为120︒【解析】已知向量(2,0)a =- ,(1,2)b =,c =,A 选项,因(2)210-⨯≠⨯,则a与b 不平行,故A 错误;B 选项,因202a b ⋅=-+=-,故B 错误;C选项,||b ==又||2c ==,则||2||b c ≠ ,故C 错误;D 选项,21cos ,||||222a c a c a c ⋅-〈〉===-⨯,又,[0,180]a c 〈〉∈︒︒,则,120a c 〈〉=︒,即a 与c的夹角为120︒,故D 正确.故选:D.投影向量问题43.(2023春•通州区期中)已知向量a ,b 满足10a b ⋅= ,且(3,4)b =- ,则a在b 上的投影向量为()A .(6,8)-B .(6,8)-C .6(5-,8)5D .6(5,8)5-【解析】因为10a b ⋅=,且(3,4)b =- ,所以a在b 上的投影向量||cos a a < ,2(3,4)6()10(9165||||b b b a b b b ->=⋅=⨯=-+ ,85.故选:C .44.(2023春•朝阳区校级期中)已知两个单位向量a和b 的夹角为120︒,则向量a b - 在向量b 上的投影向量为()A .12b- B .12bC .32b- D .32b【解析】 单位向量a和b 的夹角为120︒,23()||11cos12012a b b a b b ∴-⋅=⋅-=⨯⨯︒-=- ,向量a b -在向量b 上的投影向量为()32||||a b b b b b b -⋅⋅=- .故选:C .45.(2021春•丰台区期中)已知(1,0)a = ,(5,5)b = ,则向量a在向量b 方向上的投影向量的坐标为.【解析】向量a在向量b方向上的投影为22||a b b ⋅= ,由于向量a在向量b 方向上的投影向量与b 共线,可得所求向量为11(102b = ,1)2,故答案为:1(2,1)2.46.(2023春•房山区期中)已知向量(1,3)a =,(1,1)b =- ,则下列结论正确的是()A .a与b 的夹角是钝角B .()a b b+⊥C .a在bD .a在b 上的投影的数量为105【解析】对于A ,因为1320a b ⋅=-+=> ,所以a与b 的夹角不是钝角,选项A 错误;对于B ,2()2240a b b a b b +⋅=⋅+=+=≠ ,所以()a b b +⊥不成立,选项B 错误;对于C ,a在b上的投影的数量为||a b b ⋅== C 正确;对于D ,由C 知选项D 错误.故选:C .47.(2023春•昌平区校级期中)如图,矩形ABCD 中,2AB =,1BC =,O 为AB 的中点.当点P 在BC 边上时,AB OP ⋅的值为;当点P 沿着BC ,CD 与DA 边运动时,AB OP ⋅的最小值为.【解析】矩形ABCD 中,2AB =,1BC =,O 为AB 的中点.当点P 在BC 边上时,||||cos 212AB OP AB OP POB ⋅=∠=⨯=;当点P 沿着BC ,CD 与DA 边运动时,AB OP ⋅的最小值,||||cos AB OP AB OP POB ⋅=∠ ,P 应该在线段AD 上,此时||||cos 2(1)2AB OP AB OP POB ⋅=∠=⨯-=-;故答案为:2;2-.48.(2023秋•东城区校级期中)窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术.图1是一张由卷曲纹和回纹构成的正六边形剪纸窗花.图2中正六边形ABCDEF 的边长为4,圆O 的圆心为该正六边形的中心,圆O 的半径为2,圆O 的直径//MN CD ,点P 在正六边形的边上运动,则PM PN ⋅的最小值为.【解析】如图,连结PO ,显然OM ON =-,则222()()()()4PM PN PO OM PO ON PO OM PO OM PO OM PO ⋅=+⋅+=+⋅-=-=- ,点P 在正六边形ABCDEF 的边上运动,O 是其中心,因此||PO的最小值等于中心O 到正六边形的边的距离,又中心O 到正六边形的边的距离为42⨯=,所以PM PN ⋅的最大值为248-=.故答案为:8.49.(2023春•大兴区期中)已知ABC ∆是边长为2的等边三角形,D 是边BC 上的动点,E 是边AC的中点,则BE AD ⋅ 的取值范围是()A .[-B .C .[3-,0]D .[0,3]【解析】建立如图所示的平面直角坐标系,则(1,0)A -,(1,0)C ,B ,(0,0)E ,设CD CB λ= ,01λ,则(1)OD OC CB λλ=+=- ,则(2)AD λ=- ,又(0,BE = ,所以(2)0(3BE AD λλ⋅=-⨯+⨯=- ,又01λ,所以BE AD ⋅ 的取值范围是[3-,0].故选:C .50.(20210.618≈的矩形叫做黄金矩形.它广泛的出现在艺术、建筑、人体和自然界中,令人赏心悦目.在黄金矩形ABCD 中,1BC =,AB BC >,那么AB AC ⋅ 的值为()A1-B1+C .4D.2+【解析】由黄金矩形的定义,可得2AB =,1BC =-,在矩形ABCD中,cos AB CAB AC ∠==,则||||cos 24AB AC AB AC CAB ⋅=⋅⋅∠=⨯ ,故选:C .51.(2023秋•西城区校级期中)已知OA a = ,OB b = .若||5OA = ,||12OB = ,且90AOB ∠=︒,则||a b -= .【解析】已知OA a = ,OB b = ,90AOB ∠=︒,∴0a b ⋅= ,又||5OA = ,||12OB = ,即||5,||12a b ==,||13a b ∴-= .故答案为:13.52.(2023春•道里区校级期中)若平面向量a 与b 的夹角为60︒,(2,0)a = ,||1b = ,则|2|a b + 等于()AB.C .4D .12【解析】因为平面向量a 与b 的夹角为60︒,(2,0)a = ,||1b = ,所以||2a = ,||||cos 21cos601a b a b θ⋅=⋅=⨯⨯︒= ,所以|2|2a b += .故选:B .53.(2023春•东城区校级期中)已知向量(0,5)a = ,(4,3)b =- ,(2,1)c =-- ,那么下列结论正确的是()A .a b - 与c 为共线向量B .a b - 与c 垂直C .a b - 与a 的夹角为钝角D .a b - 与b 的夹角为锐角【解析】根据题意,向量(0,5)a = ,(4,3)b =- ,(2,1)c =-- ,则(4,8)a b -=- ,又由(2,1)c =-- ,有(4)(1)(2)8-⨯-≠-⨯,则()a b - 与c 不是共线向量,(2,1)c =-- ,则()(4)(2)(1)80a b c -=-⨯-+-⨯= ,则()a b - 与c 垂直;故选:B .。
高中数学计算题专项练习1-(3096)
2019年高中数学计算题专项练习1一.解答题(共30 小题)1.计算:( 1);( 2).2.计算:( 1) lg1000+log 342﹣ log 314﹣ log 48;(2) .3.( 1)解方程: lg ( x+1) +lg ( x ﹣ 2)=lg4 ; ( 2)解不等式: 21﹣ 2x> .4.( 1)计算: 2× ×( 2)计算: 2log 510+log 50.25.5.计算:( 1) ;( 2).6.求 log 89×log 332﹣log 1255 的值.7.( 1)计算 .( 2)若 ,求 的值.8.计算下列各式的值0.75( 1) 0.064﹣(﹣ ) +16 +0.25( 2) lg5+ ( log 32)?( log 89) +lg2 .9.计算:( 1) lg 22+lg5?lg20 ﹣ 1;(2).10.若 lga 、 lgb 是方程 2x 2﹣ 4x+1=0 的两个实根,求的值.11.计算(Ⅰ)(Ⅱ) .12.解方程:.13.计算:(Ⅰ)(Ⅱ).14.求值:( log 62) 2+log 63×log 612.15.( 1)计算( 2)已知 ,求 的值.16.计算(Ⅰ);(Ⅱ) 0.0081 ﹣() + ? ? .17.(Ⅰ)已知全集 U={1 , 2, 3, 4, 5,6} , A={1 , 4, 5} , B={2 , 3, 5} ,记 M= ( ?U A ) ∩B ,求集合 M ,并写出 M 的所有子集;(Ⅱ)求值:.18.解方程: log 2( 4x ﹣ 4) =x+log 2( 2x+1﹣ 5)219.(Ⅰ)计算( lg2) +lg2 ?lg50+lg25 ;(Ⅱ)已知a=,求÷.20.求值:( 1) lg14 ﹣+lg7 ﹣ lg18(2).21.计算下列各题:(1)( lg5)2+lg2 ×lg50 ;﹣1,求的值.( 2)已知 a﹣ a =122.( 1)计算;( 2)关于 x 的方程 3x 2﹣ 10x+k=0 有两个同号且不相等的实根,求实数k 的取值范围.23.计算题(1)(2)24.计算下列各式:(式中字母都是正数)(1)(2).25.计算:( 1);(2) lg25+lg2 ×lg50+ ( lg2)2.26.已知 x+y=12 , xy=27 且 x< y,求的值.27.( 1)计算:;b,用 a, b 表示.( 2)已知 a=log3 2, 3 =528.化简或求值:( 1);( 2).29.计算下列各式的值:( 1);( 2).30.计算log( 1) lg20 ﹣ lg2 ﹣ log 23?log32+2(2)(﹣1)0+()+().参考答案与试题解析一.解答题(共30 小题)1.计算:( 1);( 2).考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用指数幂的运算法则即可得出;( 2)利用对数的运算法则即可得出.解答:解:( 1)原式 ===.( 2)原式 ===.点评:熟练掌握指数幂的运算法则、对数的运算法则是解题的关键.2.计算:(1) lg1000+log 342﹣ log 314﹣ log48;(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用对数的运算性质即可得出;( 2)利用指数幂的运算性质即可得出.解答:解:( 1)原式 =;( 2)原式 =.点评:熟练掌握对数的运算性质、指数幂的运算性质是解题的关键.3.( 1)解方程: lg( x+1) +lg ( x﹣ 2)=lg4 ;( 2)解不等式:21﹣2x>.考点 : 对数的运算性质;指数函数单调性的应用.专题 : 计算题.分析:( 1)原方程可化为 lg (x+1 )( x ﹣ 2) =lg4 且可求( 2)由题意可得1﹣ 2x ﹣2,结合指数函数单调性可求x 的范围2> =2解答:解:( 1)原方程可化为 lg ( x+1 )(x ﹣ 2)=lg4 且∴( x+1 )(x ﹣ 2) =4 且 x > 2∴ x 2﹣ x ﹣ 6=0 且 x >2 解得 x= ﹣2(舍)或 x=3( 2)∵ 21﹣ 2x> =2 ﹣2∴ 1﹣ 2x >﹣ 2 ∴点评: 本题主要考查了对数的运算性质的应用,解题中要注意对数真数大于0 的条件不要漏掉,还考查了指数函数单调性的应用.4.( 1)计算: 2× ×( 2)计算: 2log 510+log 50.25.考点 : 对数的运算性质.专题 : 计算题;函数的性质及应用.分析: ( 1)把各根式都化为 6 次根下的形式,然后利用有理指数幂的运算性质化简;( 2)直接利用对数式的运算性质化简运算.解答:× ×解( 1)计算: 2= ===6;( 2) 2log 510+log 50.25==log 5100×0.25 =log 525 =2log 55=2 .点评: 本题考查了指数式的运算性质和对数式的运算性质,解答的关键是熟记有关运算性质,是基础的运算题.5.计算:(1) ;(2).考点:对数的运算性质.专题:计算题.分析:(1)利用有理指数幂的运算法则,直接求解即可.( 2)利用对数的运算形状直接求解即可.解答:解:( 1)﹣ 13﹣ 1+8=12⋯(6 分)=0.2﹣ 1+2 =5( 2)===⋯(12 分)点评:本题考查指数与对数的运算性质的应用,考查计算能力.6.求 log 9×log32﹣log 5 的值.83125考点:对数的运算性质.专题:计算题.分析:利用对数的运算性质进及对数的换底公式行求解即可解答:解:原式 ====3点评:本题主要考查了对数的运算性质的基本应用,属于基础试题7.( 1)计算.( 2)若,求的值.考点:对数的运算性质.专题:计算题.分析:( 1)把对数式中底数和真数的数4、8、 27 化为乘方的形式,把底数的分数化为负指数幂,把真数的根式化为分数指数幂,然后直接利用对数的运算性质化简求值;( 2)把已知条件两次平方得到﹣ 12﹣ 2得答案.x+x与 x +x,代入解答:解:( 1)===2 ﹣ 4﹣ 1=﹣ 3;( 2)∵,∴,∴ x+x﹣ 1.=5 则( x+x ﹣122 ﹣ 2) =25 ,∴ x +x=23 ∴=.点评: 本题考查了有理指数幂的化简与求值,考查了对数的运算性质,是基础的计算题.8.计算下列各式的值0 0.75( 1) 0.064﹣(﹣ ) +16 +0.25( 2) lg5+ ( log 32)?( log 89) +lg2 .考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题. 分析:( 1)化小数指数为分数指数, 0 次幂的值代1,然后利用有理指数幂进行化简求值;( 2)首先利用换底公式化为常用对数,然后利用对数的运算性质进行化简计算.解答:0.75解:( 1) 0.064﹣(﹣ ) +16 +0.25==( 0.4) ﹣1﹣1+8+0.5=2.5﹣ 1+8+0.5=10 ;( 2) lg5+ ( log 32)?( log 89) +lg2= =1+=1+ = .点评: 本题考查了对数的运算性质,考查了有理指数幂的化简与求值,是基础的运算题.9.计算:( 1) lg 22+lg5?lg20 ﹣ 1;(2).考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.分析: ( 1)把 lg5 化为 1﹣ lg2, lg20 化为 1+lg2 ,展开平方差公式后整理即可;( 2)化根式为分数指数幂, 化小数指数为分数指数, 化负指数为正指数, 然后进行有理指数幂的化简求值.2解答: 解:( 1) lg 2+lg5 ?lg20 ﹣12=lg 2+( 1﹣ lg2 )( 1+lg2)﹣ 122;=lg 2+1﹣ lg 2﹣ 1=0( 2)==2 3=2 ?3 ﹣ 7﹣2﹣ 1=98.点评: 本题考查了有理指数幂的化简与求值,考查了对数的运算性质,解答的关键是熟记有关性质,是基础题.10.若 lga 、 lgb 是方程 2x 2﹣ 4x+1=0 的两个实根,求的值.考点 : 对数的运算性质;一元二次方程的根的分布与系数的关系.专题 : 计算题;转化思想.分析:lga 、 lgb 是方程 2x 2﹣4x+1=0 的两个实根,先由根与系数的关系求出,再利用对数的运算性质对化简求值.解答:解: ,2=( lga+lgb )( lga ﹣ lgb )2=2[ (lga+lgb ) ﹣ 4lgalgb ]=2(4﹣ 4× )=4点评: 本题考查对数的运算性质,求解的关键是熟练掌握对数的运算性质,以及一元二次方程的根与系数的关系.11.计算(Ⅰ)(Ⅱ) .考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.分析: ( 1)根据对数运算法则化简即可( 2)根据指数运算法则化简即可解答:解:( 1)原式 =(2)原式 ==点评:本题考查对数运算和指数运算,注意小数和分数的互化,要求能灵活应用对数运算法则和指数运算法则.属简单题12.解方程:.考点:对数的运算性质.专题:计算题;函数的性质及应用.分析:利用对数的运算性质可脱去对数符号,转化为关于x 的方程即可求得答案.解答:解:∵,∴log5( x+1) +log 5(x﹣ 3) =log 55,∴( x+1 )?( x﹣ 3)=5,其中, x+1> 0 且 x﹣ 3> 0解得 x=4 .故方程的解是4点评:本题考查对数的运算性质,考查方程思想,属于基础题.13.计算:(Ⅰ)(Ⅱ).考点:对数的运算性质;运用诱导公式化简求值.专题:计算题;函数的性质及应用.分析:( I)利用诱导公式,结合特殊角的三角函数值即可求解( II )利用对数的运算性质及指数的运算性质即可求解解答:解:(I)(每求出一个函数值给( 1 分),6 分( II )(每求出一个式子的值可给( 1 分), 12 分)点评:本题主要考查了诱导公式在三角化简求值中的应用及对数的运算性质的简单应用,属于基础试题14.求值:( log62)2+log 63×log 612.考点:对数的运算性质.分析:先对后一项:log 63×log 612 利用对数的运算法则进行化简得到:log63+log 63×log 62,再和前面一项提取公因式 log62 后利用对数的运算性质: log a( MN ) =log a M+log a N 进行计算,最后再将前面计算的结果利用log 62+log 63=1 进行运算.从而问题解决.解答:解:原式=(log62+log63)log62+log63=log 62+log 63=1.∴( log62)2+log 63×log 612=1.点评:本小题主要考查对数的运算性质、对数的运算性质的应用等基础知识,考查运算求解能力.属于基础题.对数的运算性质:log a( MN ) =log a M+log a N; log an=log a M ﹣ log a N ;log a M =nlog a M 等.15.( 1)计算( 2)已知,求的值.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)化根式为分数指数幂,把对数式的真数用同底数幂相除底数不变,指数相减运算,然后利用对数式的运算性质化简;( 2)把给出的等式进行平方运算,求出﹣ 1的结果.x+x ,代入要求的式子即可求得解答:解( 1)===;(2)由,得:,所以, x+2+x ﹣1=9,故x+x ﹣1=7,所以,.点评:本题考查了有理指数幂的化简与求值,考查了对数式的运算性质,解答的关键是熟记有关性质,是基础题.16.计算(Ⅰ);(Ⅱ) 0.0081﹣()+??.考对数的运算性质;根式与分数指数幂的互化及其化简运算.点:专函数的性质及应用.题:分 (Ⅰ)利用对数的运算法则,由已知条件能求出结果.析 (Ⅱ)利用指数的运算法则,由已知条件,能求出结果.:解 解:(Ⅰ)答 ===:= = =﹣ .(Ⅱ)0.0081 ﹣()+??4 3=0.3﹣ +3=.=[( 0.3) ] ﹣([ )]+ 点 本题考查指数和对数的运算法则,是基础题,解题时要认真解答,避免出现计算上的低级错误. 评 :17.(Ⅰ)已知全集 U={1 , 2, 3, 4, 5,6} , A={1 , 4, 5} , B={2 , 3, 5} ,记 M= ( ?U A ) ∩B ,求集合 M ,并写出 M 的所有子集;(Ⅱ)求值:.考点 : 对数的运算性质;交、并、补集的混合运算.专题 : 函数的性质及应用.分析: ( I )利用集合的运算法则即可得出.( II )利用对数的运算法则即可得出. 解答: 解:(Ⅰ)∵ U={1 , 2, 3, 4, 5, 6} , A={1 , 4,5} ,∴ C U A={2 , 3, 6} ,∴ M= ( ?U A ) ∩B={2 , 3, 6} ∩{2 , 3,5}={2 , 3} .∴ M 的所有子集为: ? , {2} , {3} , {2 , 3} .(Ⅱ)= = = .点评: 本题考查了集合的运算法则、对数的运算法则,属于基础题.18.解方程: log 2( 4x ﹣ 4) =x+log 2( 2x+1﹣ 5)考点 : 对数的运算性质.专题 : 计算题.分析:利用对数的运算法则将方程变形为 ,将对数式化为指数式得到 ,通过换元转化为二次方程,求出x 的值,代入对数的真数检验.xx+1解答: 解: log 2( 4 ﹣ 4) =x+log 2( 2 ﹣ 5)即为log 2(4x ﹣ 4)﹣ log 2( 2x+1﹣ 5)=x即为所以令 t=2x即解得 t=4 或 t=1所以 x=2 或 x=0 (舍)所以方程的解为x=2.点评:本题考查对数的真数大于0、对数的运算法则、二次方程的解法,解题过程中要注意对数的定义域,属于基础题.19.(Ⅰ)计算( lg2)2;+lg2 ?lg50+lg25(Ⅱ)已知 a= ,求÷.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算法则进行运算,利用结论lg2+lg5=0 去求.(Ⅱ)先将根式转化为同底的分数指数幂,利用指数幂的运算性质,化为最简形式,然后在将 a 值代入求值.解答:解:(Ⅰ)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(Ⅱ)原式 =.∵ a= ,∴原式 =.点评:本题考查对数的四则运算法则,根式与分数指数幂的互化,以及同底数幂的基本运算性质,要求熟练掌握相应的运算公式.20.求值:( 1) lg14 ﹣+lg7 ﹣ lg18(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)应用和、差、积、商的对数的运算性质计算即可;( 2)利用指数幂的运算性质(m n mn计算即可.a) =a解答:解:( 1)∵ lg14﹣+lg7﹣ lg18=( lg7+lg2 )﹣ 2(lg7﹣ lg3 )+lg7 ﹣( lg6+lg3 )=2lg7 ﹣ 2lg7+lg2+2lg3 ﹣ lg6 ﹣ lg3( 2)∵=﹣1﹣+=﹣+=.(8分)点评:本题考查对数与指数的运算性质,关键在于熟练掌握对数与指数幂的运算性质进行计算,属于中档题.21.计算下列各题:(1)( lg5)2+lg2 ×lg50 ;﹣ 1的值.( 2)已知 a﹣ a =1,求考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用对数的运算性质,求出表达式的值;﹣ 12﹣ 2的值,然后化简,求出它的值( 2)通过 a﹣ a =1,求出 a +a解答:2×lg50=2×(lg5+1) =lg5( lg2+lg5) +lg2=1 ;解:( 1)( lg5) +lg2( lg5 ) +lg2﹣ 12﹣ 2( 2)因为 a﹣ a =1,所以 a +a﹣ 2=1,2﹣2∴a +a =3,==0 .点评:本题主要考查对数的运算性质和有理数指数幂的化简求值的知识点,解答本题的关键是熟练对数的运算性质,此题难度一般.22.( 1)计算;( 2)关于 x 的方程 3x 2﹣ 10x+k=0 有两个同号且不相等的实根,求实数k 的取值范围.考点:根式与分数指数幂的互化及其化简运算;一元二次方程的根的分布与系数的关系.专题:计算题.分析:( 1)转化为分数指数幂,利用指数幂的运算法则进行计算;( 2)由维达定理的出k 的关系式,解不等式即可.解答:( 1)解:原式 ===a 0(∵ a≠0)( 2)解:设 3x 2﹣ 10x+k=0 的根为 x 1,x 2由 x 1+, x 1 ?由条件点评: 本题考查根式和分数指数幂的转化、指数的运算法则、及二次方程根与系数的关系,属基本运算的考查.23.计算题( 1)( 2)考点 : 根式与分数指数幂的互化及其化简运算;对数的运算性质.专题 : 计算题.分析: ( 1)根据分数指数与根式的互化以及幂的乘方运算法则,还有零指数、负指数的运算法则,化简可得值;( 2)运用对数运算性质及对数与指数的互逆运算化简可得.解答:解:( 1)原式 = ﹣(﹣ 2) 24﹣ = ﹣64+ +1﹣ =﹣;×(﹣ 2) +( 2)原式 =83224×8﹣ log 3 32+log 3 ﹣log 3 ﹣ 3 =log 3 ﹣ 9=﹣ 9.点评: 考查学生灵活运用根式与分数指数幂互化及其化简运算的能力,以及分母有理化的应用能力.24.计算下列各式: (式中字母都是正数)( 1)(2).考点 : 根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题 : 函数的性质及应用. 分析:( 1)利用及其根式的运算法则即可;( 2)利用立方和公式即可得出. 解答:解:( 1)原式 == ?= ==.( 2)原式 ===.点评:熟练掌握根式的运算法则、立方和公式是解题的关键.25.计算:( 1);( 2) lg25+lg2 ×lg50+ ( lg2)2.考点:有理数指数幂的运算性质;对数的运算性质.专题:计算题.分析:( 1)由指数幂的含义和运算法则,,=|3﹣π|,求解即可.( 2)利用对数的运算法则,各项都化为用lg2 表达的式子即可求解.解答:解:( 1)==1+2+ π﹣3=π(2) lg25+lg2 ×lg50+ ( lg2)2=2﹣ 2lg2+lg2 (2﹣ lg2 ) +( lg2)2=2.点评:本题考查指数和对数式的化简和求值、考查指数和对数的运算法则、属基本运算的考查.26.已知 x+y=12 , xy=27 且 x< y,求的值.考点:有理数指数幂的运算性质.专题:计算题.分析:利用已知条件求出x﹣ y 的值,利用分母有理化直接求解所求表达式的值.解答:解:∵ x+y=12 , xy=27∴( x﹣ y)2=( x+y )2﹣ 4xy=122﹣ 4×27=36(3分)∵ x< y∴x﹣ y= ﹣ 6(5 分)∴===(9分)==(12分)点评:本题考查有理指数幂的运算,考查计算能力.27.( 1)计算:;(b,用 a, b 表示.2)已知 a=log3 2, 3 =5考点:有理数指数幂的运算性质;对数的运算性质.专题:计算题.分析:( 1)根据指数幂的运算性质和恒等式0a,进行化简求值;a =1、0 =1( 2)根据指对互化的式子把3b化成对数式,再把化为分数指数幂的形式,由对数的运算性质将30 =5拆成 3×2×5 后,再进行求解.解答:解:( 1)原式 =(7 分)(2)∵ 3b=5∴ b=log 35∴(14 分)点评:本题考查了指数和对数运算性质的应用,常用的方法是将根式化为分数指数幂的形式,指数式和对数式互化,以及将真数拆成几个数的积或商的形式.28.化简或求值:( 1);( 2).考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:(1)由原式有意义,得到a≥1,然后把各根式进行开平方和开立方运算,开方后合并即可.(2)直接运用对数式的运算性质进行求解计算.解答:解:( 1)因为 a﹣ 1≥0,所以 a≥1,所以=a﹣1+|1﹣ a|+1﹣ a=|1﹣ a|=a﹣ 1;( 2)=2lg5+2lg2+lg5 ( 1+lg2 ) +( lg2)2=2 ( lg2+lg5 ) +lg5+lg2 ( lg5+lg2 ) =2+lg5+lg2=3 .点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,解答此题的关键是由根式有意义得到 a 的取值范围,此题是基础题.29.计算下列各式的值:(1);(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:(1)根据分数指数与根式的互化以及幂的乘方运算法则,还有零指数、负指数的运算法则,化简可得值;( 2)运用对数运算性质化简可得.解答:解:( 1)原式 =;.点评:考查学生灵活运用根式与分数指数幂互化及其化简运算的能力,以及分母有理化的应用能力.30.计算log( 1) lg20 ﹣ lg2 ﹣ log 23?log32+2(2)(﹣1)0+()+().考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用对数的运算法则、对数的换底公式及其对数恒等式即可得出;( 2)利用指数幂的运算法则即可得出.解答:解:( 1)原式 ==1﹣1+ = ;(2)原式 =1===2 .点评:数列掌握对数的运算法则、对数的换底公式及其对数恒等式、指数幂的运算法则是解题的关键.。
2024高中数学计算限时训练(解析版)
2024高中数学计算限时训练(解析版)计算预备知识1.关于平方112=121122=144132=169142=196152=225162=256172=289182=324 192=361202=4002.关于平方根2≈1.4143≈1.7325≈2.2366≈2.4507≈2.64610≈3.1623.关于立方根32≈1.26033≈1.44234≈1.58735≈1.71036≈1.81737≈1.91339≈2.080310≈2.1544.关于ππ≈3.14π2≈1.57π3≈1.05π4≈0.79π5≈0.63π6≈0.52πe≈22.465.关于ee≈2.718e2≈7.389e3≈20.086e≈1.6491e≈0.3681≈0.135eπ≈23.14e26.关于lnln2≈0.693ln3≈1.099ln5≈1.609ln7≈1.946ln10≈2.3037.关于三角函数sinπ5≈0.588sinπ8≈0.383cosπ5≈0.809cosπ8≈0.924tanπ5≈0.727tanπ8≈0.4148.关于loglg2≈0.301lg3≈0.477lg7≈0.8459.关于阶乘4!=245!=1206!=7207!=504010.关于双重根号3±22=2±14±23=3±17±43=2±38±27=7±1 11.关于三角度数sin15°=cos75°=6-24sin75°=cos15°=6+24tan15°=2-3tan75°=2+3初中内容(简单回顾初中的相关计算)训练1(建议用时:10分钟)1.当x>2时, |x-2|=2.若|m-n|=n-m, 且|m|=4,|n|=3, 则m+n=3.用科学记数法表示248000004.若x,y为有理数, 且|x+2|+(y-2)2=0, 则x+y=5.若|a+2|+(b-3)2=0, 则a b=6.用科学记数法表示0.000000217.若有理数x,y的乘积xy为正, 则|x|x+|y|y+|xy|xy的值为8.已知|x|=3,|y|=5, 且|y-x|=x-y, 则2x+y=9.已知代数式x-3y2的值是5 , 则代数式x-3y22-2x+6y2的值是10.关于x,y的单项式2m3x2y的次数是11.已知代数式a2+2a-2b-a2+3a+mb的值与b无关, 则m的值是12.若a,b互为倒数, m,n互为相反数, 则(m+n)2+2ab=13.-2πx3y5的系数是14.已知a-3b-4=0, 则代数式4+2a-6b的值为15.已知代数式x2+x+1的值是3 , 那么代数式5x2+5x+8的值是16.若a,b互为相反数, m,n互为倒数, 则a+b+2mn-3=17.单项式4πx2y49的系数为 , 次数为训练2(建议用时:10分钟)1.已知3a2x-3b与-12a5b4y+5是同类项,则|x+5y|等于2.多项式-2ab2+4a5b-1的项分别是,次数是3.已知多项式x2-3kxy-y2+6xy-8不含xy项, 则k的值是4.单项式πx2y37的系数是 , 次数是;多项式5x2y-3y2的次数是5.已知(a+1)2+|b-2|=0, 则a b+1的值等于6.当x=时,式子2x+56与x+114+x的值互为相反数.7.已知代数式5x-2的值与110互为倒数, 则x=8.某件商品, 按成本提高40%后标价, 又以8折优惠卖出, 结果仍可获利15元, 则这件商品的成本价为9.当x=时, 32x+1与x-3的值相等10.当代数式1-(3m-5)2有最大值时, 关于x的方程3m-4=3x+2的解为11.若方程4x-1=5与2-a-x3=0的解相同, 则a的值为=b, 则当b=1时方程的解为12.已知13x-213.已知关于x的一元一次方程x+2m=-1的解是x=m, 则m的值是14.已知x=1是方程3x-m=x+2n的一个解, 则整式m+2n+2020的值为15.当x=时,式子3-2x与2+x互为相反数16.若-4a m b3与3a2-m b n-1可以合并成一项,则m n的值是17.已知x=3是方程11-2x=ax-1的解,则a=18.已知一元一次方程(m-4)x+m2=16的解是x=0, 则m=19.要使关于x,y的多项式my3+3nx2y+2y3-x2y+y不含三次项, 则2m+3n的值为训练3(建议用时:10分钟)1.已知a m=3,a n=9, 则a3m-n=2.当a时, (a-2)0=13.已知2x+5y-5=0, 则4x⋅32y的值是4.已知2a=3,2b=5, 则22a+2a+b=5.若3x=10,3y=5, 则32x-y=6.已知3x÷9y=27, 则2020+2y-x的值为7.已知x+4y=1, 则2x⋅16y=8.计算:(-3)2021×13 2020=9.已知2x=3,2y=5, 则22x-y=2020×(1.5)2021=10.-2311.若2x+y=3, 则4x⋅2y=12.若5x=18,5y=3, 则5x-y==0, 则y x=13.若(x-2)2+y+1314.计算:(-1)0+13 -1=15.计算:a2⋅a4+-3a32-10a6=16.已知6m=2,6n=3, 则6m+n2=17.已知2x+3-2x=112, 则x的值为18.已知x-y=5,xy=2, 则x2+y2=19分解因式:-xy2+4x=20.已知m-n=3, 则m2-n2-6n=21.已知25x2+kxy+4y2是一个完全平方式, 则k的值是=22.若m+1m=3, 则m2+1m223.若x2-(m-3)x+4是一个完全平方式, 则m的值是训练4(建议用时:10分钟)1.已知关于x的二次三项式x2+2kx+16是一个完全平方式, 则实数k的值为2.分解因式:4x2-4y2=3.分解因式:3xy3-27x3y=4.分解因式:4(a+b)2-(a-b)2=5.若x2-ax+1(x-1)的展开式是关于x的三次二项式, 则常数a=6.已知x+1x=3, 且0<x<1, 则x-1x=7.若a2+6a+b2-4b+13=0, 则a b=8.若y2+py+q=(y+3)(y-2), 则-pq=9.(-2a)3⋅1-2a+a2=10.已知a+b=2,ab=-2, 则(a-2)(b-2)=11.已知方程组x+2y=k,2x+y=2的解满足x+y=2, 则k的平方根为12.已知2x+5y=3, 用含y的式子表示x, 则x=13.若单项式-3a2m+1b8与4a3m b5m+n是同类项, 则这两个单项式的和为14.若方程组x+y=4,2x-y=-1的解也是2x-ay=14的解, 则a=15.已知二元一次方程组2x+y=7,x+2y=8,则x-y=x+y=16.不等式2x-12-3≤0的非负整数解共有个17.已知不等式12x-3≥2x与不等式3x-a≤0的解集相同, 则a=18.解不等式2+3x≤3-5x, 则x19.不等式组-13x>2,5-x>3的解集为20.不等式组2x-3<1,1-x≤3的解集为训练5(建议用时:10分钟)1.已知直角三角形的两边长分别为3,5 , 且第三边是整数, 则第三边的长度为2.若三角形的三边长分别为a,b,c, 且|a-b|+a2+b2-c2=0, 则△ABC的形状为3.已知直角三角形两直角边a,b满足a+b=17,ab=60, 则此直角三角形斜边上的高为4.在直角坐标系中, 点A(2,-2)与点B(-2,1)之间的距离AB=5.在直角三角形中,其中两边的长度分别为3,4 , 则第三边的长度是6.在直角三角形ABC中, ∠C=90°,BC=12,CA=5,AB=7.若a、b为实数, 且(a+3)2+b-2=0, 则a b的值为8.11的整数部分是小数部分是9.已知实数x,y满足3x+4+y2-6y+9=0, 则-xy的算术平方根的平方根的相反数等于10.计算:|-5|+(2-1)0=11.计算:20+|1-2|=12.3-7的相反数是 , 绝对值等于3的数是13.116的平方根是14.-8的立方根是,16的平方根是15.19-35的整数部分为a, 小数部分为b, 则2a-b=16.若x-4+(y+3)2=0, 则x+y=17.已知a是64的立方根, 2b-3是a的平方根,则114a-4b的算术平方根为训练6(建议用时:10分钟)1.在第三象限内到x轴的距离为2 , 到y轴的距离为3的点的坐标为2.在平面直角坐标系中, 点A(-2,1)关于y轴的对称点A 的坐标是3.点P(-1,1)先向左平移2个单位长度, 再向上平移3个单位长度得点P1, 则点P1的坐标是4.在平面直角坐标系中, 点M(a,b)与点N(5,-3)关于x轴对称, 则ab的值是5.如果点P(m,1-2m)在第四象限,那么m的取值范围是6.点A(3,-2)关于x轴对称的点的坐标为 , 关于y轴对称的点的坐标为7.在平面直角坐标系中, 过点P(6,8)作PA⊥x轴, 垂足为A, 则PA的长为8.点P(-2,6)到x轴的距离是9.若点A(m+2,-3)与点B(-4,n+5)在二、四像限的角平分线上, 则m+n=10.已知点A(m,3)与点B(2,n)关于x轴对称, 则(m+n)2020的值为11.已知点P(2m,m-1), 当m=时, 点P在二、四象限的角平分线上12.点A(-7,9)关于y轴的对称点是13.如果(3a-3b+1)(3a-3b-1)=80, 且a>b, 那么a-b的值为14.已知1<x<5, 化简(x-1)2+|x-5|=15.已知a-1+|b-5|=0,则(a-b)2的值是16.若|x+1|+y-2=0, 则x2+y2的值为17.a,b是自然数,规定a∇b=3×a-b3, 则2∇17的值是训练7(建议用时:15分钟)1.若一组数据1,2,x,4的平均数是2 , 则这组数据的方差为2.有40个数据, 其中最大值为35 , 最小值为14 , 若取组距为4 , 则分成的组数是3.小明抛掷一枚质地均匀的硬币, 抛掷100次硬币,结果有55次正面朝上,那么朝上的频率为4.当m=时, 解分式方程x-5x-3=m3-x会出现增根5.若(x-y-2)2+|xy+3|=0, 则3xx-y+2x y-x÷1y的值是6.分式方程3x2-x +1=xx-1的解为7.若关于x的方程axx-2=4x-2+1无解,则a的值是8.化简:1x-1-1x2-x=9.计算2aa2-16-1a-4的结果是10.若m+n=3,mn=2, 则1m+1n=11.若关于x的分式方程2x-ax-2=12的解为非负数, 则a的取值范围是12.若一次函数y=(a-1)x+a-8的图象经过第一、三、四象限, 且关于y的分式方程y-5 1-y+3=ay-1有整数解, 则满足条件的整数a的值之和为13.若整数a使关于x的不等式组x-12<1+x3,5x-2≥x+a有且只有四个整数解, 且使关于y的方程y+ay-1+2a1-y=2的解为非负数, 则符合条件的所有整数a的和为14.若关于x的分式方程2x-ax-2=13的解为非负数, 则实数a的取值范围是15.已知关于x的分式方程2a+1x+1=a有解,则a的取值范围是16.若分式方程2xx-1-m-1x-1=1有增根,则m的值是训练8(建议用时:15分钟)1.已知5x+1(x-1)(x+2)=Ax-1+Bx+2, 则实数A+B=2.当分式21-3m的值为整数时, 整数m的值为3.解方程:3-2xx-1=-1x-1.4.若x=3-1, 则代数式x2+2x-3的值是5.已知等式|a-2021|+a-2022=a成立, 则a-20212的值为6.若m=20202021-1, 则m3-m2-2022m+2020=7.计算(5-2)2021(5+2)2022的结果是8.已知xy=2,x+y=4, 则x y+yx=9.若M=1ab-a b⋅ab, 其中a=3,b=2, 则M的值为10.如果y=x-2+4-2x-5,那么y的值是11.已知16-n是整数, 则自然数n所有可能的值为12.已知20n是整数,则满足条件的最小正整数n为13.若3+5的小数部分是a,3-5的小数部分是b, 则a+b=14.已知整数x,y满足x+3y=72, 则x+y的值是15.已知x=5-12,y=5+12, 则x2+y2+xy的值是16.已知4a+3b与b+12a-b+6都是最简二次根式且可以合并, 则a+b的值为17.已知m,n是正整数, 若2m+5n是整数, 则满足条件的有序数对(m,n)为18.已知4a+1是最简二次根式, 且它与54是同类二次根式, 则a=训练9(建议用时:15分钟)1.设x1,x2是方程5x2-3x-2=0的两个实数根, 则1x1+1x2的值为2.方程(x-1)(x+5)=3转化为一元二次方程的一般形式是3.已知关于x的方程x2+2kx-1=0有两个不相等的实数根, 则k的取值范围是4.如果α,β(α≠β)是一元二次方程x2+2x-1=0的两个根, 则α2+α-β的值是5.写出一个以-1为一个根的一元二次方程6.已知一元二次方程(a-1)x2+7ax+a2+3a-4=0有一个根为零, 则a的值为7.设m,n是一元二次方程x2+3x-7=0的两个根, 则m2+4m+n=8.已知一元二次方程x2+3x-4=0的两个根为x1,x2, 则x21+x1x2+x22=9.已知关于x的方程x2-6x+p=0的两个根是α,β, 且2α+3β=20, 则p=10.已知一个正六边形的边心距是3, 则它的面积为11.同一个圆的内接正方形和正三角形的内切圆半径比为12.以半径为1的⊙O的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是13.用一个圆心角为120°, 半径为9cm的扇形围成一个圆雉侧面, 则圆雉的高是cm.14.有一组数据:-1,a,-2,3,4,2, 它们的中位数是1 , 则这组数据的平均数是15.已知一组数据3,4,6,8,x的平均数是6 , 则这组数据的中位数是16.五个整数从小到大排列后, 其中位数是4 , 如果这组数据的唯一众数是6 , 那么这组数据可能的最大的和是17.小明用s2=110x1-32+x2-32+⋯+x10-32计算一组数据的方差,那么x1+x2+x3+⋯+x10=训练10(建议用时:15分钟)1.一个不透明的布袋里放有5个红球、3个黄球和2个黑球, 它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是2.二次函数y=-x2-2x+3的图象上有两点A-7,y1,B-8,y2, 则y1y2. (填">"∗"或"=")3.若关于x的函数y=ax2+(a+2)x+(a+1)的图象与x轴只有一个公共点, 则实数a的值为4.把抛物线y=x2+1先向右平移3个单位长度, 再向下平移2个单位长度, 得到的抛物线为5.若抛物线y=ax2+bx+c经过点(-1,10), 则a-b+c=6.若二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1), 则代数式1-a-b的值为7.若把二次函数y=x2-2x+3化为y=(x-m)2+k的形式, 其中m,k为常数, 则m+k=8.若抛物线y=-(x-m)(x-2-n)+m-2与抛物线y=x2-4x+5关于原点对称, 则m+n =9.已知△ABC∼△DEF, 且相似比为3:4,S△ABC=2cm2, 则S△DEF=cm210.在△ABC中, 点D,E分别在AB,AC上, 且DE⎳BC. 如果ADAB=35,DE=6, 那么BC=11.在△ABC中, 如果∠A,∠B满足|tan A-1|+cos B-122=0, 那么∠C=12.计算:sin230°+cos260°-tan245°=13.已知等腰三角形的两边长分别为5和8 , 则底角的余弦值为14.已知在△ABC中, ∠B=30°,∠C=45°,AB=4, 则BC的长为15.一个不透明的袋中放有4个红球和x个黄球,从中任意摸出一个恰为黄球的概率为34, 则x 的值为高中内容计算专题加强训练训练11对数运算(建议用时:5分钟)1.log312.log232 33.lg1004.lg0.0015.lg1100006.log1101007.ln e8.log31279.log12410.lg0.1211.lg310012.ln1e13.log214 214.log13915.写出高中阶段学过的对数运算公式.训练12指数运算(建议用时:13分钟)1.化简:56a 13b -2⋅-3a -12b -1 ÷4a 23⋅b -3 12(a >0,b >0).2.化简:a 3b 23ab 2a 14b 12 4a -13b 13(a >0,b >0).3.已知x 12+x -12=3, 求x 32+x -32+2x 2+x -2+3的值.4.已知a 2x=2+1, 求a 3x +a -3x a x +a -x 的值.5.x -1x 23+x 13+1+x +1x 13+1-x -x 13x 13-1.6.a 3+a -3 a 3-a -3a 4+a -4+1 a -a -1 +a 21+a -4 -2a -a -1.训练13指对运算(建议用时:5分钟)这个训练考查对数的相关计算, 要记住什么是指对互换、对数恒等变形、换底公式、对数运算公式,还有就是幂的运算.1.823-log 2510 -1+4log 23+4lg 22-4lg2+1.2.20222023 0+80.25⋅42+(32⋅3)6--23 23⋅49 -13-1.3.4(3-π)4+(0.008)-13-(0.25)12×12 -4.4.12lg 3249-43lg 8+lg 245+21+log 23.训练14错位相减(建议用时:20分钟)1.求b n =(2n -1)2n 的前n 项和.2.求b n=n22n-1的前n项和.3.求c n=(2n-1)4n-1的前n项和.4.求b n=(2n-1)13 n-1的前n项和.+2n的前n项和.5.求b n=n+14n训练15求值域(建议用时:20分钟)下列题目涉及了高中阶段不少求值域的方法, 要学会看到什么式子大概清楚使用什么方法或者说哪些方法来求解, 比如看到y=x-3+5-x就知道可以使用平方法来求解.1.y=5x-14x+2,x∈[-3,-1]..2.y=x2+2x2+13.y=2x+1-2x.4.y=x+4+9-x2..5.y=2x2+4x-7x2+2x+36.y=log3x+log x3-1.7.y=(x+3)2+16+(x-5)2+4.8.y=sin x+2cos x-2.9.y=ln x-x.训练16含参一元二次不等式(建议用时:20分钟)1.解不等式ax2>1.2.解不等式2ax2-(a+2)x+1>0(a≠0,a≠2).3.解不等式ax2+(a+2)x+1>0(a≠0).4.解不等式x2+ax+1<0.训练17解三角形周长(建议用时:20分钟)1.若A=π3,a=3, 求△ABC周长的取值范围.建议使用两种方法来解决:法一:余弦定理+不等式+三角形三边关系.法二:正弦定理+辅助角公式.2.若A=π3,a=3, 求锐角△ABC周长的取值范围.3.在△ABC中, B=π3, 若a+c=1, 求b的取值范围.训练18解三角形面积(建议用时:20分钟)1.若A=π3,a=3, 求S△ABC的最大值.建议使用两种方法来解决:法一:余弦定理+不等式.法二:正弦定理+辅助角公式十三角形面积公式.2.若A=π3,a=2, 求锐角△ABC面积的取值范围.3.在平面四边形ABCD中, AD=2,CD=4,△ABC为等边三角形, 求三角形BCD面积的最大值.训练19数列存在性(建议用时:20分钟)在新高考的模式下, 原本的数列压轴题被调整到了解答题的前两题,但是得分率并不乐观, 接下来的几篇训练着重练习数列中的存在性、奇偶项、绝对值、不等式(放缩)等问题.1.已知等差数列a n=2n-1, 求m,k m,k∈N∗的值, 使得a m+a m+1+a m+2+⋯+a m+k=65.2.已知等差数列a n=2n-7, 试求所有的正整数m, 使得a m a m+1a m+2为数列a n中的项.3.已知数列a n=1n(n+1), 问:是否存在正整数m,k, 使1akS k=1a m+19成立?若存在, 求出m,k的值;若不存在, 请说明理由.4.已知数列a n=3n,b n=2n-1, 数列b n的前n项和为T n, 问:是否存在正整数m,n,r, 使得T n=a m+r⋅b n成立?如果存在, 请求出m,n,r的关系式;如果不存在, 请说明理由.训练20数列奇偶项(建议用时:20分钟)常见的奇偶项问题(1)a n+a n+1=f(n)或a n⋅a n+1=f(n)类型;(2)(-1)n类型;(3)a2n,a2n-1类型.1已知数列a n满足a n+1+a n=11-n+(-1)n, 且0<a6<1. 记数列a n的前n项和为S n, 求当S n取最大值时n的值.2.已知数列a n满足a1=1,a n+1=12a n+n-1,n为奇数a n-2n,n为偶数记bn-a2n,求数列a n的通项公式.3.设S n为数列a n的前n项和, S n=(-1)n a n-12n,n∈N∗, 求数列a n的通项公式.4.已知等差数列a n=2n-1, 令b n=(-1)n-14na n a n+1, 求数列b n的前n项和T n.训练21数列绝对值(建议用时:20分钟)求数列绝对值的前n项和T n的一般步骤为:(1)求出数列的通项公式;(2)令a n≥0或a n≤0, 求出n的临界值m;(3)若等差数列的项先负后正, 则:T n=-S n,n≤m, -2S m+S n,n>m(4)若等差数列的项先正后负,则:T n=S n,n≤m, 2S m-S n,n>m.1.已知数列a n=53-3n, 求数列a n的前n项和T n.2.已知数列a n=2n-4n, 求数列a n的前n项和S n.3.已知数列a n=sin nπ6-34, 记数列a n 的前n项和为S n, 求S2021.训练22数列不等式(建议用时:20分钟)在学习裂项时我们遇到了数列不等式, 后来随着难度的加大, 各式各样的不等式出现, 比如:12+13+14+⋯+1n=ni=21i<ln n(n≥2)同时这类不等式还会和放缩联系在一起,即:1 n2=44n2<44n2-1=212n-1-12n+1,1n+2<n+2-n类似于这样的还有很多,在此就不一一列举了.1.已知数列a n=12 n-1,数列a n 的前n项和为T n,令b1=a1,b n=T n-1n+ 1+12+13+⋯+1n ⋅a n(n≥2), 求证:数列b n 的前n项和S n满足S n<2+2ln n.2.已知数列a n=2n-1的前n项和为S n, 设b n=1a n S n , 数列b n的前n项和为T n, 求证:T n<323.已知数列a n=3n-1,b n=2n-1, 求证:对任意的n∈N∗且n≥2, 有1a2-b2+1a3-b3+⋯+1a n-b n<32训练23导数单调性(建议用时:20分钟)1.讨论函数f (x )=ln x +ax x +1的单调性.2.已知函数f (x )=(ax +1)e x , 其中a ∈R 且a 为常数, 讨论函数f (x )的单调性.3.函数f (x )=xe x -ax 2-2ax +2a 2-a , 其中a ∈R , 讨论f (x )的单调性.训练24圆锥计算化简求值(建议用时:11分钟)这个训练主要考查学生在圆锥曲线上面的计算能力,一方面考查能否化简到底,另一方面考查能否对最后的式子进行求最值计算.1.已知1212-k 2k +22k 2+2k +4+1+12-k 2+2k +4-4-1 =0, 求k 的值.2.求24k 1+2k 2+-16k -44k 2-61+2k 224k 1+2k 2+-48k +124k 2-61+2k 2.3.求1+k 2⋅-12k 21+3k 2 2-4×12k 2-61+3k 2.4.已知12⋅21+k 21+k 2 64k 21+2k 22-241+2k 2 =225, 求k 的值.训练25联立后的韦达与判别式(建议用时:15分钟)1.写出Δ以及韦达式子:y2=8x,y=kx+b.2.写出Δ以及韦达式子:y=kx+2, x28+y22=1.3.写出Δ以及韦达式子:y=kx+m, x26+y2=1.4.写出Δ以及韦达式子:y=k(x-1)+2, x23+y2=1.(建议用时:20分钟)1.已知y=32(x-1),x24+y23=1,求y1-y2的值.2.已知x24+y2=1,x=my+3,m≠0, 两交点分别为M,N, 原点到直线的距离为d, 求当|MN|⋅d取得最大值时直线的方程.3.已知x=my-1,x24+y23=1,若y1-y2=1227, 求m的值.4.已知y=x+b,y2=4x,若y1x1+2+y2x2+2=0, 则求其直线方程.(建议用时:20分钟)1.化简(x+1)2+(y+4)2(x-a)2+(y-2a+2)2=λ(λ>0,λ≠1)之后为(x-2)2+(y-2)2=10, 求a,λ.2.已知直线x=ky+m与圆x2+y2=1联立得1+k2y2+2kmy+m2-1=0, 且k2+m=0, 若x1x2+y1y2=0, 求m,k.3.已知R=t2+16-2, 求y=t+R3-t-R31+t+R3⋅t-R3的最大值.4.已知直线y=kx+1与圆(x-2)2+(y-3)2=1相交, 若x1x2+y1y2=12, 求k.(建议用时:20分钟)1.当λ≠1时, 把(x+1)2+y2(x-1)2+y2=λ化简成圆的标准方程的形式.2.当k>0,k≠1时, 把x2+y2(x-a)2+y2=k化简成圆的标准方程的形式.3.已知0<m2<13, 求41-3m21+m2⋅6m2+11-3m2的取值范围.4.使用两种方式求S△ABC=121+k23+4k24+3k2的最小值.(建议用时:20分钟)1.已知x22+y2=1,x=my+1,且t≠1, 若要使y1x1-ty2x2-t是定值, 求t的值.2.已知x24-y25=1,x=my+3,若k1=y1x1+2,k2=y2x2-2, 求k1k2的值.3.已知x=ty+p2,y2=2px,求k1+k2=y1-px1+p2+y2-px2+p2的值.4.已知y=kx+m,x2+2y2=2,若x1x2+y1-1y2-1=0, 求m的值.1.已知圆(x +1)2+(y -2)2=20与过点B (-2,0)的动直线l 相交于M ,N 两点, 当|MN |=219时,求直线l 的方程.2.已知圆C :x 2+y 2-8y +12=0, 直线l :ax +y +2a =0, 当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.3.已知圆C :x 2+(y +1)2=4, 过点P (0,2)的直线l 与圆相交于不同的两点A ,B .(1)若OA ⋅OB =1, 求直线l 的方程.(2)判断PA ⋅PB 是否为定值. 若是, 求出这个定值;若不是, 请说明理由.4.已知圆C :(x +3)2+(y -3)2=4, 一动直线l 过点P (-4,0)且与圆C 相交于A ,B 两点, Q 是AB 的中点, 直线l 与直线m :x +3y +6=0相交于点E .(1)当|AB |=23时,求直线l 的方程.(2)判断PQ ⋅PE 的值是否与直线l 的倾斜角有关. 若无关, 请求出其值;若有关, 请说明理由.1.已知两点A (0,3),B (-4,0), 若P 是圆x 2+y 2-2y =0上的动点,求△ABP 面积的最大值.2.已知P (m ,n )是函数y =-x 2-2x 图象上的动点,求|4m +3n -21|的最小值.3.已知圆C :(x -1)2+(y -2)2=2, 点P (2,-1), 过P 点作圆C 的切线PA ,PB ,A ,B 为切点.求:(1)PA ,PB 所在直线的方程;(2)切线长|PA |.4.已知圆C 经过坐标原点, 且与直线x -y +2=0相切, 切点为A (2,4).(1)求圆C 的方程;(2)若斜率为-1的直线l 与圆C 相交于不同的两点M ,N , 求AM ⋅AN 的取值范围.1.已知直线l:x+3y-4=0, 圆C的圆心在x轴的负半轴上,半径为3, 且圆心C到直线l的距离为310 5.(1)求圆C的方程;(2)由直线l上一点Q作圆C的两条切线, 切点分别为M,N, 若∠MQN=120°, 求点Q的坐标.2.已知圆C:(x-3)2+(y-4)2=4, 直线l1过定点A(1,0).(1)若l1与圆相切, 求l1的方程;(2)若l1与圆相交于P,Q两点, 线段PQ的中点为M,l1与l2:x+2y+2=0的交点为N, 求证:|AM|⋅|AN|为定值.3.已知圆C的圆心在x轴上, 且与直线4x-3y-2=0相切于点-25,-65.(1)求圆C的方程;(2)经过点P(1,0)作斜率不为0的直线l与圆C相交于A,B两点, 若直线OA,OB的斜率之和等于8 , 求直线l的方程.4.已知P是直线3x+4y+8=0上的动点, PA,PB是圆C:x2+y2-2x-2y+1=0的两条切线, A,B是切点.(1)求四边形PACB面积的最小值.(2)直线上是否存在点P, 使∠BPA=60°?若存在, 求出点P的坐标;若不存在, 说明理由.训练33解析解答(4)(建议用时:25分钟)1.已知直线l:y=2x+m和椭圆C:x24+y2=1,m为何值时, 直线l被椭圆C所截的弦长为20172.已知椭圆x23+y22=1(a>b>0), 过左焦点F1的斜率为1的直线与椭圆分别交于A,B两点,求|AB|.3.已知点A(0,-1)在椭圆C:x23+y2=1上, 设直线l:y=k(x-1)(其中k≠1 与椭圆C交于E,F两点, 直线AE,AF分别交直线x=3于点M,N. 当△AMN的面积为33时, 求k 的值.4.已知F是抛物线x2=4y的焦点,过点F的直线与曲线C交于A,B两点, Q(-2,-1), 记直线QA,QB的斜率分别为k1,k2, 求证:1k1+1k2为定值.训练34解析解答(建议用时:25分钟)1.已知椭圆C:x24+y2=1, 直线l:y=x+m与椭圆C交于A,B两点, P为椭圆的上顶点, 且|PA|=|PB|, 求m的值.2.已知椭圆E:x24+y22=1, 设直线y=kx-2被椭圆C截得的弦长为83, 求k的值.3.已知F 为椭圆x 22+y 2=1的左焦点, 设直线l 同时与椭圆和抛物线y 2=4x 各恰有一个公共交点,求直线l 的方程.4.已知抛物线x 2=4y 的焦点为F , 过点F 的直线l 交抛物线于P ,Q 两点, 交直线y =-1于点R , 求RP ⋅RQ 的最小值.训练35解析解答(6)(建议用时:25分钟)1.已知椭圆C :x 24+y 22=1, 点A (0,1), 若点B 在椭圆C 上, 求线段AB 长度的最大值.2.已知椭圆C :x 26+y 23=1, 直线y =x +1与椭圆交于A ,B 两点, 求AB 中点的坐标和AB 的长度.3.已知椭圆M :x 23+y 2=1, 直线l 与椭圆M 有两个不同的交点A ,B , 设直线l 的方程为y =x +m , 先用m 表示|AB |, 再求其最大值.4.已知抛物线y2=6x的弦AB经过点P(4,2), 且OA⊥OB(O为坐标原点), 求弦AB的长.训练36复合求导(1)(建议用时:3分钟)本训练考查复合函数求导, 这在一些导数压轴题中可能会出现..1.求x-1e x.2.求-34ln x+1+x23.求y=ln2x+1-1的导数.4.求y=cos(-2x)+32x+1的导数.训练37复合求导(2)(建议用时:6分钟)求下列函数的导数.1.y=ln x+1+x22.y=e x+1e x-13.y=2x sin(2x+5)4.y=3x e x-2x+e5.y=ln xx2+16.y=x2(2x+1)37.y=e-x sin2x训练38二面角求解(建议用时:10分钟)1.两平面的法向量为n1=(0,1,-2),n2=(-1,1,-2), 设二面角的平面角为α, 且为锐角, 则求二面角的大小.2.两平面的法向量为n1=(1,0,1),n2=(1,1,1), 求两平面所成锐二面角α的余弦值.3.一个平面的法向量n1=(x,y,z)满足方程组2x+y-z=0,x+2y-z=0,另一个平面的法向量n2=(0,2,0), 求两平面所成锐二面角α的余弦值.4.一个平面的法向量n1=x1,y1,z1满足方程组-x1+12z1=0,-y1+12z1=0,另一个平面的法向量n2=x2,y2,z2满足方程组2x2+2y2-2z2=0,2y2-2z2=0,求两平面所成锐二面角α的大小.训练39卡方计算(1)(建议用时:6分钟)本训练主要考查独立性检验的计算,附表: (1)独立性检验统计量K2值的计算公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d(2)独立性检验临界值表:PK2≥k00.150.100.050.0250.010.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.828 1.列联表如下,计算K2:成绩优良人数成绩非优良人数总计男生92130女生11920总计203050数学成绩优秀数学成绩不优秀合计物理成绩优秀527物理成绩不优秀11213合计614204.列联表如下,计算K2:[0,150](150,475] [0,75]6416(75,115]1010训练40卡方计算(2)(建议用时:10分钟)1.列联表如下, 计算K2:甲有机肥料乙有机肥料合计质量优等603090质量非优等4070110合计100100200选择物理不选择物理合计男451560女202040合计65351003.列联表如下, 计算K2:视力正常视力不正常总计男生6040100女生401050总计100501504.列联表如下, 计算K2:女性男性合计直播电商用户8040120非直播电商用户404080合计12080200满意不满意合计工薪族403070非工薪族401050合计8040120训练41线性回归计算(1)(建议用时13分钟)本训练考查的是线性回归方程的相关计算, 参考公式:b=ni=1x i-xy i-yni=1x i-x2=ni=1x i y i-nx yni=1x2i-nx 2,a=y -bx ,y=bx+ar=ni=1x i-xy i-yni=1x i-x2ni=1y i-y2=ni=1x i y i-xxyni=1x2i-nx 2ni=1y2i-ny 21,某餐厅查阅了最近5次食品交易会参会人数x(万人)与餐厅所用原材料数量y(袋), 得到如下统计表:第一次第二次第三次第四次第五次参会人数x/万人13981012原材料y/袋3223182428根据所给5组数据,求出y关于x的线性回归方程.2.某连锁经营公司旗下的5个零售店某月的销售额和利润额如下表:商店名称A B C D E销售额x/千35679万元利润额y/百23345万元用最小二乘法计算利润额y关于销售额x的线性回归方程.3.某企业坚持以市场需求为导向, 合理配置生产资源, 不断改革、探索销售模式. 下表是该企业每月生产的一种核心产品的产量x(件)与相应的生产总成本y(万元)的五组对照数据:产量x/件12345生产总成本y3781012 /万元试求y与x的相关系数r, 并利用相关系数r说明y与x是否具有较强的线性相关关系(若|r|>0.75, 则线性相关程度很高, 可用线性回归模型拟合).训练42线性回归计算(2)(建议用时13分钟)1某专营店统计了近五年来该店的创收利润y(单位:万元)与时间t i(单位:年)的相关数据,列表如下:t i12345y i 2.4 2.7 4.1 6.47.9依据表中给出的数据, 是否可用线性回归模型拟合y与t的关系?请计算相关系数r并加以说明(计算结果精确到0.01, 若|r|>0. 8 , 则认为y与t高度相关, 可用线性回归模型拟合y 与t的关系).2某部门统计了某网红景点在2022年3月至7月的旅游收人y(单位:万元), 得到以下数据:月份x34567旅游收人y1012111220根据表中所给数据, 用相关系数r加以判断, 是否可用线性回归模型拟合y与x的关系?若可以,求出y关于x的线性回归方程;若不可以,请说明理由.3某汽车4S店关于某品牌汽车的使用年限x(年)和所支出的维修费用y(千元)有如下的统计资料:x23456y 2.0 3.5 6.0 6.57.0试求y关于x的线性回归方程.训练43期望求解(1)(建议用时:12分钟) 1.求期望值.P(X=0)=C02C23C25=P(X=1)=C12C13C25=P(X=2)=C22C03C25=2.求期望值.P(X=0)=C36C310=P(X=1)=C26C14C310=P(X=2)=C16C24C310=P(X=3)=C34C310=3.求分布列Y的期望值, 已知Y=5X,X的可能取值为0,1,2,3,4, 且X∼B4,34.(1)P(X=0)=C0434 014 4=(2)P(X=1)=C1434 114 3=(3)P(X=2)=C2434 214 2=(4)P(X=3)=C3434 314 1=(5)P(X=4)=C4434 414 0=训练44期望求解(2)(建议用时:12分钟)1随机变量ξ的可能取值为0,1,2,3,4.P (ξ=0)=1-34 21-232=P (ξ=1)=C 1234 1-34 1-23 2+C 1223 1-23 1-34 2=P (ξ=2)=34 21-23 2+1-34 223 2+C 12231-23 C 1234 1-34 =P (ξ=3)=34 2C 1223 1-23 +C 1234 1-34 23 2=P (ξ=4)=34223 2=求随机变量ξ的期望值.2随机变量X 的可能取值为2,3,4,5.P (X =2)=C 12C 22+C 22C 12C 310=P (X =3)=C 12C 24+C 22C 14C 310=P (X =4)=C 12C 26+C 22C 16C 310=P (X =5)=C 12C 28+C 22C 18C 310=求随机变量X 的期望值.(建议用时:20分钟)1.C r 12⋅212-r ≥C r -112⋅213-r ,C r 12⋅212-r ≥C r +112⋅211-r ,为整数, 则r =2.(-2)r C r 8≥(-2)r +2C r +28,(-2)r C r 8≥(-2)-2C r -28,为偶数, 则r =3.设m ,n ∈N ∗,m ≤n , 求证:C m +1n +1=n +1m +1C mn.4.用二项式定理证明:3n >2n 2+1n ≥3,n ∈N ∗ .(建议用时:20分钟)1.求r的取值范围:C r7⋅2r≥C r-17⋅2r-1,C r7⋅2r≥C r+17⋅2r+1 .2.求r的取值范围:C r8⋅2r≥C r+18⋅2r+1, C r8⋅2r≥C r-18⋅2r-1.3.求k的取值范围:C k1012 k≥C k-11012 k-1, C k1012 k≥C k+11012 k+1.4.展开:x-12x6=。
高中数学计算练习题
高中数学计算练习题一、代数部分1. 计算下列表达式的值:- \( (3x^2 - 2x + 1) - (5x^2 + 3x - 7) \)- \( \frac{2}{x} + \frac{3}{x+1} \)2. 解下列方程:- \( 2x^2 + 5x - 3 = 0 \)- \( \frac{1}{x} - 2 = 0 \)3. 简化下列分式:- \( \frac{4x^3 - 4x^2 + x}{x^2 - 1} \)二、几何部分1. 已知三角形ABC的三边长分别为a, b, c,且满足以下条件:- \( a^2 + b^2 = c^2 \)- \( a + b + c = 24 \)- \( ab + bc + ac = 90 \)求三角形ABC的面积。
2. 已知圆的半径为r,求圆的面积和周长。
三、三角函数部分1. 已知 \( \sin \alpha = \frac{3}{5} \),且 \( \alpha \) 在第一象限,求 \( \cos \alpha \) 和 \( \tan \alpha \)。
2. 计算下列三角函数表达式的值:- \( \sin(30^\circ) + \cos(60^\circ) \)- \( \tan(45^\circ) \)四、概率统计部分1. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,求抽到至少一个红球的概率。
2. 抛一枚硬币两次,求正面朝上的次数为1的概率。
五、综合应用题1. 某工厂生产的产品合格率为90%,如果随机抽取100件产品,求至少有85件产品合格的概率。
2. 一个班级有30名学生,其中10名男生和20名女生。
随机选取5名学生参加数学竞赛,求至少有3名女生的概率。
结束语通过这些练习题,学生可以加深对高中数学知识点的理解和应用,提高解题速度和准确率。
希望这些练习题能够帮助学生在数学学习中取得更好的成绩。