2013年高考真题——理科数学(广东卷)Word版无答案

合集下载

2013年广东省高考数学真题(理科)及答案

2013年广东省高考数学真题(理科)及答案

绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1. 答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔讲试卷类型(A )填涂在答题卡相应的位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁,考试结束后,将试题与答题卡一并交回。

参考公式:台体的体积公式V=31(S 1+S 2+21s s )h,其中S 1,S 2分别表示台体的上、下底面积,h 表示台体的高。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N= A. {0} B. {0,2} C. {-2,0} D {-2,0,2}2.定义域为R 的四个函数y=x 3,y=2x ,y=x 2+1,y=2sinx 中,奇函数的个数是 A. 4 B.3 C. 2 D.13.若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是 A. (2,4) B.(2,-4) C. (4,-2) D(4,2)4.已知离散型随机变量X 的分布列为则X 的数学期望E (X )= A. B. 2 C. D 35.某四棱台的三视图如图1所示,则该四棱台的体积是A.4 B.C.D.66.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A.若α⊥β,mα,nβ,则m⊥ n B.若α∥β,mα,nβ,则m∥nC.若m⊥ n,m α,n β,则α⊥βD.若m α,m∥n,n∥β,则α⊥β7.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是A.= 1B.= 1C.= 1D.= 1 8.设整数n≥4,集合X={1,2,3……,n}。

13年广东高考理科数学试题及答案OK

13年广东高考理科数学试题及答案OK

正视图 俯视图侧视图图1绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5、考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:台体的体积公式121(3V S S h =++,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高。

一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合{}R x x x x M ∈=+=,022 {}R x x x x N ∈=-=,022,则M N = ( )A 、{}0B 、{}2,0C 、{}0,2-D 、{}2,0,2-2、定义域为R 的四个函数3x y =,x y 2=,12+=x y ,x y sin 2=中,奇函数的个数是( )A 、4B 、3C 、2D 、1 3、若复数z 满足i iz 42+=,则在复平面内,z 对应的点的坐标是( )A 、)4,2(B 、)4,2(-C 、)2,4(-D 、)2,4( 4、已知离散型随机变量X 的分布列为则X 的数学期望=)(X E ( )5 )A 、4B 、314 C 、316D 、6D6、设n m ,是两条不同的直线,βα,是两个不同的平面,下列命题正确的是( ) A 、若m n αβαβ⊥⊂⊂,,, 则m n ⊥ B 、若m n αβαβ⊂⊂∥,,,则m n ∥ C 、若m n m n αβ⊥⊂⊂,,, 则αβ⊥ D 、若m m n n αβ⊥,∥,∥,则αβ⊥7、已知中心在原点的双曲线C 的右焦点为)0,3(F 离心率等于23,则C 的方程是( ) A 、15422=-y x B 、15422=-y x C 、15222=-y x D 、15222=-y x 8、设整数4≥n ,集合{}n X ,,3,2,1 =令集合{}(,,),,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若),,(),,(x w z z y x 和都在S中,则下列选项正确的是( )A 、S w y x S w z y ∉∈),,(,),,(B 、 S w y x S w z y ∈∈),,(,),,(C 、S w y x S w z y ∈∉),,(,),,(D 、 w y x S w z y ∉∉),,(,),,(二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20(一)必做题(9-13题)9、不等式022<-+x x 的解集为 .10、若曲线x kx y ln +=在点),1(k 处的切线平行于x 轴,则=k .11、执行图2所示的流程框图,若输入n 的值为4,则输出s 的值为 . 12.在等差数列{}n a 中,已知1083=+a a ,则=+753a a .13、给定区域⎪⎩⎪⎨⎧≥≤+≥+0444:x y x y x D ,令点集{}000000(,),,(,)D T x y D x y Z x y z x y =∈∈=+是在上取得最大值或最小值的点,则T 中的点共确定条不同的直线;(二)选做题(14-15题,考生只能从中选做一题) 14、(坐标系与参数方程选做题)已知曲线C 的参数方程为⎩⎨⎧==)(sin 2cos 2为参数t ty t x ,C 在点)1,1(处的切线为l ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则l 的极坐标方程为 . 15、(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D ,使BC =CD ,过C 作圆O 的切线交AD 于E ,若AB =6,DE =2,则BC = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16、(本小题满分12分)已知函数()),12f x x π=-x R ∈,(1)求()6f π-的值;(2)若33cos ,(,2)52πθθπ=∈,求(2)3f πθ+17、(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人? (3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.图4BC图6O18、(本小题满分14分)如图5,在等腰直角三角形ABC中,∠A 90=︒,6BC=,D,E分别是AC,AB上的点,CD BE== O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎'A BCDE-,其中'A O=(1)证明:'A O⊥平面BCDE;(2)求二面角'A CD B--平面角的余弦值.19、(本小题满分14分)设数列{}na的前n项和为nS,已知11a=,2*1212,33nnSa n n n Nn+=---∈,(1)求2a的值;(2)求数列{}na的通项公式;(3)证明:对一切正整数n,有1211174na a a++⋅⋅⋅+<.20、(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)(0)F c c >到直线:20l x y --=,设P 为直线l 上的点,过点P 做抛物线C 的两条切线PA ,PB ,其中A ,B 为切点;(1)求抛物线C 的方程;(2)当点00(,)P x y 为直线l 上的定点时,求直线AB ;(3)当点P 在直线l 上移动时,求||||AF BF ⋅的最小值21、(本小题满分14分)设函数2()(1)()x f x x e kx k R =--∈,(1)当1k =时,求函数()f x 的单调区间; (2)当1(,1]2k ∈时,求函数()f x 在[0,]k 上的最大值M2013年普通高等学校招生全国统一考试(广东卷)答案数学(理科)一、选择题1-5:D 、C 、C 、A 、B ; 6-8:D 、B 、B ;二、填空题9、(-2,1) 10、-1 11、7 12、20 13、6 14、2)4(sin =+πθρ 15、32三、解答题16、(1)由题意1222)4cos(2)126cos(2)6(=⨯=-=--=-ππππf (2)∵)2,23(,53cos ππθθ∈=,∴54-sin =θ.∴252453)54(2cos sin 22sin ,2571)53(21-cos 22cos 22-=⨯-⨯==-=-⨯==θθθθθ∴)4sin 2sin 4cos 2(cos 2)42cos(2)1232cos(2)32(πθπθπθππθπθ-=+=-+=+f2517)2524(2572sin 2cos )2sin 222cos 22(2=---=-=-=θθθθ. 17、(1)样本均值为226302521201917=+++++=x . (2)根据题意,抽取的6名员工中优秀员工有2人,优秀员工所占比例为3162=,故12名员工中优秀员工人数为41231=⨯(人).(3)记事件A 为“抽取的工人中恰有一名为优秀员工”,由于优秀员工4人,非优秀员工为8人,故事件A 发生的概率为33166684)(2121814=⨯==C C C A P ,即抽取的工人中恰有一名为优秀员工的概率为3316.18、(1)折叠前连接OA 交DE 于F ,∵折叠前△ABC 为等腰直角三角形,且斜边BC =6, 所以OA ⊥BC ,OA=3,AC =BC =23 又2==BE CD∴BC ∥DE ,22==AE AD∴OA ⊥DE ,22==AE AD ∴AF =2,OF =1 折叠后DE ⊥OF ,DE ⊥A ′F ,OF ∩A ′F =F∴DE ⊥面A ′OF ,又OF A O A '⊂'面 ∴DE ⊥A ′O又A ′F =2,OF =1,A ′O =3∴△A ′OF 为直角三角形,且∠A ′OF =90° ∴A ′O ⊥OF , 又BCDE DE 面⊂,BCDE OF 面⊂,且DE ∩OF =F , ∴A ′O ⊥面BCDE .(2)过O 做OH ⊥交CD 的延长线于H ,连接H A ',∴OH =22AO =223,230)3()223(2222=+=+'='OH O A H A ∵∠A ′HO 即为二面角B CD A --'的平面角,故cos ∠A ′HO=5153023=='H A OH . 19、(1)令*21,32312N n n n a n S n n ∈---=+中n =1得,32131221---=a a ∴42212=+=a a(2)由*21,32312N n n n a n S n n ∈---=+;得)2)(1(612326121231++-=---=++n n n na n n n na S n n n∴)3)(2)(1(612)1(21+++-+=++n n n a n S n n两式相减得)2)(1(2122)1(121++--+=-+++n n na a n S S n n n n∴)2)(1(2122)1(121++--+=+++n n na a n a n n n∴)2)(1(212)2(2)1(12++++=+++n n a n a n n n∴11212++=+++n an a n n ,∴11212=+-+++n a n a n n又由(1)知112,22,111221=-==aa a a∴为公差的等差数列,为首相,是以11⎭⎬⎫⎩⎨⎧n a n ∴n na n =.∴)(*2N n n a n ∈=.(3)∵)1111(21)1)(1(111122+--=+-=-<n n n n n n∴)1111(21)4121(21)311(2111312111111222321+--++-+-+<++++=++++n n na a a a n 47)111(2147)111211(211<++-=+--++=n n n n 20、(1)依题意得0,22322>=--c c ,∴1=c .∴抛物线焦点坐标为(0,1),抛物线解析式为x 2=4y(2)设A (x 1,421x ),B (x 2,422x ),∴可设A 、B 中点坐标为M )82(222121x x x x ++, 所以直线PA :424)(22112111x x x x x x x y -=+-=,直线PB :424)(22222222x x x x x x x y -=+-=两式相减得)2(244202121212221x x x x x x x x x x +--=-+-= ∵21x x ≠,∴0221≠-x x ,0221=+-x x x∴2210x x x +=, ∴0212x x x =+将P (0x ,0x -2)带入PA :42211x x x y -=得4422221212110x x x x x x x =-+=-∴84021-=x x x∴2428168482)(8020020212212221+-=+-=-+=+x x x x x x x x x x ∴A 、B 中点坐标为M (0x ,242020+-x x )∴直线AB 的斜率24)(4021122122x x x x x x x k AB =+=--= 故直线AB 的方程为22242)(20002000+-=+-+-=x x x x x x x x y . (3)由于A 点到焦点F 的距离等于A 点到准线y =-1的距离,∴|AF |=1421+x ,|BF |=1422+x 29)23(2962142)2(14)4()14)(14(200200202022212212221+-=+-=++-+-=+++=++=⋅x x x x x x x x x x x x BF AF∴当230=x 时,BF AF ⋅取最小值29.21、(1)k =1时2)1()(x e x x f x --=∴)2(2)1()(-=--+='x x x e x x e x e x f当x <0时02<-x e ,故0)2()(>-='x e x x f ,)(x f 单调递增;0< x <ln2时02>-x e ,故0)2()(<-='x e x x f ,)(x f 单调递减; x>ln2时02>-x e ,故0)2()(>-='x e x x f ,)(x f 单调递增;综上,)(x f 的单调增区间为)0,(-∞和),2(ln +∞,单调减区间为)2ln ,0(. (2))2(2)1()(k e x kx e x e x f x x x -=--+='∵121≤<k ,∴221≤<k 由(1)可知)(x f 的在(0,ln2k )上单调递减,在(ln2k ,+∞)上单调递增设)121(,2ln )(≤<-=x x x x g ,则xx x g 11221)(-=-=' ∵121≤<x ,∴211<≤x ,∴0111≤-<-x∴x x x g 2ln )(-=在⎥⎦⎤⎝⎛121,上单调递减.∵121≤<k , ∴02ln 1)1()(>-=>g k g ∴02ln >-k k 即k k 2ln > ∴)(x f 的在(0,ln2k )上单调递减,在(ln2k ,k )上单调递增. ∴)(x f 的在[0,k ]上的最大值应在端点处取得. 而1)0(-=f ,1)1(2)1()(3-=<--=f k e k k f k ∴当x =0时)(x f 取最大值1-.。

2013年广东高考理科数学试题及答案解析(图片版)

2013年广东高考理科数学试题及答案解析(图片版)

2013年广东高考理科数学试题与答案解析2013年普通高等学校招生全国统一考试〔广东卷〕数学〔理科〕参考答案一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. DC CA BD BB二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分9. (-2,1) 10.k =-1 11. 7 12.20 13.614.sin 4πρθ⎛⎫+= ⎪⎝⎭15.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.〔本小题满分12分〕[解析](Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---=⎪⎝⎭. 17.〔本小题满分12分〕[解析](Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.向量法图(Ⅲ) 设事件A:从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A=1148212C CC 1633=.18.〔本小题满分14分〕[解析](Ⅰ) 在图1中,易得3,OC AC AD===连结,OD OE,在OCD∆中,由余弦定理可得OD==由翻折不变性可知A D'=,所以222A O OD A D''+=,所以A O OD'⊥,理可证A O OE'⊥, 又OD OE O=,所以A O'⊥平面BCDE.(Ⅱ) 传统法:过O作OH CD⊥交CD的延长线于H,连结A H',因为A O'⊥平面BCDE,所以A H CD'⊥,所以A HO'∠为二面角A CD B'--的平面角.结合图1可知,H为AC中点,故2OH=,从而2A H'==所以cos5OHA HOA H'∠==',所以二面角A'的平面角的余弦值为.向量法:以O点为原点,建立空间直角坐标系O-则()0,0,3A',()0,3,0C-,()1,2,0D-所以(CA'=,(1,DA'=-设(),,n x y z=为平面A CD'的法向量,则n CAn DA⎧'⋅=⎪⎨'⋅=⎪⎩,即3020yx y⎧=⎪⎨-+=⎪⎩,解得yz=⎧⎪⎨=⎪⎩,令1x=,得(1,1,n=-由(Ⅰ) 知,()0,0,3OA'=为平面CDB的一个法向量,所以3cos,3n OAn OAn OA'⋅'==⋅'即二面角A CD B'--19.〔本小题满分14分〕[解析](Ⅰ) 依题意,12122133S a=---,又111S a==,所以24a=;(Ⅱ) 当2n≥时,32112233n nS na n n n+=---,()()()()321122111133n nS n a n n n-=-------两式相减得()()()2112213312133n n na na n a n n n+=----+---整理得()()111n nn a na n n++=-+,即111n na an n+-=+,又21121a a-=故数列nan⎧⎫⎨⎬⎩⎭是首项为111a=,公差为1的等差数列,所以()111n a n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<.20.〔本小题满分14分〕[解析](Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=0c >,解得1c =. 所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设A (x 1,y 1), B (x 2,y 2) (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点P (x 0,y 0),所以1001220x x y y --=,2002220x x y y --= 所以(x 1,y 1),(x 2,y 2)为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点P (x 0,y 0)在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭ 所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 21.〔本小题满分14分〕 [解析](Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令f'(x )=0,得0x =,ln 2x = 当x 变化时, f'(x ), f (x )的变化如下表:f (x ) 极大值极小值右表可知,函数f (x )的递减区间为(0,ln2),递增区间为(-∞,0), (ln2,+∞). (Ⅱ)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-, 令f'(x )=0,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增,所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈所以当()()0,ln 2x k ∈时, f'(x )<0;当()()ln 2,x k ∈+∞时, f'(x )>0;所以()(){}(){}3max 0,max 1,1kM f f k k e k ==--- 令()()311kh k k e k =--+,则()()3kh k k e k '=-,令()3kk e k ϕ=-,则()330kk e e ϕ'=-<-<所以φ(k )在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e e ϕϕ⎛⎫⎛⎫⋅=--< ⎪ ⎪⎝⎭⎝⎭ 所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时, φ(k )>0, 当()0,1k x ∈时, φ(k )<0, 所以φ(k )在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减. 因为1170228h e ⎛⎫=-+> ⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=〞.综上,函数f (x )在[0,k ]上的最大值()31kM k e k =--.。

2013广东高考数学(理科)试题及详解

2013广东高考数学(理科)试题及详解

2013广东高考数学(理科)试题及详解参考公式:台体的体积公式()1213VS S h =,其中12,S S 分别是台体的上、下底面积,h 表示台体的高. 一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}2|20,Mx x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则M N = ( )A .{}0 B .{}0,2 C .{}2,0- D .{}2,0,2-【解析】D ;易得{}2,0M =-,{}0,2N =,所以M N = {}2,0,2-,故选D .2.定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( A . 4B .3 C .2 D .1【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .3.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( )A .()2,4B .()2,4-C .()4,2-D .()4,2【解析】C ;2442iz i i+==-对应的点的坐标是()4,2-,故选C . 4.已知离散型随机变量X 的分布列为X 1 23P35 310110则X 的数学期望EX = ( )A . 32B .2C .52D .3【解析】A ;33115312351010102EX =⨯+⨯+⨯==,故选A .5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4B .143 C .163D .6【解析】B ;由三视图可知,该四棱台的上下底面边长分别为1和2的正方形,高为2,故()2211412233V=⨯=,,故选B . 6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【解析】D ;ABC 是典型错误命题,选D . 7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A . 2214x -=B .22145x y -=C .22125x y -= D.2212x -= 【解析】B ;依题意3c =,32e =,所以2a =,从而24a =,2225b c a =-=,故选B .8.设整数4n ≥,集合{}1,2,3,,X n = .令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立正视图俯视图 侧视图第5题图若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈【解析】B;特殊值法,不妨令2,3,x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 (一)必做题(9~13题) 9.不等式220x x +-<的解集为___________.【解析】()2,1-;易得不等式220x x +-<的解集为()2,1-.10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.【解析】1-;求导得1y k x'=+,依题意10k +=,所以1k =-. 11.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为______. 【解析】7;第一次循环后:1,2s i ==;第二次循环后:2,3s i ==; 第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7.12. 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【解析】20;依题意12910a d +=,所以()5711133464a a a d a d a +=+++= 或:()57383220a a a a +=+=13. 给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定______条不同的直线. 【解析】6;画出可行域如图所示,其中z x y =+取得最小值时的整点为()0,1,取得最()0,4,()1,3,()2,2,()3,1及()4,0共5个整点.故可确定516+=条不同的直线.(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分)14.(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________.【解析】sin 4πρθ⎛⎫+= ⎪⎝⎭;曲线C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为1 7 92 0 1 53 0第17题图2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 4πρθ⎛⎫+= ⎪⎝⎭.15. (几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上, 延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若 6AB =,2ED =,则BC =_________.【解析】ABC CDE ∆∆ ,所以AB BCCD DE =,又 BC CD =,所以212BC AB DE =⋅=,从而BC =三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【解析】(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-,所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭.17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人. 根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀 工人的概率.【解析】(Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.(Ⅲ) 设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=. 18.(本小题满分14分)C D OBE'AH如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=(Ⅰ) 证明:A O '⊥平面BCDE ;(Ⅱ) 求二面角A CDB '--的平面角的余弦值. 【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE ,在OCD ∆中,由余弦定理可得OD ==由翻折不变性可知A D '=所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.结合图1可知,H 为AC 中点,故2OH =,从而2A H '==所以cos OH A HO A H '∠==',所以二面角A CDB '--向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示,则(A ',()0,3,0C -,()1,2,0D - 所以(CA '= ,(1,DA '=-设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩ ,即3020y x y ⎧=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,n =- 由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,5n OA n OA n OA '⋅'===',即二面角A CD B '--19.(本小题满分14分)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式;.CO BDEA CDO B'A图1 图2(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++< . 【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =;(Ⅱ) 当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133n n n a na n a n n n +=----+---整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111n a n n n=+-⨯=,所以2n a n =.(Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++< .20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;(Ⅲ) 当点P 在直线l 上移动时,求AF BF⋅的最小值.【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =.(Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --=所以()()1122,,,x y x y 为方程00220x x y y --=的两组解.所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+,所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,Px y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.21.(本小题满分14分)设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .【解析】(Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x =当x 变化时,()(),f x f x '的变化如下表:右表可知,函数()f x 的递减区间为()0,ln 2,递增区间为(),0-∞,()ln 2,+∞.(Ⅱ)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =, 令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>; 所以()(){}(){}3max 0,max 1,1k M f f k k e k ==---令()()311k hk k e k =--+,则()()3k h k k e k '=-,令()3k k e k ϕ=-,则()330kk e e ϕ'=-<-<所以()k ϕ在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭ 所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<,所以()k ϕ在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减.因为17028h ⎛⎫=> ⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=”.综上,函数()f x 在[]0,k 上的最大值()31k M k e k =--.。

2013年高考理科数学广东卷

2013年高考理科数学广东卷

二、填空题:本大题共 7 小题,考生作答 6 小题,每小题 5 分,满分 30 分. ) (一)必做题(9~13 题) 9.不等式 x2 x 2<0 的解集为 .

--------------------
10.若曲线 y kx ln x 在点 (1, k) 处的切线平行于 x 轴,则 1 3 5 C. 2 3 10 3 1 10 ( )

--------------------

-------------------准考证号_____________
14 16 C. D.6 3 3 6.设 m , n 是两条不同的直线 , , 是两个不同的平面 .下列命题中正确的是
A .4 B. A.若 ⊥ , m , n ,则 m⊥n C.若 m⊥n , m , n ,则 ⊥
5 2
D .3
3a5 a7
数学试卷 第 1 页(共 4 页)
x 4 y≥4 13.给定区域 D : x y≤4 . 令点集 x≥0
18.(本小题满分 14 分) 如图 5,在等腰直角三角形 ABC 中, A 90 , BC 6 , D , E 分别是 AC , AB 上的 点 , CD BE 2 , O 为 BC 的中点 .将 △ADE 沿 DE 折起,得到如图 6 所示的四棱锥
C.
姓名________________
x2 y 2 1 2 5
D.
x2 y 2 1 2 5

--------------------
, 2, 3,…,n} .令集合 8.设整数 n≥4 ,集合 X {1
S {( x, y, z) | x, y, z X , 且三条件x y z, y z x, z x y恰有一个成立} .

2013年高考真题——理科数学(全国卷大纲版)精校版 Word版无答案

2013年高考真题——理科数学(全国卷大纲版)精校版  Word版无答案

绝密★启用前2013年普通高等学校招生全国统一考试数学(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6(2)()3=(A )8- (B )8 (C )8i - (D )8i (3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )-3 (C )2- (D )-1 (4)已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫⎪⎝⎭(5)函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> (6)已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于(A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3(7)()()342211+x y x y +的展开式中的系数是(A )56 (B )84 (C )112 (D )168(8)椭圆22122:1,,46x y C A A P C PA +=的左、右顶点分别为点在上且直线斜率的取值范围是[]12,1,PA --那么直线斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦, (D )314⎡⎤⎢⎥⎣⎦,(9)若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是 (A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+ (10)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23 (B)3 (C)3(D )13 (11)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于,0,A B MA MB k ==两点,若则(A )12 (B)2(C(D )2 (12)已知函数()=cos sin 2,f x x x 下列结论中正确的是(A )()(),0y f x π=的图像关于中心对称 (B )()2y f x x π==的图像关于对称(C )()f x (D )()f x 既是奇函数,又是周期函数 二、填空题:本大题共4小题,每小题5分.(13)已知1sin ,cot 3a a a =-=是第三象限角,则 . (14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)(15)记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为.D 若直线()1y a x D a =+与有公共点,则的取值范围是 .(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 的前n 项和为232124.=,,,n S S a S S S 已知且成等比数列,求{}n a 的通项式.18.(本小题满分12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为(I )求;B(II )若sin sin C.A C =求19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆ 中,,与都是等边三角形.(I )证明:;PB CD ⊥(II )求二面角.A PD C --的大小20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )X 表示前4局中乙当裁判的次数,求X 的数学期望.21.(本小题满分12分)已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -证明:22.AF AB BF 、、成等比数列22.(本小题满分12分)已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若()0,0,x f x λ≥≤时求的最小值;;(II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:。

2013年普通高等学校招生统一考试理科数学(广东卷)

2013年普通高等学校招生统一考试理科数学(广东卷)

数学(理科)试卷A 第3页(共4页)数学(理科)试卷A 第4页(共4试卷类型:A2013年普通高等学校招生统一考试(广东卷)数 学 (理科)本试卷共4页,21小题, 满分150分. 考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:台体的体积公式V =13(S 1+S 1S 2+S 2)h ,其中S 1,S 2分别表示台体的上、下底面积,h 表示台体的高.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ⋃N =( )A .{0}B .{0,2}C .{-2,0}D .{-2,0,2}2.定义域为R 的四个函数y =x 2,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是 ( )A .4B .3C .2D .1 3.若复数iz =2+4i ,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,-4)C .(4,-2)D .(4,2) 4.已知离散型随机变量X 的分布列为则X 的数学期望E (X )=( )A .32B .2C .52D .3 5.某四棱台的三视图如图1所示,则该四棱台的体积是( )A .4B .143C .163D .66.设m ,n 为两条不同的直线,α,β为两个不同的平面,下列命题中正确的是( )A .若α⊥β,m ⊂α,n ⊂β,则m ⊥nB .若α∥β,m ⊂α,n ⊂β,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则l ⊥β7.已知中心在原点的双曲线C 的右焦点F (3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1B .x 24-y 25=1C .x 22-y 25=1D .x 22-y 25=18.设整数n ≥4,集合X ={1,2,3,…,n },令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三个条件x <y <z ,y <z <x ,z <x <y 恰有一个成立},若(x ,y ,z )和(z ,w ,x )都在S 中,则下列选项正确的是( )A .(y ,z ,w )∈S ,(x ,y ,w )∉SB .(y ,z ,w )∈S ,(x ,y ,w )∈SC .(y ,z ,w )∉S ,(x ,y ,w )∈SD .(y ,z ,w )∉S ,(x ,y ,w )∉S二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(9~13题)9.不等式x 2+x -2<0的解集为_____________.10.若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =_________.11.执行如图2所示的程序框图,若输入n 的值为4,则输出s的值是_________.12.在等差数列{a n }中,已知a 3+a 5=10,则3a 3+a 7=_____.侧视图俯视图图1数学(理科)试卷A 第3页(共4页)数学(理科)试卷A 第4页(共4页 )13.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4x +y ≤4 x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,x 0,y 0是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定______条不同的直线. (二)选做题(考生在14~15小题中选做一题)14.(坐标系与参数方程选做题)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos ty =2sin t (t 为参数).C 在为点(1,1)处的切线为l ,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .15.(几何证明选讲选做题)如图3,AB 是圆O 的直径,点C 在圆O上,延长BC 到D ,使BC =CD ,过C 作圆O 的切线交AD 于E . 若AB =6,ED =2,则BC =_______.三、解答题:本大题共6小题,共80分.解答需写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数f (x )=2cos(x -π12),x ∈R .(1)求f (-π6)的值;(2)若cos θ=35,θ∈(3π2,2π),求f (2θ+π3).17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.18.(本小题满分14分)如图5,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点,将ΔADE 沿DE 折起,得到如图6所示的四棱锥A ′-BCDE ,其中A ′O =3.(1)证明:AO ⊥平面BCDE ; (2)求二面角A ′-CD -B 的平面角的余弦值.19.(本小题满分14分)设数列{a n }的前n 项为S n ,已知a 1=1,2S n n =a n +1-13n 2―n ―23,n ∈N*.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求|AF|·|BF|的最小值.21.(本小题满分14分) 设函数f (x )=(x -1)e x -kx 2 (k ∈R ). (1)当k =1时,求函数f (x )的单调区间;(2)当k ∈(12,1]0时,求函数f (x )在 [0,k ]上的最大值M .1 7 92 0 1 53 0图4BAEDC图6 图5A ′BOC。

2013广东高考试题理科数学

2013广东高考试题理科数学

试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)参考公式:台体的体积公式V=(S1+S2+)h,其中S1,S2分别表示台体的上、下底面积,h表示台体的高。

8.设整数n≥4,集合X={1,2,3……,n}。

令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立},若(x,y,z)和(z,w,x)都在s中,则下列选项正确的是A.(y,z,w)∈s,(x,y,w)SB.(y,z,w)∈s,(x,y,w)∈SC. (y,z,w)s,(x,y,w)∈SD. (y,z,w)s,(x,y,w)S二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

(一)必做题(9~13题)9.不等式x2+x-2<0的解集为。

10.若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k= 。

11.执行如图2所示的程序框图,若输入n的值为4,则输出s的值为。

12,在等差数列{an}中,已知a3+a8=10,则3a5+a7=___13.给定区域:.令点集T=|(x0,y)∈D|x,y∈Z,(x,y)是z=x+y在D上取得最大值或最小值的点,则T中的点共确定____条不同的直线。

(二)选做题(14-15题,考生只能从中选做一题)14(坐标系与参数方程选做题)已知曲线C的参数方程为(t为参数),C在点(1,1)处的切线为L,一座标原点为极点,x轴的正半轴为极轴建立极坐标,则L的极坐标方程为_______.15.(几何证明选讲选做题)如图3,AB是圆O的直径,点C在圆O上,延长BC到D是BC=CD,过C作圆O的切线交AD于E。

若AB=6,ED=2,则BC=______.三、解答题:本大题共6小题,满分80分,解答需写出文字说明。

证明过程和演算步骤。

16.(本小题满分12分)已知函数f(x)=cos(x-),XER。

(1)求f(-)的值;(2)若cosθ=,θE (,2π),求f(2θ+)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前 试卷类型:A
2013年普通高等学校招生全国统一考试(广东卷)
数学(理科)
本试卷共4页,21小题,满分150分.考试用时120分钟
注意事项:1. 答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考
生号、考场号、座位号填写在答题卡上。

用2B 铅笔讲试卷类型(A )
填涂在答题卡相应的位置上。

将条形码横贴在答题卡右上角“条形
码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的
答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,
答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答
题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,
然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答
的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息
点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁,考试结束后,将试题与答题卡一并
交回。

参考公式:台体的体积公式
V=(S 1+S 2+
)h,其中S 1,S 2分别表示台体的上、
下底面积,h 表示台体的高。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N=
A. {0}
B. {0,2}
C. {-2,0} D {-2,0,2}
2.定义域为R 的四个函数y=x 3,y=2x ,y=x 2+1,y=2sinx 中,奇函数的个数是
A. 4
B.3
C. 2
D.1
3.若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是
A. (2,4)
B.(2,-4)
C. (4,-2) D(4,2)
4.已知离散型随机变量X 的分布列为
则X 的数学期望E (X )=
A. B. 2 C. D 3
5.某四棱太的三视图如图1所示,则该四棱台的体积是
A.4 B.C.D.6
6.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A.若α⊥β,m⊂α,n⊂β,则m⊥ n B.若α∥β,m⊂α,n⊂β,则m∥n
C.若m⊥ n,m α,n ⊂β,则α⊥βD.若m α,m∥n,n∥β,则α⊥β
7.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是
A.= 1B.= 1C.= 1D.
= 1
8.设整数n≥4,集合X={1,2,3……,n}。

令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立},若(x,y,z)和(z,w,x)都在s中,则下列选项正确的是
A.(y,z,w)∈s,(x,y,w)∉S
B.(y,z,w)∈s,(x,y,w)∈S
C. (y,z,w)∉s,(x,y,w)∈S
D. (y,z,w)∉s,(x,y,w)∉S
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

(一)必做题(9~13题)
9.不等式x2+x-2<0的解集为。

10.若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k= 。

11.执行如图2所示的程序框图,若输入n的值为4,则输出s的值为。

12,在等差数列{an}中,已知a3+a8=10,则3a5+a7=___
13.给定区域:.令点集T=|(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点,则T中的点共确定____条不同的直线。

(二)选做题(14-15题,考生只能从中选做一题)
14(坐标系与参数方程选做题)已知曲线C的参数方程为(t为参
数),C在点(1,1)处的切线为L,一座标原点为极点,x轴的正半轴为极轴建立极坐标,则L的极坐标方程为_______.
15.(几何证明选讲选做题)如图3,AB是圆O的直径,点C在圆O上,延长BC到D是BC=CD,过C作圆O的切线交AD于E。

若AB=6,ED=2,则BC=______.
三、解答题:本大题共6小题,满分80分,解答需写出文字说明。

证明过程和演算步骤。

16.(本小题满分12分)
已知函数f (x )=cos (x-),XER 。

(1) 求f (
-)的值;
(2) 若
cosθ=,θE (
,2π),求f (
2θ+)。

17.(本小题满分12分)
某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数。

(1) 根据茎叶图计算样本均值;
(2) 日加工零件个数大于样本均值的工人为优秀工人。

根据茎叶图推断该车间
12名工人中有几名优秀工人?
(3) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率 18(本小题满分4分)
如图5,在等腰直角三角形ABC 中,∠A =900 BC=6,D,E 分别是AC ,AB 上的点,CD=BE
=
,O 为BC 的中点.将△ADE 沿DE 折起,得到如图6所示的四棱椎A’-BCDE ,其中A’O=?3
(1)证明:A’O⊥平面BCDE;
(2)求二面角A’-CD-B的平面角的余弦值
19.(本小题满分14分)
设数列{a n}的前n项和为S n,已知a1=1,=a n+1-n2 – n - ,n∈N·.
(1)求a2的值
(2)求数列{a n}的通项公式a1
(3)证明:对一切正整数n,有+…<
20.(本小题满分14分)
已知抛物线c的顶点为原点,其焦点F(0,c)(c>0)到直线L:x-y-2=0的距离为. 设P
为直线L上的点,过点P做抛物线C的两条切线PA,PB,其中A,B为切点。

(1)求抛物线C的方程;
(2)当点P()x0,y0)为直线L上的定点时,求直线AB的方程;
(3)当点P在直线L上移动时,求|AF|·|BF|的最小值
21.(本小题满分14分)
设函数f(x)=(x-1)e x-kx2(k∈R).
(1)当k=1时,求函数f(x)的单调区间;
(2)当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.。

相关文档
最新文档