航海学i船舶定位-精
航海学 第二章 第1节 航向、方位和舷角解析

广州航海学院
CAPT.L
航向、方位和舷角
依据基准北所确 定的船舶的航向 和物标的方位, 统称向位。
一、真向位
1、真航向[True
N
C Course]: 船首向(HEADING): 船舶某一 瞬间的船首方向。 航向线(COURSE LINE):船首 尾线向船首方向的延长线。 真航向(TRUCE COURSE):以真 北为基准顺时针度量到航向线 的角度,代号TC. 范围:000°~ 符号法则:
M NT CL Q左 TC BL 如:TB>360° 则:TB′= TB - 360º
如:TB<0° 则:TB′= TB + 360º
(END)
TB
思考练习
1、真航向是: A、船舶航行的方向 B、船首尾线的方向 C、船首向 D、船舶航行时真北至船首向的夹角 2、舷角是: A、船首线至方位线的夹角 B、物标的方向 C、真航向减去真方位 D、船舶海上看物标的方向 3、我船航向180°,某船位于我船右舷30°,若该船航向为 350°, 则我船位于该船舷角: A、40°右 B、30°右 C、150°右 D、150°左 4、某船真航向060°,该船左正横某物标的真方位为: A、150° B、330° C、090° D、060° 5、某船真航向060°,该船右舷30°某物标的真方位为: A、30° B、90° C、030° D、090° 6、某船真航向040°,测得某物标的真方位为320°,则该物标的 相对方位(舷角)为: A、80° B、080° C、280° D、310°
A
M
航向、方位和舷角关系
计算公式:
NT M' Q左 TC TB Q右 BL M CL
船舶定位实施方案

船舶定位实施方案船舶定位是指利用各种技术手段对船舶的位置进行精确定位的过程,是航海领域中非常重要的一环。
在现代航运业中,船舶定位技术已经得到了广泛的应用,从传统的人工观测到现代的卫星导航系统,船舶定位技术已经取得了长足的进步。
本文将就船舶定位的实施方案进行探讨,为船舶定位技术的应用提供一些参考。
首先,船舶定位实施方案需要考虑的是船舶定位的准确性。
在选择船舶定位技术时,需要考虑到定位的精度要求,不同的航行环境和船舶类型对定位精度的要求不同,因此需要根据实际情况选择合适的定位技术,比如全球卫星定位系统(GNSS)、惯性导航系统(INS)等。
同时,还需要考虑到定位系统的可靠性和稳定性,确保在各种恶劣天气和海况下,定位系统能够正常工作。
其次,船舶定位实施方案还需要考虑到定位系统的实时性。
在航行过程中,船舶需要及时获取自身的位置信息,以便进行航行计划和调整。
因此,选择具有实时性的定位技术是非常重要的。
现代的卫星导航系统可以提供高精度、实时的位置信息,因此在船舶定位实施方案中,可以优先考虑使用卫星导航系统作为主要的定位技术。
另外,船舶定位实施方案还需要考虑到定位系统的成本和维护成本。
不同的定位技术在设备和维护方面的成本是不同的,需要根据船舶的实际情况和经济条件进行选择。
同时,还需要考虑到定位系统的可维护性和维修周期,确保定位系统能够长期稳定地工作。
最后,船舶定位实施方案还需要考虑到定位系统的兼容性和扩展性。
船舶在航行过程中可能会遇到不同的航行环境和任务需求,因此定位系统需要具有一定的灵活性和扩展性,能够适应不同的船舶和航行需求。
同时,还需要考虑到定位系统与其他船舶设备的兼容性,确保定位系统能够与其他设备正常配合工作。
综上所述,船舶定位实施方案需要综合考虑定位的准确性、实时性、成本和维护成本、兼容性和扩展性等因素,选择合适的定位技术,并进行合理的系统设计和实施,以确保船舶在航行过程中能够获得准确、实时的位置信息,保障航行安全和效率。
船舶航行与导航技术的定位与测量技术

船舶航行与导航技术的定位与测量技术船舶作为重要的交通工具之一,对定位与测量技术的要求非常高。
在海洋环境中,强大的风浪和复杂的水下岩石地形对船舶课程和位置的控制提出了严格的挑战。
因此,船舶导航和定位技术的发展一直受到人们的密切关注。
导航技术的历史船舶的导航技术已经有数千年的历史。
早期的导航技术基于观察自然标志,如太阳、月亮、星星等。
随着时间的推移,复杂的精度仪器和电子仪器被引入导航领域。
这其中最基础的导航仪器就是罗盘,因为它能为导航发挥非常重要的作用。
同时,还有其他的导航仪器,如木星仪、星盘、海图等。
随着时间的推进,GPS(全球定位系统)技术在船舶导航领域得到广泛应用。
GPS定位技术具有非常高的精度和可靠性,同时具有很强的良好性。
航行的挑战性随着船舶的巨大增长,航行的挑战也逐渐增加。
现在的船舶尺寸日益增大,需要更高的精度来导航。
同时,飞沫、雾和波浪等不确定因素影响着航行操作。
这要求导航技术要越来越精确和可行。
船舶定位和辅助导航技术船舶定位技术是航行和导航的重要部分,这项技术基于计算GPS信号的方位角度,用于测量船舶位置。
定位技术主要用于跟踪船舶,包括沿岸、海岸和海洋区域。
为了补充GPS技术的不足,船舶还采用了其他辅助导航技术,如惯性导航、电子海图和声学测量技术等。
这些技术确保了船舶导航和定位的准确性和可行性。
船舶导航和定位的未来随着科技的不断进步和技术的创新,船舶导航和定位技术将发生重大变革。
未来船舶可能会采用机器人技术,这不仅将提高航行的精度和速度,也将极大地减少人为操作错误的风险。
同时,人工智能和物联网技术将在船舶导航和定位中发挥更加重要的作用。
这些技术将会提高船舶的自主性、安全性和效率性。
船舶也可能被漂洋自在的潜艇所代替,这会更好地满足现代海上贸易的需求。
结论船舶定位和导航技术的历史有数千年。
从人类长久的航海历史,我们可以看出,不断的技术革新和创新是获得更高精度和更可行的船舶定位和导航所必须的。
航海学知识点汇总

航海学知识点汇总一、航海基础知识1、地球形状和地理坐标11 地球的形状和大小12 地理坐标的概念和表示方法13 经纬度的度量和换算2、航向和方位21 航向的定义和表示22 方位的概念和种类(真方位、磁方位、罗方位)23 航向和方位的换算关系3、海图31 海图的种类和用途32 海图比例尺和投影方式33 海图上的符号和注记4、航海仪器41 罗盘(磁罗经和电罗经)42 测深仪43 计程仪44 定位系统(GPS、北斗等)二、航海气象1、气象要素11 气温和气压12 风13 湿度和能见度14 云2、天气系统21 气旋和反气旋22 锋面23 台风(飓风)3、海洋气象预报31 预报的来源和获取途径32 预报内容的解读和应用三、船舶运动性能1、船舶浮性和稳性11 浮性原理12 稳性的分类和影响因素2、船舶阻力和推进21 阻力的种类和计算22 推进装置的工作原理和性能3、船舶操纵性31 操纵性指标32 影响操纵性的因素33 船舶的转向和避让四、航线设计与规划1、航线设计的原则和考虑因素11 安全因素12 经济因素13 气象和海况条件2、航线的拟定方法21 利用海图和航海资料22 参考以往的航行经验3、大圆航线和恒向线航线31 大圆航线的计算和应用32 恒向线航线的特点和使用场景五、船舶定位与导航1、天文定位11 太阳定位12 恒星定位2、陆标定位21 方位定位22 距离定位23 综合定位3、电子导航31 雷达导航32 AIS 系统的应用六、航海安全与法规1、国际海上避碰规则11 各类船舶的避让责任和行动12 号灯、号型和声号的使用2、海上交通安全法规21 船舶的适航要求22 船员的职责和资格3、应急处置31 船舶遇险的信号和报告32 火灾、碰撞等紧急情况的处理措施七、航海通信1、通信设备和方式11 甚高频(VHF)通信12 卫星通信13 莫尔斯电码通信2、通信程序和规范21 遇险通信22 日常通信的礼仪和格式八、海洋环境与保护1、海洋生态系统11 海洋生物多样性12 海洋生态平衡的重要性2、海洋污染防治21 油污、垃圾等污染物的来源和危害22 防止海洋污染的措施和法规以上是航海学的主要知识点汇总,通过对这些知识点的学习和掌握,可以为航海实践提供坚实的理论基础。
【科普】船舶定位与航行方法

【科普】船舶定位与航行方法船舶启航前,船舶驾驶员根据航次命令,研究和分析了航行往目的地的航区的情况后,在海图上设计并画出拟航行的航线,称计划航线。
计划航线由许多段航线组成,各段之间联接的点称为航路点;每段计划航线的方向称为该段的计划航向。
如果没有其他的影响,船舶航行就是按照每段的计划航向沿着计划航线航行直至目的地时,船舶的航迹线就落在计划航线上。
但是,实际上船舶在海上航行要受到外界的各种影响,例如,风、流、浪、涌等都使船舶随时偏离计划航线;另外,计划航线上可能还有其他船舶航行、渔船捕鱼作业等,这时,船舶就必须改变航向,按有关规则避让,当驶过让清后,又要回到计划航线上继续航行。
本小结介绍的船舶定位与航行方法,就是通过船舶定位的手段来掌握船舶偏离计划航线的情况,并考虑外界的航行条件和影响,采取适合的航行方法使船舶航行在计划航线上。
1船舶定位为了保证船舶安全、经济地航行,很重要的一点是在任何时候及任何情况下,航海人员必须知道自己的船位所在,这样才能在海图上,根据船位了解船舶周围的航行条件,及时采用适合的航行方法和必要的航行措施,确保航行安全。
船舶在航行中确定船位的方法,一般可分为两类,即推算船位和观测定位,推算船位有航迹绘算和航迹计算;观测船位方法有陆标定位、天文定位和无线电定位。
2航次计划与航线设计船舶营运生产通常是以航次(voyage)为生产周期,航次开始前要制定计划、安排生产,航次结束后必须统计数据资料、总结汇报等等。
航次开始时间是上一航次的结束时间;航次结束时间是最后一票货离船(如吊卸货则货吊过船舷时)或最后一位旅客离船(出船舷时)时间。
船舶的航次是连续计算,航次编号(voyage N0.)和起止时间在航海日志中都必须详细记载。
在航次结束前,船公司或租家一般都将提前下达下一航次的运输任务——航次命令(voyage Order)。
航次命令是船公司或租家对船长关于下一航次船舶运输任务的指示,收到航次命令后, 船长必须尽快地将航次命令的落实情况报告船公司或租家,以便船公司或租家安排计划,掌握船舶准确情况。
航海学 项目二任务9、距离定位、方位距离定位

任务9、距离定位、方位距离定位
fixing by bring and distance 三、方位距离定位 1、定位方法:同一时刻观测单物标的方位和距离。
2、特点:两条位置线的交角尾90°。 3、定位应用:
➢ 雷达测距离、方位镜目测物标方位; ➢ 雷达测距离、方位; ➢ 六分仪测物标垂直角、方位镜目测物标方位; ➢ 方位镜目测物标初显方位估算船位。
任务9、距离定位、方位距离定位
fixing by bring and distance
四、船位精度
1、两距离定位精度
A
1) 观测船位系统误差
D sin
D2A DB2 2DADB cosθ
D •d
DA
sin
d
B
DB
观测距离的系统误差 D
观测船位系统误差δ
D 观测距离的系统误差
任务9、距离定位、方位距离定位
船舶定位与导航 项目二、航迹推算与陆标定位 任务9、距离定位、方位距离定位
浙江交通职业技术学院
Zhejiang Institute of Communications
李德雄
任务9、距离定位、方位距离定位
fixing by distance
一、距离的测定
1、利用雷达测定距离
△t
式中:
D=C×△t/2
D
H t g α
3
4 3 8(H α
米
)
3 4 3 8 H( 1 8 5 2α
海
里
)
ห้องสมุดไป่ตู้
13H 7α
1.856H α
式中:
H——物标高程(米); ′——垂直角(分)
任务9、距离定位、方位距离定位
第六章船舶定位

▲
六分仪测角原理
天文定位原理
Z=90-h
▲
四、无线电定位
1. 雷达系统 2. 双曲线定位系统 3. GPS定位系统 4. 船舶自动识别系统AIS
▲
1. 雷达(Radar)系统
(1)基本原理 利用超高频(波长3cm——X波段、10cm——S波
段)直线、等速传播特性,通过对从天线发射脉冲波 到接受物标反射波的计时,实现对物标测距;通过天 线的定向发射和接受,实现对物标的测向。
已被
覆盖全球 夜间 2’
淘汰
▲
3. GPS定位系统
“导航卫星全球定位系统”(Navstar Global Positioning System),简称GPS系统。 (1) 概述 (2) 定位原理 (3) 差分GPS —— DGPS
▲
3. GPS定位系统
(1)概述 “子午仪”卫导系统概述: 不连续,平面定位(精度0.1~0.3’),97年停用。 GPS卫导系统概述: 特点:能提供全球、全天候、高精度、连续、近于 实时的三维定位与导航。 GPS定位精度:P码定位精度 < 1 m(军用); CA码定位精度 < 100m(民用)。 GLONASS和“伽利略计划”卫导系统概述
▲
第三节 航海日志(Log book)
一、填写内容
包括:航行、气象、海况、水舱测量、中午统计、船舶
装卸、停泊与修理以及重大记事。
方位(XXX)
二、填写要求
如:A物标航向是 ……
1. 使用钢笔按时间和页码顺序连续填写;
2. 填写使用统一符号和缩写,应填直接测定的原始数据;
3. 对填写错误,应用红钢笔在错字上划横后在其附近作改 正,并由改正人在其后加括号签名;
航海学 第一章 坐标、方向和距离 2

航向、方位和舷角
Relative Bearing
航向、方位和舷角
基本概念
例 1 :某轮真航向 235 °,测
TC、TB和Q间关系 公式 符号法则 举例(1)
得两物标舷角为 Q A =036 ° 、 Q B =315 °,求 A 、 B 两物标的 真方位。
基本原理
陀螺罗经是一种不受地磁场和电磁场影响的、具有较大 指北力的电动机械仪器。它的刻度盘0°方向所指示的方 向就是陀螺罗经北,简称陀罗北。理论上陀螺罗经的旋转 轴应该稳定在真子午线上,即陀罗北应与真北相一致,但 与任何测量仪器一样,都可能存在误差。因此导入陀螺罗
经差(G)的概念。陀罗差主要随航速和船舶所处纬度 的变化而变化,与航向无关。
罗经点法
四个基点 四个隅点 八个三字点 十六个偏点:
罗经点法
四个基点 四个隅点 八个三字点 十六个偏点: N/E、N/W、 NE/N、NE/E、 E/N、E/S、 SE/E、SE/S等。
罗经点法
四个基点 四个隅点 八个三字点 十六个偏点 共计32个罗经点
0 N
W
E
S S 180
半圆法
度量 法 1: 法2:以正南为基准, 分别向东或向西度 量到正北,度量范 围0°到180°。
0 N N
W
E
S S 180
半圆法
度量 法1: 法2:以正南为基准, 分别向东或向西度 量到正北,度量范 围0°到180°。
0 N N 180
W
E
0 S S 180