pkpm地震时程曲线提取
地震动曲线的选取

地震动曲线的选取⼀、引⾔地震动曲线是描述地震动特性的重要参数,对于地震⼯程和结构安全评估具有重要意义。
地震动曲线的选取是地震⼯程研究中的⼀项重要任务,对于结构的抗震设计、抗震性能评估以及地震灾害预测等⽅⾯具有关键作⽤。
本⽂将对地震动曲线的选取进⾏全⾯探讨。
⼆、地震动曲线的基本概念地震动曲线,也称为地震加速度曲线或地震反应谱,描述了地震动强度随时间变化的规律。
它通常由两个主要参数构成:峰值加速度和持续时间。
峰值加速度表示地震动过程中最⼤的加速度值,持续时间则表示地震动过程的时⻓。
三、地震动曲线的选取⽅法在地震⼯程中,根据不同的需求和场景,有多种⽅法可以选取地震动曲线。
以下是⼏种常⽤的⽅法:1.基于历史地震数据选取:通过对历史上地震动的记录数据进⾏统计分析,选取具有代表性的地震动曲线。
这种⽅法考虑了实际地震事件的统计特性,具有较⾼的实际意义。
2.⼈⼯合成地震动曲线:根据地震学的理论知识和地震动的统计规律,通过⼈⼯合成⽅法⽣成地震动曲线。
这种⽅法可以根据研究需求定制,便于进⾏理论分析和数值模拟。
3.考虑场地条件的地震动曲线:在选取地震动曲线时,应充分考虑场地的地质构造、⼟层分布、地下⽔位等因素。
不同场地条件下的地震动曲线具有差异性,因此需要根据具体场地进⾏选取。
4.多因素综合选取:在实际应⽤中,应综合考虑多种因素选取地震动曲线,如地震事件的震级、震源深度、地表地质等因素。
通过多因素综合分析,可以更加准确地模拟实际地震事件的地震动效应。
四、地震动曲线的应⽤地震动曲线的选取在多个领域具有⼴泛的应⽤:1.结构抗震设计:在建筑结构的抗震设计中,需要依据地震动曲线进⾏结构分析和设计。
通过对结构物在地震作⽤下的反应进⾏计算和分析,评估其抗震性能,优化抗震设计。
2.基础设施抗震评估:对于桥梁、隧道、⾼速公路等基础设施,通过选取合适的地震动曲线,可以评估其在地震作⽤下的安全性。
这有助于提前发现潜在的⻛险因素,采取相应的加固措施。
pkpm框架结构的抗震计算结果

pkpm框架结构的抗震计算结果PKPM框架结构的抗震计算结果随着建筑行业的发展和对建筑结构安全性要求的提高,抗震设计成为了建筑工程中至关重要的一环。
在抗震设计过程中,PKPM框架结构是常用的计算工具,它能够根据建筑的结构特点和地震作用,进行抗震性能评估和计算。
本文将介绍使用PKPM框架结构进行抗震计算的结果。
PKPM框架结构能够根据建筑的结构形式和地震区域的地震烈度参数,进行结构的抗震性能评估。
通过输入建筑的结构参数,如楼层高度、梁柱尺寸和材料强度等,PKPM框架结构可以计算出建筑结构的刚度、周期和基础剪力等参数。
这些参数对于评估建筑的抗震性能至关重要,可以帮助工程师判断建筑结构是否满足抗震设计要求。
PKPM框架结构能够进行地震动输入和结构响应计算。
在抗震设计中,地震动输入是重要的一步,它是根据地震烈度参数和地震波的特征进行计算的。
PKPM框架结构可以根据地震动输入参数,计算出结构的动力特性,如模态质量、频率和阻尼比等。
这些参数对于结构的抗震性能评估和设计具有重要意义。
在进行抗震计算时,PKPM框架结构还能够考虑结构的非线性效应。
在地震作用下,建筑结构会发生变形和应力集中,如果考虑结构的非线性效应,可以更准确地评估结构的抗震性能。
PKPM框架结构可以进行非线性时程分析,考虑结构的塑性铰形成和耗能能力。
这些分析结果可以帮助工程师判断结构的抗震性能和安全性。
PKPM框架结构的抗震计算结果还可以用于结构的优化设计。
在抗震设计中,工程师需要根据建筑的功能和使用要求,对结构进行合理的设计。
PKPM框架结构可以通过调整结构的参数,如柱截面积和墙体布置等,来优化结构的抗震性能。
通过不断地进行抗震计算和结构优化,可以使建筑结构的抗震性能达到最佳状态。
PKPM框架结构的抗震计算结果对于建筑工程的抗震设计具有重要意义。
它能够评估建筑结构的抗震性能,计算地震动输入和结构响应,考虑结构的非线性效应,并进行结构优化设计。
132-曹永超、王欣-基于PKPM-SAUSAGE某综合体罕遇地震弹塑性时程分析

基于PKPM-SAUSAGE某综合体罕遇地震弹塑性时程分析曹永超1,王欣2(1.中国建筑设计研究院,北京100044;2.广州容柏生建筑结构设计事务所,广州510170)提要太原市政务中心地上7层,总高度34.2m,平面尺寸166m×154m。
将SATWE分析模型转换成PKPM-SAUSAGE 分析模型,二者模态分析结果相近。
选取2组天然波、1组人工波,以研究结构的动力弹塑性响应,得到结构在罕遇地震作用下的变形、内力和损伤情况。
分析结果反映了结构在罕遇地震作用下构件塑性损伤发展过程,以及由此引起的结构刚度退化和塑性损伤耗能。
剪力墙连梁出现不同程度的损伤,大部分剪力墙墙肢受压损伤因子较小,钢桁架未出现屈服。
考虑材料非线性的结构最大弹塑性层间位移角均满足1/100的规范限值要求,结构满足大震不倒的设防要求。
关键词弹塑性时程分析;罕遇地震;超限高层结构;PKPM-SAUSAGE;1.工程概况太原政务服务中心位于太原市长风商务区西北侧,是一幢综合性行政办公高层建筑。
地上7层,地下2层,建筑总高度34.2m,东西宽约166m,南北长约154m。
整体分内外两层“回”字形布置(见图1)。
主体结构为框架-剪力墙。
“回”字形内外环间连接体及大悬挑部分为钢桁架。
基础采用后压浆钢筋混凝土灌注桩,部分区域兼做抗拔桩。
标准层结构平面布置图见图1。
a)建筑效果图b)PKPM-SAUSAGE模型示意图图1建筑效果图与PKPM-SAUSAGE模型示意图本工程所在地区的抗震设防烈度为8度,设计基本地震加速度为0.2g,地震设计分组为第一组,场地土类别为Ⅲ类,特征周期值为0.45s。
本结构主要特点如下:1)楼板开洞面积大于盖楼层面积的30%。
2)结构设有多个大跨度桁架。
3)本工程位于8度区,其地震响应较为激烈,对结构抗震性能要求较为严格。
鉴于如此,采用弹塑性时程分析,验算弹塑性变形相关要求[1],计算关键构件的抗震性能指标,可作为保证结构抗震安全的重要手段。
相干处理和地震资料的属性提取

接下来介绍地震资料的相干处理和地震资料的属性提取:14、相干处理,仍然在上面的主菜单中选择第10项的,选择一种相干方式,现举一例进行演示,如然后点击鼠标MB1参数选项,出现参数菜单,选择好分析时窗方式后,选取层位和合适的时窗,键入输出名,选择扫描模式之后,点击ok按扭。
回到主菜单,RUN。
15、属性提取:选择菜单中的第8项后,在上按鼠标MB1,选择分析时窗方式,选取层位和合适的时窗,然后选择提取的地震资料的属性参数,包括有:(1)振幅类属性1):2)Average Absolute Amplitude 平均绝对振幅:此外,还包括了3)、、、、4)::::::::(2)复地震道统计类:复地震道包括5种属性,1)2)在复地震道计算中,瞬时频率是相位随时间的变化率,或者说是相位的导数。
实际计算时,先算出瞬时频率道,然后计算时窗内的平均值。
3)4)5)(3)谱统计类:1)是指零延迟的自动相关值,带宽越窄,说明信号越相似,地层反射特征简单,反之说明地层复杂,可用于地震地层研究。
2)其中,3):其中,4)5)6)(4)层序统计类1)和,2)3)。
4)5)、(5)相关统计类可用于帮助识别断层、尖灭、数据品质和杂乱反射。
1):。
2)3):4):5):。
6)选择好相应的参数后,键入要输出的前缀(prifix),最后ok关闭,在主菜单中RUN运行即可。
附:。
经ANSYS分析得到各楼层在地震作用下加速度时程曲线(

有一个三层框架模型(命令流我提供),经ANSYS分析得到各楼层在地震作用下加速度时程曲线(东西向、南北向,地震记录文件我提供),如下图以下需要用到MATLAb(将所要研究的设备假定为固定在楼面上的单自由度体系,在结构动力反应时程的基础上可以得到其对应的楼面反应谱。
设楼面加速度反应时程为,则设备的运动方程为:则地震作用为:根据Duhamel积分,可得地震作用的最大绝对值F为:则设备对楼面输入的最大反应为:)(上面这部参照我发给你的PPT)由各楼层在不同地震波下的楼层加速度时程曲线(上面算得的图)。
在楼层加速度反应时程的激励下,在一定的阻尼比ζ和自振周期T下,计算得到单自由度体系的最大反应和周期的关系曲线,即楼面反应谱。
根据楼中设备的具体位置,计算相应楼层的设备的地震反应。
阻尼比分别取0.02、0.05、0.1。
我要得到的结果:下面的内容需要继续用ansys:上面得到了各楼层的加速度时程反应(楼面谱),下面利用之前的时程分析结果采用ABAQUS 软件进行设备与楼板的接触分析。
分析模型中,楼板采用壳单元,用刚块来模拟浮放式设备,利用EL-Centro波双向地震作用下得到的楼面加速度时程作为激励输入来模拟地震作用下浮放式设备在楼板上的动力反应。
分析模型和荷载输入见图4.2和图4.3【模型假设:(1)以设备的外壳形状作为刚体形状;(2)设备运动时与支撑面(地面、楼板、台面、桌面等)之间是平面接触,且不发生脱离;(3)设备只发生滑移运动。
】一、刚块与楼板间的摩擦系数µ= 0. 2 ,分别输入二层、三层、四层楼板的加速度时程反应,来模拟二层、三层、四层楼板上设备的水平滑移。
下图分别为各楼层的相对位移、相对速度和绝对加速度。
(表格中的数据是你经过ansys 分析得到)希望得到的结论(1)设备的水平滑移值随着楼层反应的增大而增大,故应将重要的医疗设备放置在较低楼层(地震反应比较小),来降低震害。
(2)设备的水平滑移值随着摩擦系数的增大而减小,故设备底面与楼板之间的摩擦系数越大,越有利于抗震,应避免在光滑的接触面上放置设备,或采取相应的措施来增大接触面的摩擦系数。
pkpm常见问题

1、地下室梁太多,超出PMCAD处理能力,怎么解决?答:PMCAD中杆件数量。
如某一标准层超过8000根梁,此时可能无法布置上新的梁。
可将两端支撑在主框梁上的梁使用“次梁布置”命令,次梁的内力计算在SATWE的第三项“PM次梁内力与配筋计算”中完成。
往往超限的都是地下室结构,也可分为两部分分别计算。
2、SATWE中可否查看屈服强度系数?答:7度及以上规则矩形柱子的框架结构,可自动按规范的简化弹塑性算法,求大震下的楼层弹塑性位移角。
结果在SATWE结果文本文件第8项薄弱层验算结果SAT-K.OUT中查看。
3、SATWE中“地震信息”参数可设置斜交抗侧力附加地震数,设置后对楼层刚度比有无影响?答:无影响。
目前程序增加该角度的单独构件地震力计算,并参与内力组合及配筋,对其他计算无影响。
4、JCCAD中桩筏有限元计算“荷载选择”参数中有时出现“直接计算”,是什么意思?答:是因为用户在基础人机交互输入中,定义了附加线荷载或点荷载,“直接计算”就是程序只使用该荷载进行筏板计算,而不读取上部的SATWE等荷载。
5、使用10年新SATWE计算,同一标准层对应的多个自然层,层高一样,但计算后WMASS.out中各层偏心率略有差别,什么原因?答:是因为各层剪力墙网格划分不一致导致的。
虽然为同一标准层,新SATWE 对各层网格划分可能略有差别。
6、基础CAD人机交互输入中显示的红色轴网,标高始终对应PMCAD中楼层组装的0.000。
输入基础标高时,要注意与上部楼层组装标高保持对应。
如PMCAD中有2层地下室,—2层楼层组装底标高为—6m,此时如筏板厚1m,则基础中应输入筏板底标高—7m。
另外,如基础程序中输入地下水位标高—0.5m,则表示地下水位最高处距离0.000还有半米的距离。
7、PMCAD中“画结构平面图”楼板计算,板的同一板边(如上边),设置了固定和铰接两种不同边界,则无法计算挠度,如何处理?答:目前以下四种板无法计算挠度:1、非矩形板 2、矩形板,但某边界上边界条件不唯一3、选用塑性算法4、有人防荷载板;第一种非矩形板可近似按矩形板计算挠度,方法是将楼板计算参数中“近似按矩形计算时面积相对误差”改大,默认为0.15。
PKPM、YJK地震波导入至MIDAS软件中的方法

PKPM、YJK地震波导入至MIDAS软件中的方法本文主要讲解如何实现将PKPM地震波导入至midas Gen及midas Building软件中的方法。
PKPM、YJK的地震波导出的格式后缀分别为X/Y/Z后缀(截止作者发文时最新的版本),midas Building及midas Gen地震波的格式为dbs、sgs、thd,同时支持EXCEL粘贴操作。
由于各软件间地震波的后缀及格式不同,当地震波进行互导时,需要将地震波数据做简单转化方可。
本文以PKPM地震波导出至midas Building为例讲解具体实现过程。
1.PKPM地震波导出执行SATWE中弹性时程分析>选波,选择合适的地震波,点击“选择”功能,将选中的地震波放于右侧。
然后点击“导出地震波”,设置保存目录后保存。
打开导出地震波的目录后,即可看到导出的地震波,后缀名分别为X文件、Y文件、及Z文件,分别代表了地震波三个方向的数据,该文件可以用记事本打开。
2.查看导出地震波的数据使用记事本打开导出的文件,可以查看由PKPM导出的地震波数据格式。
以任意一条地震波为例,其数据如下。
其中第一行的数字1425 0.02分别代表本地震波包含1425个数据,时间步长为0.02s,从第二行开始分别为各个时刻的地震波加速度值。
3.导入至midas Building或midas Gen对于地震波导入的方法主要有三种,方法一是通过excel粘贴,方法二是通过生成MIDAS软件的地震波格式导入,第三种为通过命令导入。
每种方法各有优缺点,其中方法一操作步骤简单,但是地震波是通过excel存储,与常规文本存储格式不同;方法二操作步骤教方法一多操作几步,但是地震波格式是文本格式,方便存储;方法三最简单,但是仅支持Gen导入,不支持Building。
在实际操作中可以选择任意的方法即可。
方法一:通过excel粘贴导入,步骤如下:1)打开excel,执行数据>自文本,打开步骤一导出地震波存储的目录,文件类型选择“所有文件*.*”,选择一条地震波后点击打开,参数均采用默认参数,执行“完成”后再执行“确定”即可将文本数据导入至excel中;2)在excel中的数据左侧添加一列,然后设置时间间隔为0.02的数据(时间间隔应该与地震波数据的步长一致),同时时间数据应该与地震波数值对应;3)运行mida Building或midas Gen,其中midas Gen与midasBuilding操作步骤相近,本文仅以midas Building操作为例讲解,操作如下:a. 对于线性时程分析执行:荷载>时程荷载>地震波,选择设计地震分组、抗震设防烈度、场地类别及水平地震影响系数最大值后,执行“导入地震波”>“添加”;(对于非线性时程分析,执行动力弹塑性分析>动力弹塑性荷载>地震波);b. 选择excel中地震波数据部分,执行“复制”功能,然后到midas Building中的地震波数据里,单击(一定是单击)数据左上角,执行“ctrl+V粘贴”功能,即可粘贴地震波。
一般地震时程分析的步骤如下

一般地震时程分析的步骤如下:1. 在“荷载/时程分析数据/时程荷载函数”中选择地震波。
时间荷载数据类型采用无量纲加速度即可。
其他选项按默认值,详细可参考用户手册或联机帮助。
2. 在“荷载/时程分析数据/时程荷载工况”中定义荷载工况。
结束时间:指地震波的分析时间。
如果地震波时间为50秒,在此处输入20秒,表示分析到地震波20秒位置。
分析时间步长:表示在地震波上取值的步长,推荐不要低于地震波的时间间隔(步长)。
输出时间步长:整理结果时输出的时间步长。
例如结束时间为20秒,分析时间步长为0.02秒,则计算的结果有20/0.02=1000个。
如果在输出时间步长中输入2,则表示输出以每2个为单位中的较大值,即输出第一和第二时间段中的较大值,第三和第四时间段的较大值,以此类推。
分析类型:当有非线性单元或非线性边界单元时选择非线性,否则选择线性。
分析方法:自振周期较大的结构(如索结构)采用直接积分法,否则选择振型法。
时程分析类型:当波为谐振函数时选用线性周期,否则为线性瞬态(如地震波)。
无零初始条件:可不选该项。
振型的阻尼比:可选所有振型的阻尼比。
3. 在“荷载/时程分析数据>地面加速度”中定义地震波的作用方向。
在对话框如果只选X方向时程分析函数,表示只有X方向有地震波作用,如果X、Y方向都选择了时程分析函数,则表示两个方向均有地震波作用。
系数:为地震波增减系数。
到达时间:表示地震波开始作用时间。
例如:X、Y两个方向都作用有地震波,两个地震波的到达时间(开始作用于结构上的时间)可不同。
水平地面加速度的角度:X、Y两个方向都作用有地震波时如果输入0度,表示X方向地震波作用于X方向,Y方向地震波作用于Y方向;X、Y两个方向都作用有地震波时如果输入90度,表示X方向地震波作用于Y方向,Y方向地震波作用于X方向;X、Y两个方向都作用有地震波时如果输入30角度,表示X方向地震波作用于与X轴方向成30度角度的方向,Y方向地震波作用于与Y方向成30度角度的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pkpm地震时程曲线提取
要提取PKPM地震时程曲线,您需要进行以下步骤:
1. 获取地震波数据:首先,您需要获得地震记录数据。
这可以通过从地震局、地震观测台或其他可靠来源获取地震波数据文件。
2. 数据预处理:在提取PKPM地震时程曲线之前,需要对地
震波数据进行预处理。
预处理包括去除基线漂移、去趋势和进行滤波等。
这可以使用专业的地震数据处理软件(如Seisware、SeisImager、MATLAB等)完成。
3. 提取地震参数:使用地震数据处理软件,可以从地震波数据中提取出您感兴趣的地震参数,例如峰值加速度、周期、衰减参数等。
请选择合适的算法和方法进行参数提取。
4. 构建PKPM时程曲线:根据提取的地震参数,可以使用PKPM软件(结构分析软件)进行时程曲线的构建。
在PKPM 软件中,选择合适的节点和控制参数,输入地震参数数据,并进行分析。
软件会生成相应的PKPM地震时程曲线。
注意事项:
- 在整个过程中,需要确保使用正确的地震波数据和正确处理
的参数,以获取准确的PKPM地震时程曲线。
- 使用专业的地震数据处理软件和PKPM软件,以获得更准确
和可靠的结果。
- 根据需要,可以使用适当的滤波和处理技术来优化数据和结
果。
- 如果您对这些步骤不熟悉,建议咨询专业地震工程师的帮助或参考相关文献和教程。