2013-2014第二轮复习专题: 数列
高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理

+2an+1=4S
n+1+3.
可得
a2 n 1
-
an2
+2(an+1- an)=4an+1,即
2(an+1+an)=
a2 n 1
-
an2
= (an+1+an)(an+1-an).
由于 an>0,可得 an+1-an=2.
又 a12 +2a1=4a1+3, 解得 a1=-1(舍去)或 a1=3.
所以{an}是首项为 3,公差为 2 的等差数列,通项公式为 an=2n+1.
第二个使用累积的方法、第三个可以使用待定系数法化为等比数列(设 an+1+λ =p(an+λ),展开比较系数得出λ);(3)周期数列,通过验证或者推理得出数列的 周期性后得出其通项公式.
热点训练 1:(1)(2018·湖南长沙雅礼中学、河南省实验中学联考)在数列{an}
中,a1=2, an1 = an +ln(1+ 1 ),则 an 等于( )
n
所以
1 =2(1- 1 + 1 - 1 +…+ 1 -
1
)
S k 1 k
223
n n1
=2(1- 1 ) n 1
= 2n . n 1
答案: 2n n 1
3.(2015·全国Ⅱ卷,理16)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则
Sn=
.
解析:因为 an+1=S n+1-Sn,所以 Sn+1-Sn=Sn+1Sn,
高考数学第二轮专题复习教案数列的综合

第26课时 数列的综合一、基础练习1、已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于______2、f(n)=1+2+3+…+n ,则f(n 2)=______3、等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,则{a n }前20项的和S 20=_____4、数列{a n }中,a 1=1,a n 、a n+1是方程x 2-(2n+1)x+1nb =0的两个根,数列{b n }的前n 项和S n =______5、某人从2003年起,每年1月1日到银行存入a 元(一年定期),若年利率为r 保持不变,且每年到期存款均自动转为新的一年定期,到2009年1月1日将所有存款及利息全部取回,他可取回的钱数为________二、例题例1:1993年,某内河可供船只航行的河段长1000km ,但由于水资源的过度使用,促使河水断流,从1994年起,该内河每年船只可行驶的河段长度仅为上一年的三分之二,试求:(1)到2002年,该内河可行驶的河段长度为多少公里?(2)若有一条船每年在该内河上行驶一个来回,问从1993年到2002年这条船航行的总路程为多少公里?例2:已知函数y=f(x)的图象是自原点出发的一条折线,当n ≤y ≤n+1(n=0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f(x n )=n(n=1,2,…)定义。
(1)求x 1,x 2和x n 的表达式。
(2)求f(x)的表达式,并写出其定义域。
例3: 已知函数y=f(x)对任意的实数x 、y 都有f(x+y)=f(x)f(y),且f(1)≠0。
(1)设a n =f(n),(n ∈N*),S n =1n i n a =∑,设b n =21n nS a +,且{b n }为等比数列,求a 1的值。
(2)在(1)的条件下,设c n =2()72n n n a b n n++-,问:是否存在最大的整数m ,使得对于任意n ∈N*,均有c n >3m ?若存在,求出m 的值;若不存在,请说明理由。
荆门市2013届高三二轮专题复习-数列

an 与和 Sn 与项数 n 之间的关系(单调性)的考查 数列的前 n 项和 Sn 与通项 an 的关系 an
n 1 S1 , ,在数列求通项公式中占有 S S , n 2 n 1 n
重要地位位置, 很多数列试题就是以此为出发点设计的。 主要考查考生对数列的前 n 项和 Sn 与通项 an 的关系的理解和分类讨论思想的运用考查。 4.(2012 年高考(浙江理第 7 题容易题) )设 S n 是公差为 d(d≠0)的无穷等差数列{a n}的前 n 项和,则下列命题错误 的是 ( ) .. A.若 d<0,则数列{S n}有最大项 B.若数列{S n}有最大项,则 d<0 C.若数列{S n}是递增数列,则对任意的 n N*,均有 S n>0 D.若对任意的 n N*,均有 S n>0,则数列{S n}是递增数列 解析 答案为 C。选项 C 显然是错的,举出反例:—1,0,1,2,3,„.满足数列{S n} 是递增数列,但是 S n>0 不成立. 题后反思:在明确项 an 与和 Sn 与项数 n 之间的等量关系的前提下,还要能辨别它们之 间的变化(增,减)关系,即函数关系。同时要清楚作为数列判定增减性的特定方法: an 1 ﹥ an (n 1) 递增, an 1 ﹤ an (n 1) 递减。 考点四 等差等比数列的整体(局部)思想在解题中的应用
3a 3d 3, a 2, a 4, 由题意得 1 解得 1 或 1 a ( a d )( a 2 d ) 8. d 3, d 3. 1 1 1 所以由等差数列通项公式可得 an 2 3(n 1) 3n 5 ,或 an 4 3(n 1) 3n 7 .
证法二 对任意 k N , 2Sk
2014届高考二轮复习热点专题第二讲: 数列(文)(教学案)(教师版)

2014届高考二轮复习热点专题第二讲: 数列一、知识梳理1. a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2. 等差数列和等比数列考点一 与等差数列有关的问题例1 (2012·浙江)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列解析 (1)利用函数思想,通过讨论S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 的单调性判断. 设{a n }的首项为a 1,则S n =na 1+12n (n -1)d =d2n 2+⎝⎛⎭⎫a 1-d 2n . 由二次函数性质知S n 有最大值时,则d <0,故A 、B 正确;因为{S n }为递增数列,则d >0,不妨设a 1=-1,d =2,显然{S n }是递增数列,但S 1=-1<0,故C 错误;对任意n ∈N *,S n 均大于0时,a 1>0,d >0,{S n }必是递增数列,D 正确.(2013·课标全国Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .6答案 a m =2,a m +1=3,故d =1,因为S m =0,故ma 1+m (m -1)2d =0,故a 1=-m -12,因为a m +a m +1=5,故a m +a m +1=2a 1+(2m -1)d =-(m -1)+2m -1=5,即m =5. 考点二 与等比数列有关的问题例2 (1)(2012·课标全国)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( )A .7B .5C .-5D .-7(2)(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________. 答案 (1)D (2)32解析 (1)利用等比数列的性质求解.由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8解得⎩⎪⎨⎪⎧ a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7.(2)利用等比数列的通项公式及前n 项和公式求解.S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,将a 3=a 2q ,a 4=a 2q 2代入得, 3a 2+2+a 2q +a 2q 2=3a 2q 2+2,化简得2q 2-q -3=0,解得q =32(q =-1不合题意,舍去).(1)(2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =_____. 答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1,故a n a n -1=-2,故a n =(-2)n -1. (2)(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. ①求数列{a n }的通项公式;②是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解 ①设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18.即⎩⎪⎨⎪⎧ -a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2. 故数列{a n }的通项公式为a n =3×(-2)n -1.②由①有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012. 当n 为偶数时,(-2)n>0.上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}. 考点三 等差数列、等比数列的综合应用例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围. 解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4,∴a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m =4[1-(12)m ]1-12=8[1-(12)m ],∵(12)m 随m 增加而递减,∴{T m }为递增数列,得4≤T m <8.又S n =n (9-n )2=-12(n 2-9n )=-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<4+λ,得λ>6. 考点四 错位相减求和法例4 (2013·山东)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧S 4=4S 2,a 2n =2a n +1得a 1=1,d =2,所以a n =2n -1(n ∈N *). (2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,①当n ≥2时,b 1a 1+b 2a 2+…+b n -1a n -1=1-12n -1,②①-②得:b n a n =12n ,又当n =1时,b 1a 1=12也符合上式,所以b n a n =12n (n ∈N *),所以b n =2n -12n (n ∈N *).所以T n =b 1+b 2+b 3+…+b n =12+322+523+…+2n -12n .12T n =122+323+…+2n -32n +2n -12n +1. 两式相减得:12T n =12+⎝⎛⎭⎫222+223+…+22n -2n -12n +1=32-12n -1-2n -12n +1.所以T n =3-2n +32n . 考点五 裂项相消求和法例5 (2013·广东)设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *, 且a 2,a 5,a 14构成等比数列. (1)证明:a 2=4a 1+5;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.(1)证明 当n =1时,4a 1=a 22-5,a 22=4a 1+5,又a n >0,∴a 2=4a 1+5.(2)解 当n ≥2时,4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, 即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,∴a n +1=a n +2,∴当n ≥2时,{a n }是公差为2的等差数列. 又a 2,a 5,a 14成等比数列.∴a 25=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得a 2=3. 由(1)知a 1=1. 又a 2-a 1=3-1=2,∴数列{a n }是首项a 1=1,公差d =2的等差数列. ∴a n =2n -1.(3)证明 1a 1a 2+1a 2a 3+…+1a n a n +1=11×3+13×5+15×7+…+1(2n -1)(2n +1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1<12. 课后练习一、选择题1. (2013·江西)等比数列x,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .24答案 A解析 由x,3x +3,6x +6成等比数列得,(3x +3)2=x (6x +6). 解得x =-3或x =-1(不合题意,舍去).故数列的第四项为-24.2. (2013·课标全国Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( )A.13B .-13C.19D .-19答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.3. (2013·课标全国Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则 ( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n答案 D解析 S n =a 1(1-q n)1-q =a 1-q ·a n1-q=1-23a n13=3-2a n .故选D.4. 在等差数列{a n }中,a 5<0,a 6>0且a 6>|a 5|,S n 是数列的前n 项的和,则下列说法正确的是( )A .S 1,S 2,S 3均小于0,S 4,S 5,S 6…均大于0B .S 1,S 2,…S 5均小于0,S 6,S 7,…均大于0C .S 1,S 2,…S 9均小于0,S 10,S 11…均大于0D .S 1,S 2,…S 11均小于0,S 12,S 13…均大于0 答案 C解析 由题意可知a 6+a 5>0,故S 10=(a 1+a 10)×102=(a 5+a 6)×102>0,而S 9=(a 1+a 9)×92=2a 5×92=9a 5<0,故选C.5. 已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,a 2011),则OP →·OQ →等于 ( )A .2 011B .-2 011C .0D .1答案 A解析 由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011.6. 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11答案 B解析 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8, 所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…= =a 1+(-6)+(-4)+(-2)+0+2+4+6=3. 二、填空题7. (2013·广东)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.答案 20解析 设公差为d ,则a 3+a 8=2a 1+9d =10,∴3a 5+a 7=4a 1+18d =2(2a 1+9d )=20.8. 各项均为正数的等比数列{a n }的公比q ≠1,a 2,12a 3,a 1成等差数列,则a 3a 4+a 2a 6a 2a 6+a 4a 5=________.答案5-12解析 依题意,有a 3=a 1+a 2,设公比为q ,则有q 2-q -1=0,所以q =1+52(舍去负值).a 3a 4+a 2a 6a 2a 6+a 4a 5=a 2a 4(q +q 2)a 2a 4(q 2+q 3)=1q =21+5=5-12.9. 在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于________.答案 9解析 由a 1+a 2+…+a 10=30得a 5+a 6=305=6,又a n >0,∴a 5·a 6≤⎝⎛⎭⎫a 5+a 622=⎝⎛⎭⎫622=9.10.已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________. 答案 2×⎝⎛⎭⎫32n -1 ⎩⎪⎨⎪⎧2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2).解析 由a n +1=12(a 1+a 2+…+a n ) (n ∈N *),可得a n +1=12S n ,所以S n +1-S n =12S n ,即S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32,所以S n =2×⎝⎛⎭⎫32n -1,由此得a n =⎩⎪⎨⎪⎧2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2).。
高考数学二轮复习:专题检测3 数列、推理与证明

专题检测(三) 数列、推理与证明(本卷满分150分,考试用时120分钟)一、选择题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是A .15B .30C .31D .64解析 由等差数列的性质得a 7+a 9=a 4+a 12, 因为a 7+a 9=16,a 4=1, 所以a 12=15.故选A. 答案 A2.在数列{a n }中,a 1=-2,a n +1=1+a n1-a n,则a 2 010等于A .-2B .-13C .-12D .3解析 由条件可得:a 1=-2,a 2=-13,a 3=-12,a 4=3,a 5=-2,a 6=-13,…,所以数列{a n }是以4为周期的周期数列,所以a 2 010=a 2=-13.故选B.答案 B3.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是A .5B .6C .7D .8解析 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质 ,可得a 7+a 8=0,根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时S n 最大.故选C.答案 C4.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于A.310 B.13 C.18D.19解析 由等差数列的求和公式,可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d 且d ≠0,所以S 6S 12=6a 1+15d 12a 1+66d =27d 90d =310,故选A.答案 A5.已知等比数列{a n }的前n 项和S n =t ·5n -2-15,则实数t 的值为A .4B .5 C. 45D. 15解析 ∵a 1=S 1=15t -15,a 2=S 2-S 1=45t ,a 3=S 3-S 2=4t ,由{a n }是等比数列,知⎝⎛⎭⎫45t 2=⎝⎛⎭⎫15t -15×4t , 显然t ≠0,解得t =5. 答案 B 6.观察下图:1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 …………则第( )行的各数之和等于2 0092. A. 2 010B .2 009C .1 006D .1 005解析 由题设图知,第一行各数和为1; 第二行各数和为9=32; 第三行各数和为25=52; 第四行各数和为49=72;…, ∴第n 行各数和为(2n -1)2, 令2n -1=2 009,解得n =1 005. 答案 D7.已知正项等比数列{a n },a 1=2,又b n =log 2a n ,且数列{b n }的前7项和T 7最大,T 7≠T 6,且T 7≠T 8,则数列{a n }的公比q 的取值范围是A .172<q <162B .162-<q <172-C .q <162-或q >172-D .q >162或q <172解析 ∵b n =log 2a n ,而{a n }是以a 1=2为首项,q 为公比的等比数列, ∴b n =log 2a n =log 2a 1q n -1=1+(n -1)log 2q .∴b n +1-b n =log 2q .∴{b n }是等差数列, 由于前7项之和T 7最大,且T 7≠T 6,所以有⎩⎪⎨⎪⎧1+6log 2q >0,1+7log 2q <0,解得-16<log 2q <-17,即162-<q <172-.故选B.答案 B8.已知数列A :a 1,a 2,…,a n (0≤a 1<a 2<…<a n ,n ≥3)具有性质P :对任意i ,j (1≤i ≤j ≤n ),a j +a i 与a j -a i 两数中至少有一个是该数列中的一项.现给出以下四个命题:①数列0,1,3具有性质P ; ②数列0,2,4,6具有性质P ; ③若数列A 具有性质P ,则a 1=0;④若数列a 1,a 2,a 3(0≤a 1<a 2<a 3)具有性质P ,则a 1+a 3=2a 2. 其中真命题有 A .4个 B .3个 C .2个D .1个解析 3-1,3+1都不在数列0,1,3中,所以①错; 因为数列1,4,5具有性质P , 但1+5≠2×4,即a 1+a 3≠2a 2, 且a 1=1≠0,所以③④错;数列0,2,4,6中a j -a i (1≤i ≤j ≤4)在此数列, 所以②正确,所以选D. 答案 D9.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +2.则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N +)的前n 项和是A.n +12(n +2)B.n +1n +2C.n (3n +5)4(n +1)(n +2)D.3n +44(n +1)解析 依题意得f ′(x )=mx m -1+a =2x +2, 则m =a =2,f (x )=x 2+2x , 1f (n )=1n 2+2n =12⎝⎛⎭⎫1n -1n +2,数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和等于12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1n +2 =12⎣⎡⎦⎤⎝⎛⎭⎫1+12+…+1n -⎝⎛⎭⎫13+14+…+1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2=n (3n +5)4(n +1)(n +2),选C. 答案 C10.等差数列{a n }的前16项和为640,前16项中偶数项和与奇数项和之比为22∶18,则公差d ,a 9a 8的值分别是A .8,109B .9,109C .9,119D .8,119解析 设S 奇=a 1+a 3+…+a 15, S 偶=a 2+a 4+…+a 16,则有S 偶-S 奇=(a 2-a 1)+(a 4-a 3)+…+(a 16-a 15)=8d , S 偶S 奇=8(a 2+a 16)28(a 1+a 15)2=a 9a 8. 由⎩⎪⎨⎪⎧S 奇+S 偶=640,S 奇∶S 偶=18∶22,解得S 奇=288,S 偶=352. 因此d =S 偶-S 奇8=648=8,a 9a 8=S 偶S 奇=119.故选D. 答案 D11.数列{a n }满足a 1=32,a n +1=a 2n -a n +1(n ∈N +),则m =1a 1+1a 2+1a 3+…+1a 2 009的整数部分是A .3B .2C .1D .0解析 依题意,得a 1=32,a 2=74,a 3=3716>2,a n +1-a n =(a n -1)2>0,数列{a n }是递增数列,∴a 2 010>a 3>2,∴a 2 010-1>1,∴1<2-1a 2 010-1<2.由a n +1=a 2n -a n +1得1a n =1a n -1-1a n +1-1, 故1a 1+1a 2+…+1a 2 009=⎝⎛⎭⎫1a 1-1-1a 2-1+⎝⎛⎭⎫1a 2-1-1a 3-1+…+⎝⎛⎭⎫1a 2 009-1-1a 2 010-1 =1a 1-1-1a 2 010-1=2-1a 2 010-1∈(1,2),因此选C. 答案 C12.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是A .(-∞,-1]B .(-∞,-1)∪(1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析 ∵等比数列{a n }中,a 2=1, ∴S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q . 当公比q >0时,S 3=1+q +1q ≥1+2q ·1q=3, 当公比q <0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2(-q )·⎝⎛⎭⎫-1q =-1, ∴S 3∈(-∞,-1]∪[3,+∞). 答案 D二、填空题(本大题共4小题,每小题4分,共计16分.把答案填在题中的横线上) 13.观察下列等式:可以推测:13+23+33+…+n 3=________(n ∈N +,用含有n 的代数式表示). 解析 第二列等式右端分别是1×1,3×3,6×6,10×10,15×15,与第一列等式右端比较即可得,13+23+33+…+n 3=(1+2+3+…+n )2=14n 2(n +1)2.故填14n 2(n +1)2.答案 14n 2(n +1)214.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________.解析 由a 2=2,a 4-a 3=4得方程组⎩⎪⎨⎪⎧a 2=2,a 2q 2-a 2q =4⇒q 2-q -2=0,解得q =2或q =-1.又{a n }是递增等比数列,故q =2. 答案 215.在公差为d (d ≠0)的等差数列{a n }中,若S n 是数列{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d .类比上述结论,相应地在公比为q (q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有________.答案T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为q 100 16.经计算发现下列正确不等式:2+18<210,4.5+15.5<210,3+2+17-2<210,…,根据以上不等式的规律,试写出一个对正实数a ,b 成立的条件不等式:________.解析 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞). 给出的三个式子的右边都是210,左边都是两个根式相加,两个被开方数都是正数且和为20, 又10+10=210,所以根据上述规律可以写出一个对正实数a ,b 成立的条件不等式: 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞). 答案 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)设等差数列{a n }的前n 项和为S n ,公比是正数的等比数列{b n }的前n 项和为T n .已知a 1=1,b 1=3,a 3+b 3=17,T 3-S 3=12,求{a n },{b n }的通项公式.解析 设{a n }的公差为d ,{b n }的公比为q . 由a 3+b 3=17得1+2d +3q 2=17,① 由T 3-S 3=12得q 2+q -d =4.②由①、②及q >0解得q =2,d =2.故所求的通项公式为a n =2n -1,b n =3×2n -1.18.(12分)已知等比数列{a n }的公比q >1,42是a 1和a 4的等比中项,a 2和a 3的等差中项为6,若数列{b n }满足b n =log 2a n (n ∈N +).(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和S n .解析 (1)因为42是a 1和a 4的等比中项, 所以a 1·a 4=(42)2=32. 从而可知a 2·a 3=32.①因为6是a 2和a 3的等差中项,所以a 2+a 3=12.② 因为q >1,所以a 3>a 2.联立①②,解得⎩⎪⎨⎪⎧a 2=4,a 3=8.所以q =a 3a 2=2,a 1=2.故数列{a n }的通项公式为a n =2n .(2)因为b n =log 2a n (n ∈N +),所以a n b n =n ·2n . 所以S n =1·2+2·22+3·23+…+(n -1)·2n -1+n ·2n .③2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.④③-④得,-S n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1.所以S n =2-2n +1+n ·2n +1.19.(12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N +),求数列{b n }的前n 项和T n .解析 (1)设等差数列{a n }的公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2.由于a n =a 1+(n -1)d ,S n =n (a 1+a n )2,所以a n =2n +1,S n =n (n +2). (2)因为a n =2n +1,所以a 2n -1=4n (n +1), 因此b n =14n (n +1)=14⎝⎛⎭⎫1n -1n +1.故T n =b 1+b 2+…+b n=14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎫1-1n +1=n 4(n +1), 所以数列{b n }的前n 项和T n =n4(n +1).20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)具有性质:若M ,N 是椭圆上关于原点O 对称的两点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x 2a 2-y 2b 2=1(a >0,b >0)具有类似特性的性质并加以证明.解析 可以通过类比得:若M ,N 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上关于原点O 对称的两点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明 设点M (m ,n ),则N (-m ,-n ), 又设点P 的坐标为P (x ,y ), 则k PM =y -n x -m ,k PN =y +nx +m, 注意到m 2a 2-n 2b2=1,点P (x ,y )在双曲线x 2a 2-y 2b 2=1上,故y 2=b 2⎝⎛⎭⎫x 2a 2-1,n 2=b 2⎝⎛⎭⎫m 2a 2-1, 代入k PM ·k PN =y 2-n 2x 2-m 2可得:k PM ·k PN =b 2a 2(x 2-m 2)x 2-m 2=b 2a 2(常数),即k PM ·k PN 是与点P 的位置无关的定值.21.(12分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn ,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M更新.证明:须在第9年初对M 更新.解析 (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ;当n ≥6时,数列{a n }是以a 6为首项,34为公比的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为 a n =⎩⎪⎨⎪⎧130-10n , n ≤6,70×⎝⎛⎭⎫34n -6, n ≥7. (2)证明 设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n -6, A n =780-210×⎝⎛⎭⎫34n -6n .易知{A n }是递减数列,又A 8=780-210×⎝⎛⎭⎫3428=824764>80,A 9=780-210×⎝⎛⎭⎫3439=767996<80,所以须在第9年初对M 更新.22.(14分)已知数列{a n }中,a 1=1,a n +1=c -1a n.(1)设c =52,b n =1a n -2,求数列{b n }的通项公式;(2)求使不等式a n <a n +1<3成立的c 的取值范围. 解析 (1)a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2.b n +1+23=4⎝⎛⎭⎫b n +23, 又a 1=1,故b 1=1a 1-2=-1,所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,b n +23=-13×4n -1,b n =-4n -13-23.(2)a 1=1,a 2=c -1,由a 2>a 1得c >2. 用数学归纳法证明:当c >2时,a n <a n +1. (i)当n =1时,a 2=c -1a 1>a 1,命题成立;(ii)假设当n =k (k ≥1,k ∈N +)时,a k <a k +1, 则当n =k +1时,a k +2=c -1a k +1>c -1a k =a k +1.故由(i)(ii)知当c >2时,a n <a n +1. 当c >2时,令α=c +c 2-42,由a n +1a n <a n +1+1a n =c 得a n <α.当2<c ≤103时,a n <α≤3.当c >103时,α>3,且1≤a n <α,于是α-a n +1=1a n α(α-a n )≤13(α-a n ), α-a n +1≤13n (α-1).当n >log 3α-1α-3时,α-a n +1<α-3,a n +1>3.因此c >103不符合要求.所以c 的取值范围是⎝⎛⎦⎤2,103.。
蒋王中学2014高三数学二轮复习专题 数列(2)

数列(2)1、{}n a 是递增等比数列,4,2342=-=a a a ,则此数列的公比=q .2、在等比数列{}n a 中,若112a =,44a =-,则12||||||n a a a +++=________.3、已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a4、设函数()(0)2xf x x x =>+,观察: 1()(),2x f x f x x ==+ 21()(()),34xf x f f x x ==+32()(()),78x f x f f x x ==+ 43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== . 5、观察下列等式1=12+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为 . 例题1等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +==(1)求数列{}n a 的通项公式;(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和.练习:设数列{}n a 满足10a =且111111n na a +-=--.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设n b =,记1nn kk S b==∑,证明:1n S <.例题2在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan ,n n n b a a +=求数列{}n b 的前n 项和n S .例题3(本小题满分12分)如图,从点P 1(0,0)作x 轴的垂线交曲线x y e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P .再从2P 做x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:11,P Q ;22,P Q ;…;,n n P Q ,记k P 点的坐标为(,0)k x (0,1,2,,k n =). (1)试求k x 与1k x -的关系; (2)求112233||||||||n n PQ PQ PQ PQ ++++.练习:设12,,,,n C C C 是坐标平面上的一列圆,它们的圆心都在x 轴的正半轴上,且都与直线y =相切,对每一个正整数n ,圆n C 都与圆1n C +相互外切,以n r 表示n C 的半径,已知{}n r 为递增数列.(Ⅰ)证明:{}n r 为等比数列;(Ⅱ)设11r =,求数列{}nnr 的前n 项和.例题4湖南文20.(本题满分13分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少,从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%. (I )求第n 年初M 的价值n a 的表达式; (II )设12,nn a a a A n+++=若n A 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.练习:为了迎接2012年上海世博会,决定治理垃圾,经调查近10年来我国城市垃圾每年平均增长率为3%,到2001年底堆存垃圾已达60亿吨,侵占了约5亿平方米的土地,目前我国还以每年产1亿吨的速度产生新的垃圾,垃圾治理已刻不容缓! (1)问10年前我国城市垃圾约有多少吨? (2)如果从2002年起,每年处理堆存垃圾的101,到2007年底我国城市垃圾约有多少吨,可节约土地多少亿平方米?1.如图,一条螺旋线是用以下方法画成:△ABC 是边长为1的正三角形,曲线32211,,A A A A CA 分别是以C B A ,,为圆心,21,,CA BA AC 为半径画的弧,曲线321A A CA 称为螺旋线,然后又以A 为圆心,3AA 为半径画弧……这样画到第n 圈,则所得螺旋线,32211,,A A A A CA …,n n n n A A A A 3131323,---的总长度为________________2.陈老师购买安居工程集资房72m 2,单价为1000/ m 2,一次性国家财政补贴28800元,学校补贴14400元,余款由个人负担,房地产开发公司对教师实行分期付款,即各期所付的款以及各期所付的款到最后一次付款时所生的利息合计,应等于个人负担的购房余款的现价以及这个余款现价到最后一次付款时所生利息之和,每期为一年,等额付款,签订购房合同后一年付款一次,再过一年又付款一次等等,若付10次,10年后付清。
高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
数学二轮复习教案: 第一部分 专题三 数列 第一讲 等差数列、等比数列

专题三数列第一讲等差数列、等比数列[考情分析]等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n项和的最大、最小值等问题,主要是中低档题;等差数列、等比数列的前n项和是高考考查的重点。
年份卷别考查角度及命题位置201 7Ⅰ卷等差、等比数列的综合应用·T17201 5Ⅰ卷等差数列的通项公式及前n项和公式·T7等比数列的概念及前n项和公式·T13Ⅱ卷等差数列的通项公式、性质及前n项和公式·T5[真题自检]1.(2015·高考全国卷Ⅱ)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5 B.7C.9 D.11解析:法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=错误!=5a3=5.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d =1,∴S5=5a1+错误!d=5(a1+2d)=5.解析:A2.(2015·高考全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )A。
错误!B。
错误!C.10 D.12解析:∵公差为1,∴S8=8a1+错误!×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=错误!,∴a10=a1+9d=错误!+9=错误!。
答案:B3.(2015·高考全国卷Ⅰ改编)在数列{a n}中,a1=2,a n+1=2a n,S n 为{a n}的前n项和.若S n=126,求n的值.解析:∵a1=2,a n+1=2a n,∴数列{a n}是首项为2,公比为2的等比数列.又∵S n=126,∴错误!=126,∴n=6.等差数列、等比数列的基本运算[方法结论]1.两组求和公式(1)等差数列:S n=错误!=na1+错误!d;(2)等比数列:S n=错误!=错误!(q≠1).2.在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.[题组突破]1.(2017·贵阳模拟)等差数列{a n}的前n项和为S n,且a3+a9=16,则S 11=( )A .88B .48C .96D .176解析:依题意得S 11=11a 1+a 112=错误!=错误!=88,选A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m 使得 Sm
(2)当 a1<0,d>0
am≤0, 时,满足 的项数 am+1≥0
m 使得 Sm
取最小值. 在解含绝对值的数列最值问题时, 注意转化思想的应用. 6.数列求和的常用方法:公式法、裂项相消法、错位 相减法、倒序相加法、分组求和法、累加累积法、归纳猜想 证明法等.
【考情报告】
【考向预测】 数列是高中数学的重要内容, 又是学习高等数学的基础, 在高考数学中有着十分重要的地位.由于四川卷 2013 年之 前都是大纲版(大家可以分析表中的 2011、 2012 大纲版卷与 2013 新课标卷的区别), 2013 卷明显对数列考查的难度有所 降低,就知识点上对等差数列、等比数列以及求和仍然是重 点,但是在考查学生能力方面没有降低.我们相信 2014 年 的高考题会沿袭 2013 新课标卷的思想,在平时复习与训练 中强调基本方法与基本题型. 同时就考查方向上我们要注意 以下方面:
1 7 - < . n 4 【诊断参考】 1.等差数列与其求和公式是考试的重点,一方面我们 应该熟悉公式,同时又要熟练运用公式的变形,很多学生解 答本题时机械地套用公式,这样计算量大,如果我们能够发 现 S6+(Sn-Sn-6)=S6+(an-5+an-4+„+an)=6(a1+an),可 简化运算, 我们要注意高考数列题的 “小、 巧、 活” 的特点. 2.本题是等差数列与等比数列的基本题,我们按基本 知识求解就可以.
们只要熟悉“错位相减法”即可,但在实践中许多学生 由于计算能力不强而导致错误百出, 所以我们一定要把这个 重点突破. 6.一方面:数列中 Sn 与 an 的关系一直是高考的热点, 求数列的通项公式是最为常见的题目,要切实掌握 Sn 与 an 的关系.另一方面:本题第三问的裂项求和也是我们考查的 重点与难点,同学们往往在适度放缩这里卡住,我们平时的 训练与理解要到位.
n
n
在( 33,+∞)上单调递增,在(0, 33)上单调递减,
因为 n∈N +,且 = , = = , 5 5 6 6 2 an a6 21 所以 的最小值为 = . n 6 2 21 【答案】 2 1 an+1 1 5. 在数列{an}中, 已知 a1= , = , bn+2=3log1an(n 4 an 4 4 ∈N*). (1)求数列{an}的通项公式; (2)求证:数列{bn}是等差数列;
1 1 2 1 3 1 4 于是 Sn=1×( ) +4×( ) +7×( ) +„+(3n-5)× 4 4 4 4 1 n 1 n+1 ( ) +(3n-2)×( ) ,② 4 4 3 1 1 2 1 3 1 n 由①-②得 Sn= +3[( ) +( ) +„+( ) ]-(3n-2) 4 4 4 4 4 1 n+1 1 1 n +1 ×( ) = -(3n+2)×( ) . 4 2 4 2 3n+2 1 n ∴Sn= - ×( ) (n∈N*). 3 3 4
【考点聚焦】 热点一:等差数列的通项、求和及其性质 在等差数列问题中,最基本的量是其首项和公差,在解 题时根据已知条件求出这两个量, 其他的问题也就随之解决 了,这就是解决等差数列问题的基本方法,其中蕴含着方程 思想的运用. 设数列{an}是公差不为 0 的等差数列, a1=2 且 a1, a5,a13 成等比数列,则数列{an}的前 n 项和 S n 等于( ). n2 7n n2 5n A. + B. + 4 4 3 3
n
(2)对正整数 m,n,p,q,有 aman=apaq⇔m+n=p+q, aman=a2 p ⇔m +n =2p . 4.等差、等比数列前 n 项和 Sn 的性质 若等差数列的前 n 项和为 Sn, 则 Sm, S2m-Sm, S3m-S2m, „ 为等差数列;若等比数列的前 n 项和为 Sn,则在 Sm 不等于 0 时,Sm,S2m-Sm,S3m-S2m,„成等比数列. 5.在等差数列{an}中,有关 Sn 的最值问题——常用邻 项变号法求解: (1)当 a1>0,d<0 取最大值.
C. + D.n2+n 2 4 【分析】根据等差数列与等比数列的概念列出等式,从 而求解. 【解析】根据 a1,a5,a13 成等比数列得(2+4d)2=2(2 1 +12d),解得 d= ,故其前 n 项和只能是选项 A.注意等差 2 数列的前 n 项和 Sn=An +Bn,其中 A= . 2 【答案】A
【知识整合】 1.Sn 与 an 的关系 在 数 列 {an} 中 , Sn = a1 + a2 + „ + an , 从 而 an =
S1,n=1, Sn-Sn-1,n≥2.
2.等差数列的公式与性质 如果数列{an}是公差为 d 的等差数列,则
(1)an = a1 + (n - 1)d , Sn = na1 +
an 4.已知数列{an}满足 a1=33,an+1-an=2n,则 的最 n
小值为________. 【解析】an=(an-an-1)+(an-1-an-2)+„+(a2-a1)+ a1=2[1+2+„+(n-1)]+33=33+n2-n, an 33 所以 = +n-1.
n
n
33 -33 设 f(n)= +n-1,由 f′(n)= 2 +1>0,得 f(n)
一是等差数列、等比数列的基本量计算; 二是能熟练掌握 Sn 与 an 的关系; 三是对等差数列与等比数列乘积式求和, 我们要熟练使 用“错位相减法” ; 四是裂项求和问题. 另外我们也要注意在知识交汇点— —如不等式、 函数、 导数、 三角等方面考查数列知识的应用. 【问题引领】 1.设 Sn 为等差数列{an}的前 n 项和.已知 S6=36,Sn =324,Sn-6=144(n>6),则 n 等于( ). A.16 B.17 C.18 D.19
15 3.已知等比数列{an}满足:a1+a2+a3+a4= ,a2a3= 8 9 1 1 1 1 - ,则 + + + =________. 8 a1 a2 a3 a4 9 1 1 【解析】等比数列{an}中,a1a4=a2a3=- ,那么 + 8 a1 a2 1 1 a1+a4 a2+a3 a1+a2+a3+a4 5 + + = + = =- . a3 a4 a1a4 a2a3 a2a3 3 5 【答案】- 3
a5 53 a6 63 21
(3)设数列{cn}满足 cn=an·bn,求{cn}的前 n 项和 Sn. an+1 1 【解析】(1)∵ = , an 4 1 1 ∴数列{an}是首项为 ,公比为 的等比数列, 4 4 1 n ∴an=( ) (n∈N*). 4 (2)∵bn=3log1an-2, 4 1 n 1 ∴bn=3log ( ) -2=3n-2,∴bn+1-bn=(3n+1)- 4 4
6.(2013 广东卷)设数列{an}的前 n 项和为 Sn,已知 a1 2Sn 1 2 2 =1, =an+1- n -n- ,n∈N*. n 3 3 (1)求 a2 的值; (2)求数列{an}的通项公式; 1 1 1 7 (3)证明:对一切正整数 n,有 + +„+ < . a1 a2 an 4 1 2 【解析】(1)当 n=1 时,2S1=a2- -1- ,a1=1,∴ 3 3
2 (2)对正整数 m,n,p,q,有 am+an=ap+aq⇔m+n=p +q,am+an=2ap⇔m+n=2p. 3.等比数列的公式与性质 如果数列{an}是公比为 q 的等比数列,则
.
a1(1-q ) a1-anq = ,q≠1, n -1 1-q (1)an=a1q ,Sn= 1-q na1,q=1.
an an+1 an+1 an +1)得 = -1,∴ - =1(n≥2), n n+1 n+1 n a2 a1 又 n=1 时, - =1.
2 1
an ∴数列{ }是首项为 1,公差为 1 的等差数列. n an ∴ =1+(n-1)=n,∴an=n2. n
1 1 1 (3)由(2)知 = 2< = - (n≥2,n∈N*), an n (n-1)n n-1 n 1 1 1 1 1 1 1 1 ∴ + +„+ = 1 + + +„+ 2 < 1 + + +„+ a1 a2 an 4 9 n 4 2×3 1 1 1 1 1 1 1 1 7 =1+ +( - )+( - )+„+( - )= (n-1)n 4 2 3 3 4 n-1 n 4 1 1
(3n-2)=3, ∴数列{bn}是公差 d=3 的等差数列. 1 n (3)由(1)(2)知,an=( ) ,bn=3n-2,n∈N*, 4 1 n ∴cn=(3n-2)×( ) (n∈N*), 4 1 1 2 1 3 1 n-1 ∴Sn=1× +4×( ) +7×( ) +„+(3n-5)×( ) 4 4 4 4 1 n +(3n-2)×( ) ,① 4
5 对于任意的 n∈N ,都有 Tn< . 64 【分析】合理因式分解是解题的突破口,裂项相消是解 题的关键. 2 2 【解析】(1)由 S2 n - (n +n -1)Sn - (n + n) =0 ,得[ Sn -(n2+n)](Sn+1)=0. 由于{an}是正项数列,所以 Sn>0,Sn=n2+n. 于是 a1=S1=2,n≥2 时,an=Sn-Sn-1=n2+n-(n-1)2 -(n-1)=2n. 综上,数列{an}的通项 an=2n.
【解析】 ∵S6+(Sn-Sn-6)=6(a1+an)=36+(324-144) n(a1+an) =216,∴a1+an=36.又∵Sn= =324,∴n=18. 2 【答案】C 2.已知{an}是等差数列,a1=1,公差 d≠0,Sn 为其前 n 项和,若 a1,a2,a5 成等比数列,则 S8=________. 【解析】设数列{an}的公差为 d,那么(1+d)2=1·(1 +4d),解得 d=2 或 d=0(舍去), 8×(8-1) 所以 S8=8×1+ ×2=64. 2 【答案】64
3.等比数列的基本量的计算是重点,我们常常通过公 式挖掘 Sn、an、n、q 之间的关系求解,本题我们发现 a1a4= a2a3,后面通分后整体处理使问题迎刃而解,如果本题死套 公式去求解,会由于变量难以处理而不好解决. 4.本题考查了递推数列的通项公式的求解以及构造函 数,利用导数判断函数单调性,考查了综合运用知识解决问 题的能力. 同学们往往对数列的函数性理解不深刻或对利用 导数解决这类题不熟练. 5.本题的第一问比较基础,是求等比数列的通项,第二问 的关键是有些同学对对数知识不熟练从而产生错误, 第三问 是我们熟悉的一个等差数列与等比数列乘积式求和,我