布朗运动的母函数
布朗运动伊托过程和伊托引理

故
注:(2)式时间单位通常以年作为单位.
2019/2/9 4
由(2) ,得:dS uSdt Sdz,其中u及为常数.
这就是几何B.M.
注意到,衍生证券的价格G是标的证券价格S和时间t的函数, 从而根据ItÔ引理,有
G G 1 G G dG ( uS S )dt Sdz. S t 2 S S
2019/2/9 2
Z c t
二、伊托过程和伊托引理
定义 称满足下式的过程为伊托过程
dx a(x, t )dt b(x, t )dz (1)
其中a,b是变量x,t的函数,z为标准的布朗运动。 伊托引理 设x=x(t)为满足(1)式的伊托过程,G=G(t,x) 为二元函数,且具有连续的偏导数
dS udt dz S ( 2)
其中S--证券价格, u--证券在单位时间内已连续复利计算的期
2 --证券收益率单位时间的方差, 望收益率(简称预期收益率), --证券收益率单位时间的标准差,简称为证券价格波动率,
z 为标准的布朗运动. 将(2)是离散化,得
S ut t S S ~ N(ut , t ) S
G G 2 G , , 2 f x x
令G(t)=G(t,x(t)), 则过程G(t)也是随机过程满足
G G 1 2 G 2 G dG ( a b )dt bdz 2 t t 2 t x
2019/2/9
3
三、股票价格过程
股票价格过程可用下面的方程来表示:
dS 0.15dt 0.30dz S 在随后的短时间按间隔的股价变化为 S 0.15t 0.30 t S 由于1周等于0.0192年,因此
S 100 (0.15 0.00288 0.0416 ) 0.288 4.16
布朗运动及Ito公式、Ito积分补充和总结

布朗运动及Ito 公式、Ito 积分补充和总结一、历史1、1827年,英国生物学家R .Brown 通过花粉实验观察到花粉的不规则运动2、1905年,Einstein 通过物理规律对该现象作了数学描述3、1918年,Wienner 对其进行了精确的数学描述,BM 的轨道性质,定义了测度与积分4、K.Ito 定义了Ito 积分二、BM 定义1、直线上对称随机游走()x t ——t时刻质点位置,1,-1i i x i ⎧=⎨⎩第次质点向右,第次质点向左12()=(+++)t t x t x x x x ⎡⎤⎢⎥∆⎣⎦∆⋅⋅⋅(1)E =0,=1i i x Dx (2)2E ()=0,()=()t x t Dx t x t ⎡⎤∆⎢⎥∆⎣⎦2、现在我们讨论当0t ∆→时,()x t 的极限分布情况:设=x ∆,此点很重要,220lim t t c t c t t ∆→⎡⎤∆=⎢⎥∆⎣⎦由中心极限定理:00lim ()t t i t x x P x x ⎡⎤⎢⎥∆⎣⎦∆→⎧⎫⎪⎪∆⋅-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎪⎩⎭∑则220lim xt P x edu μ-∆→-∞⎧⎫≤=⎬⎭⎰,故2()~(0,)x t N c t 三、BM 轨道性质若2()()~(0,)B s t B s N c t +-,其中当1c =时,称()B t 为标准布朗运动1、 现有此结论:2211()()..(0)22nn n k k k B t B t t a s t =-⎡⎤-→>⎢⎥⎣⎦∑证明:设21()()12222k n n n n nkk t W B t B t t ∆-⎡⎤=--≤≤⎢⎥⎣⎦则有22220,2k kn n n t EW EW == 设21;nk n n k X W ==∑则有22220,2n nn t EX EX == 而{}111lim 01()1n n n m l n lP X P X m ∞∞∞→+∞===⎧⎫==⇔⋂⋃⋂<=⎨⎬⎩⎭,2222112()12()n n n EX P X m t m m⎧⎫>≤=⋅⎨⎬⎩⎭则2211110()lim ()lim 2()02nn n l n ll n l l n l P X P X m t m m ∞∞∞∞==→+∞=→+∞=⎧⎫⎧⎫≤⋂⋃≥=⋂≥≤=⎨⎬⎨⎬⎩⎭⎩⎭∑故有11111()0()0n n l n l m l n lP X P X m m ∞∞∞∞∞=====⎧⎫⎧⎫⋂⋃≥=⇒⋂⋃⋂≥=⎨⎬⎨⎬⎩⎭⎩⎭2、 作121max ()(),122nn n n k k k Y B t B t k ≤≤-=-≥,则有0..n Y a s →当1m ≥时,221111111()()()()2222kkk n n n n l l l l l l P Y P B t B t P B t B t m m m ==⎧⎫-⎧-⎫⎧⎫≥=⋃-≥≤-≥⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭∑42224424111()()1223()3()122()k kn n k k l l l l E B t B t t m m t m==--≤==∑∑则有4211110()lim ()lim 302n n k n k nn k n n k n P Y Y m t m m ∞∞∞∞==→+∞=→+∞=⎧⎫⎧⎫≤⋂⋃≥=⋃≥≤⋅=⎨⎬⎨⎬⎩⎭⎩⎭∑故{}111()1lim 00k n m l n ln P Y P Y m ∞∞∞===→+∞⎧⎫⋂⋃⋂<=⇔==⎨⎬⎩⎭3、 对01110;0,max()n k k k nt t t t t t t λ-≤≤>=<<⋅⋅⋅<==-,有211(()())..(0)nk k k B t B t tm s λ-=-→→∑即2210lim [(()())]0k k E B t B t t λ-→--=证明:设1()()k k k Y B t B t -=-,则1~(0,)k k k Y N t t --,且24211,3()k k k k k k EY t t EY t t --=-=-则222211()()k lk lk l k k l l EY Y EY EY t t t t ≠--=⋅=-- 故222222221111[(()())][]()2()nnnk k kkk k k k E B t B t t E Y t E Y E Y t t -===--=-=-+∑∑∑4222111()2()2()n nki jk k k i jk E Y E Y Y t t t t -=<==+⋅--⋅+∑∑∑22211113()2()()2n nk k i i j j k i j t t t t t t t t ---=<=-+---+∑∑222211112()(())2nnk k k k k k t t t t t t --===-+--+∑∑2112()2nk k k t t t λ-==-≤∑0(0)λ→→四、 Ito 随机积分1、 1951年, 伊藤最早建立了关于布朗运动的随机积分的微分法则(即变量替换公式), 简称为Ito 公式. 1967年Kunita, Watanabe, 1970年Do leans-Dade, Meye r 把Ito 积分推广到半鞅情形, 也相应地推广了Ito 公式. 可以说, Ito 公式是随机积分理论中的一个最重要的结果, 是随机分析的一个极其重要的工具.对于Ito 随机积分,我们先讨论0(,)(,)Tg t dB t ωω⎰如何定义?首先了解Riemann-Stidtjes 积分对于积分()()ba g x dF x ⎰,这里()F x 为单调不见有连续的,()g x 为单值函数。
布朗运动的计算详细版.ppt

20
且此极限不依懒于对[a,b]的分法及 tk 的取法,则称 { f (t,u)X (t),t [a,b]}在[a,b]上均方可积.
该均方极限值Y(u)称为
{ f (t,u)X (t),t [a,b]}在[a,b]上的均方积分.
记为
b
a f (t,u) X (t)dt,
b
Y (u) a f (t,u)X (t)dt,
优选
5
补充 :布朗桥在统计中的应用
布朗桥在研究经验分布函数中起着非常重要的 作用。设X1,X2, …Xn, …独立同分布,Xn~U(0,1) , 对0<s<1,记
n
Nn s IXi s i 1
Nn(s)表示前n个X1,X2, …Xn 中取值不超过s的个数,
Fn
s
1 n
Nn
s
称Fn(s)为经验分布函数。
的极限过程即为布朗桥过程。
一般的,设X1,X2, …Xn, …独立同分布,F(x) 为分布函数,则随机变量F(Xi)~U(0,1)。记
n
Nn s IF Xi s i 1
类似可讨论 n sup Fn X F X 的极限分
布。
x
优选
9
过程:4:几何布朗运动(指数布朗运动)
Btge =exp(Bt,2 ) t 0, R, 2 >0
Nn
s
)
s(1
s)
n
x,
lim P
n
n
s
x
1
2 s 1 s
e du x
u2 2 s (1 s )
优选
7
所以 n s,0 s 1 的极限过程是一正态过程。 可以证明 n s,n t 的联合分布趋于二维正
对布朗运动的微分

对布朗运动的微分1. 什么是布朗运动?布朗运动是指微小颗粒在液体或气体中随机运动的现象,这种运动是由于液体或气体中的分子不断碰撞而产生的。
布朗运动最初由英国植物学家罗伯特·布朗发现,后来被爱因斯坦用统计物理学的方法进行了解释。
2. 布朗运动的微分方程布朗运动的微分方程可以用随机过程和随机微积分来描述。
假设一个粒子在时间t时刻位于位置x处,其速度为v,则其位置和速度变化可以表示为:dx = v dtdv = F(x) dt + σ dW其中F(x)是作用在粒子上的力,σ是噪声强度,dW是Wiener过程(一种连续时间、连续状态的随机过程),满足以下性质:dW(0) = 0E[dW(t)] = 0E[dW(t)dW(s)] = δ(t-s)dt其中δ(t-s)表示Kronecker delta函数。
3. 布朗运动方程的解析解由于布朗运动包含了噪声项,因此其解析解通常很难求得。
但是对于某些简单情况,可以得到布朗运动的解析解。
例如,在一维情况下,如果粒子受到的力是恒定的,则其位置可以表示为:x(t) = x(0) + vt + ξ(t)其中ξ(t)是一个随机变量,满足以下性质:E[ξ(t)] = 0E[ξ(t)ξ(s)] = 2Dδ(t-s)其中D是扩散系数。
4. 布朗运动的统计性质由于布朗运动是一种随机过程,因此其具有一些统计性质。
例如,对于一维情况下的布朗运动,其平均位移和方均根位移分别为:<x> = 0<x^2> = 2Dt其中<t>表示时间平均。
此外,布朗运动还具有自相关函数和功率谱密度等统计量。
5. 应用领域布朗运动在物理学、化学、生物学、金融学等领域都有广泛应用。
例如,在物理学中,布朗运动被用来研究分子扩散、热力学等问题;在生物学中,布朗运动被用来模拟细胞内分子的扩散行为;在金融学中,布朗运动被用来建立股票价格模型等。
6. 总结布朗运动是一种随机过程,其微分方程可以用随机微积分来描述。
随机过程中的布朗运动

随机过程中的布朗运动随机过程是数学中研究随机变量随时间演化的数学对象。
其中,布朗运动是一种常见的随机过程,它在多个领域中有着广泛的应用,如金融学、物理学和生物学等。
本文将对布朗运动的定义、性质以及应用进行介绍。
一、布朗运动的定义布朗运动又被称为维纳过程,它是一种连续时间的马尔可夫过程。
在数学上,布朗运动被定义为满足以下三个条件的随机过程:1. 初始条件:布朗运动在t=0时刻的取值为0,即B(0) = 0;2. 独立增量:对于任意时刻s < t < u < v,布朗运动的增量B(t)-B(s)和B(u)-B(v)是独立的;3. 正态分布增量:布朗运动的增量B(t)-B(s)服从均值为0、方差为t-s的正态分布。
根据这些性质,我们可以看出布朗运动是一种具有连续性、不可预测性和自相似性的随机过程。
二、布朗运动的性质1. 连续性:布朗运动在任意时刻的取值都是连续的。
这意味着在任意时间间隔内,布朗运动的取值可以变化无穷多次。
2. 独立增量:布朗运动的增量在不同的时间间隔内是独立的。
这意味着过去的演化轨迹对未来的演化轨迹没有影响。
3. 高斯分布:布朗运动的增量服从高斯分布,即正态分布。
这意味着在短时间内,布朗运动的变化趋势可以视为近似线性。
4. 无趋势:布朗运动的期望增量为0,即E[B(t)-B(s)] = 0。
这意味着在长时间尺度内,布朗运动没有明显的趋势。
三、布朗运动的应用1. 金融学:布朗运动在金融学中有广泛应用,特别是在期权定价和风险管理领域。
布朗运动模型可以描述股票价格的随机变动,并为衍生品定价提供基础。
2. 物理学:布朗运动的概念最早是用来解释在液体中浮游微粒的无规运动。
它在研究扩散过程、热力学平衡和粒子统计等问题中起到重要作用。
3. 生物学:布朗运动在生物学中被用来描述微生物和生化分子在胞浆中的运动。
通过对布朗运动的观察和分析,科学家可以了解细胞内生物分子的行为和相互作用。
总结:布朗运动作为一种随机过程,具有连续性、不可预测性和自相似性等特点。
matlab布朗运动

matlab布朗运动Matlab布朗运动布朗运动是指微观粒子在液体或气体中由于分子热运动而表现出的无规则运动。
这种运动的特点是粒子在各个方向上随机移动,并且速度大小也是随机变化的。
布朗运动是19世纪末由英国生物学家罗伯特·布朗发现的,他在显微镜下观察到花粉颗粒在水中的运动,发现它们以不规则的方式在水中扩散。
为了研究布朗运动的特性,科学家们提出了一系列的数学模型。
其中最简单的模型是布朗运动的随机游走模型。
在这个模型中,布朗粒子在每个时间步长内,有一定概率向左或向右移动一个固定的距离。
根据中心极限定理,当时间足够长时,布朗粒子的位移服从正态分布。
这个模型被描述为随机过程,因为布朗粒子的运动是不可预测的。
在Matlab中,我们可以使用随机数生成函数来模拟布朗运动。
首先,我们需要定义每个时间步长内布朗粒子的移动距离的概率分布。
一种常用的分布是均匀分布,即在每个时间步长内,布朗粒子向左或向右移动的距离是相等的。
我们还可以使用其他分布函数来模拟不同的布朗运动模型,比如正态分布或指数分布。
接下来,我们可以使用随机数生成函数生成服从指定概率分布的随机数序列。
在每个时间步长内,根据生成的随机数来确定布朗粒子的移动方向和距离。
通过累积每个时间步长的位移,我们可以得到布朗粒子的运动轨迹。
在Matlab中,我们可以使用plot函数将布朗粒子的运动轨迹可视化。
通过调整时间步长和总的模拟时间,我们可以观察到布朗粒子的运动特性,比如扩散系数和位移的方差。
此外,我们还可以通过模拟多个布朗粒子的运动,来研究布朗运动的统计性质,比如平均位移和相关时间。
布朗运动在物理学、化学、生物学等领域都有广泛的应用。
例如,在纳米领域,布朗运动可以用来研究微观颗粒在液体中的扩散行为,从而设计更有效的纳米传感器和纳米材料。
在生物学中,布朗运动可以用来研究细胞内分子的运动方式和传输机制,从而深入理解细胞的功能和生物过程。
总结起来,Matlab提供了强大的工具和函数来模拟和分析布朗运动。
第三章 布朗运动

n n →∞ k =1
lim π n = 0
n →∞
则
2
lim E[ ∑ (∆Wk ) 2 − t ] = 0
2 { ( ∆ W ) : n ∈ N } 均方收 k 定理说明:随机变量序列 ∑ k =1 敛到常数t n
证明 随机变量∆W1 , ∆W2 ,L , ∆Wn 是相互独立的,且
t ∈ [0,1]
a →b t
(s,t )=E[(B
-m
a →b
(s ))(B
-m
a →b
(t))
= min{s,t}-st
t ∈ [0,1]
过程:4:几何布朗运动
B =exp(Bt
均值函数
ge t
µ ,σ 2
)
t ≥ 0, µ ∈ R, σ >0
2
mB ge (t )=E[exp(Bt
相关函数
µ ,σ
=p(| Wt |≤ x ) = p ( − x ≤ W ≤ x ) = ∫ ϕ t ( y )dy
−x x
1 其中ϕ t ( y ) = e 2π t
y2 − 2t
过程6:奥恩斯坦-乌伦贝克过程 (Ornstein-Uhlenbeck)
B =e
其中
t 0
ou t
-α t
W (γ (t )) t ≥ 0, α >0
µ ,σ 2
,L ,Btn
µ ,σ 2
)=(ξ1 ,L ,ξ n ) × M n×n
过程3:布朗桥
Btbr =W (t )-tW (1) t ∈ [0,1]
B br ={Btbr , t ∈ [0,1]} 为从0到0的布朗桥
随机过程(十四)-布朗运动

如果=1,则称为标准布朗运动。
注:第(1)条并不是必须的。如果B(0)=x,则称{B(t),t≥0}为 始于x的布朗运动,记为Bx(t) 。
Brown运动的另一种定义
Brown运动是具有如下性质的随机过程 {B(t), t≥0}: (1)正态增量性:B(t ) B(s) ~ N (0, t s), t s (2)独立增量性:B(t)-B(s)独立于过程的 过去状态B(u), 0≤u≤s。 (3)路径的连续性: B(t)是t的连续函数。
( y x )2 2t
ft ( y x)
P{B(t1 ) x1 , , B(tn ) xn } P{B(tn ) xn | B(ti ) xi ,1 i n 1}P{B(ti ) xi ,1 i n 1} P{B(tn ) xn | B(tn 1 ) xn 1 ) P{B(tn 1 ) xn 1 | B(ti ) xi ,1 i n 2} P{B(ti ) xi ,1 i n 2} P{B(tn ) xn | B(tn 1 ) xn 1 ) P{B(tn 1 ) xn 1 | B(tn 2 ) xn 2 ) P{B(t2 ) x2 | B(t1 ) x1}P( B(t1 ) x1 ) pt1 (0, y1 )dy1 pt2 t1 ( x1 , y2 )dy2 ptn tn1 ( xn 1 , yn )dyn
Brown运动
随机游动
设一个粒子在直线上做随机游动,每隔Dt时间内 等可能的向左或向右移动Dx的距离。若记X(t) 记时刻t粒子的位置,则
X (t ) Dx( X1 X[t / Dt ] )
其中
1 如果第i步向右 Xi , X i 相互独立 1 如果第i步向左 1 P( X i 1) P( X i 1) , E ( X i ) 0, var( X i ) 1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
布朗运动的母函数
布朗运动是一种随机运动,它描述了微粒在液体或气体中的运动。
布朗运动是由数学家罗伯特·布朗在1827年研究花粉在液体中的运
动时首次发现的。
布朗运动的母函数是描述布朗运动中微粒位移的概率分布的函
数。它可以用于计算微粒在任意时间点的位移概率分布。
布朗运动的母函数通常是一个指数函数,表达式为:
G(s) = exp[-s^2/(2DΔt)]
其中,s表示微粒位移的大小,D表示扩散系数,Δt表示时间
间隔。这个表达式表示了微粒位移的概率与时间间隔和扩散系数的关
系。
布朗运动的母函数在物理学、化学和生物学等领域都有广泛的应
用。例如,它被用于研究蛋白质分子的运动轨迹,以及分析金融市场
中的股票价格波动。
总之,布朗运动的母函数是描述微粒位移概率分布的重要工具,
它在多个领域都具有广泛的应用价值。