五年级奥数测试卷及答案上
五年级上册数学34道奥数题,有答案

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2.3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。
第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。
小学五年级上册奥数培优测试卷及答案

小学五年级上册奥数培优测试卷一、计算题(2f×5=1091、12345+23451+34512+45123+51234=。
2、已知AXB=I2,B×C=14,C×D=21e>那么AXD=。
3、2008-[(□×7-0.6)×0.5-4]÷0.1=2002,那么口=。
4、如果aXb表示aXb+a,例如3X4=3X4+3=15。
那么,当*派5比5派*大100时,X=o5、(2×3×5×7×IlX13×17×19)÷(38×51×65×77)=二、填空题(5r×10=5091、在下面这个链形图中,空白的一环应该填上的数是。
2、从起点到终点,你只能沿箭头所指的方向前进。
能够带你穿越这座八角形迷宫的路线一共有 ________ 条。
3、几位同学一起计算他们语文考试的平均分。
若赵峰的得分提高8分,则他们的平均分就达到90分;若赵峰的得分降低12分,则他们的平均分只有85分。
他们实际的平均分是_分。
4、一学生从家出发步行去学校,并且按相同的路线乘公共汽车回家。
整个来回需要40分钟。
如果公共汽车的速度是学生步行速度的7倍,学生来回都步行需要分钟。
5、有一个奇怪的三位数,减去7后正好被7整除,减去8后正好被8整除,减去9后正好被9整除。
你猜猜这个三位数是o6、将算式34X45X56的结果算出,结果的末尾有个连续零。
7、自然数从1至n的乘积可以写成n!。
例如,5!=1X2X3X4X5=120°要使n!可以被990整除,问n的最小值等于C8、长方形ABCD的长为9,宽为5,对角线AC被点W、X、Y和Z均分成5份。
阴影部分的面积等于o9、根据图中规律,标号为的部分可以放在空白处。
10、在直线m上摆放着三个正三角形:∆ABC>∆HFG>∆DCE,已知CE=2BC,F、G分别是BC、CE的中点,FM平行于AC,GN平行于DC。
小学五年级上册奥数题及答案

小学五年级上册奥数题及答案1、657-(269+357)+169解:657-(269+357)+169=657-(357+269)+169=657-357-269+169=300-(100+169)+169=300-100-169+169=200-169+169=2002、(4.8×7.5×8.1)÷(2.4×2.5×2.7) 解:(4.8×7.5×8.1)÷(2.4×2.5×2.7) =(48×75×81)÷(24×25×27)=(12×4×25×3×81)÷(6×4×25×3×9) =(12×100×3×81)÷(6×100×3×9)=(12×81)÷(6×9)=(2×6×9×9)÷(6×9)=2×9=183、0.125×0.25×0.5×640.125×0.25×0.5×64解0.125×0.25×0.5×64=0.125×0.25×0.5×(2×4×8)=(0.125×8)×(0.25×4)×(0.5×2) =1×1×1=14、3.75×4.8+62.5×0.48解:3.75×4.8+62.5×0.48= 37.5×0.48+62.5×0.48=(37.5+62.5)×0.48=100×0.48=485、2.96×40解:2.96×40=(3-0.04)×40=3×40-0.04×40=120-1.66、1.35×0.61-0.35×0.61解;=(1.35-0.35)×0.61=1×0.61=0.617、(1)1.56×1.7+0.44×1.7-0.7 解:1.56×1.7+0.44×1.7-0.7 =1.7×(1.56+0.44)-0.7=1.7×2-0.7=3.4-0.7=2.78、35×37+65×37解:35×37+65×37=(35+65)×37=100×379、2.02×8.5解:2.02×8.5=(2+0.02)×8.5=2×8.5+0.02×8.5=17+0.17=17.1710、1.765×213÷27+765×327÷27=765÷27×(213+327)= 765÷27×540=765×20=1530011.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。
五年级上册奥数含真题(含答案)

五年级上册奥数含真题(含答案)五年级上册奥数含真题(含答案)第一题在一个小镇里,有一家卖糖果的甜品店。
店老板有4个特别的盒子装糖果。
第1个盒子装了2个水果糖,4个摇扣糖和3个口香糖。
第2个盒子装了6个口香糖,8个巧克力糖和3个水果糖。
第3个盒子装了4个摇扣糖和8个巧克力糖。
第4个盒子装了3个口香糖,5个摇扣糖和2个水果糖。
如果一个袋子里必须有一个以上的糖果,那么能够从这4个盒子里一共取出多少种不同的袋子?(A) 96(B) 104(C) 112(D) 120答案:C第二题你需要从10个整数中选出五个,使得这5个数的平均数是13。
那么这个10个整数的平均数是多少?(A) 12(B) 13(C) 14(D) 15答案:C第三题下面的对话中,每个字母代表一个单词。
如果在对话中大约有三分之一的字母被改变,则这段对话一般情况下是什么?- 何:Hey Joe, what's up?- 乔:Not much. I have a test tomorrow.- 何:In what?- 乔:Biology. What are you up to?- 何:Just hanging out.- 乔:All right. I better get back to my studying.(A) 两个人正在聊天。
(B) 两个人正在争吵。
(C) 两个人正在讨论问题。
(D) 无法得知。
答案:D第四题下面的对话中,棕色的线代表Bob说的话,蓝色的线代表Sue 说的话,箭头表示连续引用。
Bob说了什么?Bob:Actually, I can’t this weekend. I have a big test on Monday, so I need to study all weekend.Sue:Oh, that’s too bad. Can we study together then?Bob:Sure, that would be great.(A) 我不能看电影。
(完整版)小学五年级奥数题及答案(附精讲)

(完整版)⼩学五年级奥数题及答案(附精讲)⼩学五年级奥训练题及答案(精讲)⼀、⼯程问题1.⼀件⼯作,甲、⼄合做需4⼩时完成,⼄、丙合做需5⼩时完成。
现在先请甲、丙合做2⼩时后,余下的⼄还需做6⼩时完成。
⼄单独做完这件⼯作要多少⼩时?2.修⼀条⽔渠,单独修,甲队需要20天完成,⼄队需要30天完成。
如果两队合作,由于彼此施⼯有影响,他们的⼯作效率就要降低,甲队的⼯作效率是原来的五分之四,⼄队⼯作效率只有原来的⼗分之九。
现在计划16天修完这条⽔渠,且要求两队合作的天数尽可能少,那么两队要合作⼏天?3.甲⼄两个⽔管单独开,注满⼀池⽔,分别需要20⼩时,16⼩时.丙⽔管单独开,排⼀池⽔要10⼩时,若⽔池没⽔,同时打开甲⼄两⽔管,5⼩时后,再打开排⽔管丙,问⽔池注满还是要多少⼩时?4.⼀项⼯程,第⼀天甲做,第⼆天⼄做,第三天甲做,第四天⼄做,这样交替轮流做,那么恰好⽤整数天完⼯;如果第⼀天⼄做,第⼆天甲做,第三天⼄做,第四天甲做,这样交替轮流做,那么完⼯时间要⽐前⼀种多半天。
已知⼄单独做这项⼯程需17天完成,甲单独做这项⼯程要多少天完成?5.师徒俩⼈加⼯同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.⼀批树苗,如果分给男⼥⽣栽,平均每⼈栽6棵;如果单份给⼥⽣栽,平均每⼈栽10棵。
单份给男⽣栽,平均每⼈栽⼏棵?7.⼀个池上装有3根⽔管。
甲管为进⽔管,⼄管为出⽔管,20分钟可将满池⽔放完,丙管也是出⽔管,30分钟可将满池⽔放完。
现在先打开甲管,当⽔池⽔刚溢出时,打开⼄,丙两管⽤了18分钟放完,当打开甲管注满⽔是,再打开⼄管,⽽不开丙管,多少分钟将⽔放完?8.某⼯程队需要在规定⽇期内完成,若由甲队去做,恰好如期完成,若⼄队去做,要超过规定⽇期三天完成,若先由甲⼄合作⼆天,再由⼄队单独做,恰好如期完成,问规定⽇期为⼏天?9.两根同样长的蜡烛,点完⼀根粗蜡烛要2⼩时,⽽点完⼀根细蜡烛要1⼩时,⼀天晚上停电,⼩芳同时点燃了这两根蜡烛看书,若⼲分钟后来点了,⼩芳将两⽀蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?⼆.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数⽐兔的腿数少28条,,问鸡与兔各有⼏只?三.数字数位问题1.把1⾄2005这2005个⾃然数依次写下来得到⼀个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是⼩于100的两个⾮零的不同⾃然数。
五年级奥数试卷(考卷)

专业课原理概述部分一、选择题(每题1分,共5分)1. 一个数字如果加上100后是3的倍数,那么这个数字除以3的余数是()A. 0B. 1C. 2D. 32. 下列各数中,最小的质数是()A. 11B. 13C. 17D. 193. 一个长方形的长是10厘米,宽是5厘米,它的周长是()A. 30厘米B. 40厘米C. 50厘米D. 60厘米4. 一个班级有40人,其中有18人会游泳,有23人会骑自行车,那么至少有多少人既会游泳又会骑自行车?()A. 5人B. 6人C. 7人D. 8人5. 下列哪个图形可以通过平移、旋转或对称得到另一个相同的图形?()A. 正方形B. 长方形C. 三角形D. 梯形二、判断题(每题1分,共5分)1. 任何偶数加上偶数仍然是偶数。
()2. 所有的质数都是奇数。
()3. 一个数字的因数总是比它的倍数小。
()4. 平行四边形的对角线互相平分。
()5. 一个等腰三角形的底角一定相等。
()三、填空题(每题1分,共5分)1. 1000的立方根是________。
2. 2.5小时等于________分钟。
3. 一个等边三角形的三个角都是________度。
4. 如果a=3,那么3a+5=________。
5. 一个数是12的倍数,也是18的倍数,那么这个数最小是________。
四、简答题(每题2分,共10分)1. 简述质数与合数的区别。
2. 如何判断一个数字能否被3整除?3. 简述平行四边形的性质。
4. 什么是公倍数?如何求两个数的最小公倍数?5. 简述分数的基本性质。
五、应用题(每题2分,共10分)1. 小明有20元钱,他买了3支铅笔,每支铅笔1元,剩下的钱还能买几支铅笔?2. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。
3. 小华有5个苹果,小丽有7个苹果,小华给小丽几个苹果后,两人苹果数相等?4. 一个数加上它的1/3等于20,求这个数。
5. 一个班级有男生28人,女生22人,男生人数是女生人数的多少倍?六、分析题(每题5分,共10分)七、实践操作题(每题5分,共10分)1. 请画出一个边长为5厘米的正方形,并求出它的面积。
五年级上册数学奥数题带答案

五年级上册数学奥数题带答案一、拓展提优试题1.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.2.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.3.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.4.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.5.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.6.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.7.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.8.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.9.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.10.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.11.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)12.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.13.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.14.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.15.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.【参考答案】一、拓展提优试题1.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.2.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.3.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.4.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.5.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍.故答案为:四6.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.7.解:(60×10+50×4)÷(60﹣50),=(600+200)÷10,=800÷10,=80(分钟),60×(80﹣10),=60×70,=4200(米).答:小明家到学校相距4200米.故答案为:4200.8.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.故答案是:3.9.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.10.解:最大的三位偶数是998,要满足A 最小且A <B <C <D <E ,则E 最大是998,D 最大是996,C 最大是994,B 最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A 最小是326.故答案为:326.11.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.12.解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.13.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.14.解:1800÷320﹣1800÷(320×1.5)=5.625﹣3.75=1.875(分钟)320×[5﹣(17﹣15+1.875)]÷5=320×[5﹣3.875]÷5=320×1.125÷5=360÷5=72(米/分钟)答:李双推车步行的速度是72米/分钟.故答案为:72.15.解:2.5×2÷(6﹣1)+2.5=5÷5+2.5=1+2.5=3.5(千克)答:B桶中原来有水3.5千克.故答案为:3.5.。
小学五年级上册奥数测试卷及答案

⼩学五年级上册奥数测试卷及答案五年级奥数测试卷⼀、填空1、在不⼤于100的⾃然数中,被13除后商和余数相同的数有多少个,分别是()。
答:14的倍数都可以。
有8个。
0,14,28,42,56,70,84,982、a、b是两个不相等的⾃然数,如果它们的最⼩公倍数是72,那么a与b 的和可以有()种不同的值。
答:不妨设A>B72的约数有:1、2、3、4、6、8、9、12、18、24、36、72。
共12个72=2*2*2*3*3当A=72时,有11种B;当A=36时,有2种B;8、24当A=24时,有2种B;9、18当A=18时,有1种B;8当A=12时,⽆;当A=9时,有1种B;8共计11+2+2+1+1=17种,所以有17种A+B的值。
这类题的解法是:1.找出这个最⼩公倍数的所有因数,⽤这个最⼩公倍数与这些因数组合(除它本⾝外)。
2.在这些因数中找出不是倍数关系且积不⼩于这个最⼩公倍数的两个数的所有组合,去除最⼩公倍数不是72的组合。
3.把1和2找出的组数个数相加即可。
如本题的个数即为11+7=18个3、有⼀个七层塔,每⼀层所点灯的盏数都等于上⼀层的2倍,⼀共点了381盏灯。
求顶层点了()盏灯。
答:因为381是⼀个奇数,⽽每⼀层都是上⼀层的2倍,所以顶层⼀定是⼀个奇数,如果顶层是1盏灯,那么1+2+4+8+16+32+64不够,顶层是3盏的话,3+6+12+24+48+96+192=381.4、有这样⼀个百层球垛,这个球垛第⼀层有1个⼩球,第⼆层有3个⼩球,第三层有6个⼩球,第四层有10个⼩球,第五层有15个⼩球,……第⼀百层有()个⼩球。
这⼀百层共有()个⼩球。
答:第⼀层:1;第⼆层:3;第三层:6;第四层:10;第五层:15规律:第⼀层:1;第⼆层:1+2=3;第三层:1+2+3=6;第四层:1+2+3+4=10;第五层:1+2+3+4+5=15根据等差数列公式:Sn=(a1+an)×n/2第100层⼩球个数:1+2+3+……+100=(1+100)×100/2=5050100层共有⼩球个数:1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+ (100)=1×(1+1)/2+2×(2+1)/2+3×(3+1)/2+……+100×(100+1)/2=1/2×[(1+12)+(2+22)+(3+32)+……+(100+1002)]=1/2×[(1+2+3+……+100)+(12+22+32+……+1002)]=100×(100+1)×(100+2)/6=171700证明过程:根据(n+1)3=n3+3n2+3n+1,得 (n+1)3-n3=3n2+3n+1,n3-(n-1)3=3(n-1)2+3(n-1)+1 ..............................33-23=3×22+3×2+123-13=3×12+3×1+1.把这n个等式两端分别相加,得:(n+1)3-1=3(12+22+32+....+n2)+3(1+2+3+...+n)+n×1n3+3n2+3n+1 -1-n=3(12+22+32+....+n2)+3(1+2+3+...+n)(n3+3n2+2n)/3=(12+22+32+....+n2)+(1+2+3+...+n)所以:(12+22+32+....+n2)+(1+2+3+...+n)=n(n+1)(n+2)/35、⼀本书的页码由7641个数码组成,这本书共有()页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数测试卷一、填空1、在不大于100的自然数中,被13除后商和余数相同的数有多少个,分别是(). 答:14的倍数都可以. 有8个。
0,14,28,42,56,70,84,982、a、b是两个不相等的自然数,如果它们的最小公倍数是72,那么a与b的和可以有()种不同的值。
答:不妨设A〉B72的约数有:1、2、3、4、6、8、9、12、18、24、36、72。
共12个72=2*2*2*3*3当A=72时,有11种B;当A=36时,有2种B;8、24当A=24时,有2种B;9、18当A=18时,有1种B;8当A=12时,无;当A=9时,有1种B;8共计11+2+2+1+1=17种,所以有17种A+B的值。
这类题的解法是:1。
找出这个最小公倍数的所有因数,用这个最小公倍数与这些因数组合(除它本身外)。
2.在这些因数中找出不是倍数关系且积不小于这个最小公倍数的两个数的所有组合,去除最小公倍数不是72的组合。
3.把1和2找出的组数个数相加即可.如本题的个数即为11+7=18个3、有一个七层塔,每一层所点灯的盏数都等于上一层的2倍,一共点了381盏灯。
求顶层点了( )盏灯.答:因为381是一个奇数,而每一层都是上一层的2倍,所以顶层一定是一个奇数,如果顶层是1盏灯,那么1+2+4+8+16+32+64不够,顶层是3盏的话,3+6+12+24+48+96+192=381.4、有这样一个百层球垛,这个球垛第一层有1个小球,第二层有3个小球,第三层有6个小球,第四层有10个小球,第五层有15个小球,……第一百层有( )个小球.这一百层共有( )个小球。
答:第一层:1;第二层:3;第三层:6;第四层:10;第五层:15规律:第一层:1;第二层:1+2=3;第三层:1+2+3=6;第四层:1+2+3+4=10;第五层:1+2+3+4+5=15 根据等差数列公式:Sn=(a1+an)×n/2第100层小球个数:1+2+3+……+100=(1+100)×100/2=5050100层共有小球个数:1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+ (100)=1×(1+1)/2+2×(2+1)/2+3×(3+1)/2+……+100×(100+1)/2=1/2×[(1+1²)+(2+2²)+(3+3²)+……+(100+100²)]=1/2×[(1+2+3+……+100)+(1²+2²+3²+……+100²)]=100×(100+1)×(100+2)/6=171700证明过程:根据(n+1)³=n³+3n²+3n+1,得(n+1)³—n³=3n²+3n+1,n³-(n-1)³=3(n-1)²+3(n—1)+1 。
.。
...。
.。
.。
..。
.。
....。
.。
..。
3³-2³=3×2²+3×2+12³—1³=3×1²+3×1+1.把这n个等式两端分别相加,得:(n+1)³-1=3(1²+2²+3²+。
.。
+n²)+3(1+2+3+。
.。
+n)+n×1n³+3n²+3n+1 —1-n=3(1²+2²+3²+。
.+n²)+3(1+2+3+。
.。
+n)(n³+3n²+2n)/3=(1²+2²+3²+。
.。
.+n²)+(1+2+3+。
..+n)所以:(1²+2²+3²+。
...+n²)+(1+2+3+。
+n)=n(n+1)(n+2)/35、一本书的页码由7641个数码组成,这本书共有()页。
答:这本书的页数是四位数,1~999共用2889个数码,(7641-2889)÷4=1188,因四位数是从1000开始的,所以页数为999+1188=21876、某校举行体育达标测评,分两试进行,初试达标人数比未达标人数的3倍多14人,复试达标人数增加33人,正好是未达标人数的5倍,问有()人参加了达标测评。
答:设初试未达标人数为X 则 3x+14+33=5*(x-33) 解得 x=106总人数 3x+14+x=4387、10块的巧克力,小明每天至少吃一块,直至吃完,问共有( )种不同的吃巧克力的方案。
答:这个问题属于排列组合问题,用插板法,把十块巧克力排成一排,中间有9各空当。
如果10天吃完,就用9个板插入9个空档,即C9/9,如果9天吃完,就用8个板插入9个空档,即C8/9,依此类推,如果2天吃完,就用1个板插入9个空档,即C1/9,如果1天吃完,就用0个板插入9个空档,即C0/9,结果为(C9/9+C8/9+C7/9。
..+C0/9)=2^9=512种方案。
另答:设X为几块巧克力,则就是2的(X-1)次方 .8、小明要登上15级台阶,每步登上2级或3级台阶,共有( )种不同登法。
答:因为每次登2级或3级,所以登1级的方法数是0,登2级和3级的方法数都是1,登4级的方法数是登1级与登2级的方法数之和,即0+1=1.依此类推,登n级的方法数是登(n —3)级与登(n-2)级的方法数之和。
所以这串数(取法数)中,从第4个数起,每个数都是二、解答题:1、某校五年级有两个班,每班的人数都是小于50的整十数.期末数学考试两个班的总平均分为78分,其中一班平均82分,二班平均75分。
一班和二班各有多少人?解答:解设一班有X 人,二班有Y 人。
则82X+75Y=78(X+Y ),解得4X=3Y.而每班的人数都是小于50的整十数,所以X=30,Y=40。
2、数1447、1005、1231有一些共同特征,每个数都是以1开头的四位数,且每个数中恰好有两个数字相同,这样的数共有多少个?答:①恰是数字1出现了2次.那么末3位数字1的位置有3种。
剩余的两位中9选2的排列有9*8=72种,共9*8*3 = 216种;②不是数字1出现了2次.那么再选一重复出现的数字A 、一不重复出现的数字B 的种类 = 9*8 = 72,三个数A 、A 、B 的排序种数 = 3 【AAB 、ABA 、BAA 】,共有72*3 = 216种 综上,共有216 + 216 = 432种3、甲在南北路上,由南向北行进;已在东西路上,由西向东行进。
甲出发的地点在两条路交叉点南1120米,乙从交叉点出发,两人同时开始行进,4分钟后,甲乙两人所在的位置与交叉点等远(这时甲仍在交叉点南),在经过52分钟后,两人所在的位置又距交叉点等远(这时甲在交叉点北)。
求甲、乙二人的速度。
解:设甲速为X,乙速为Y 。
则1120—4X =4Y ;56X —1120=56Y解得:X =150米/分钟,Y =130米/分钟所以,甲1分钟走150米.乙1分钟走130米。
奥数网五年级暑期班招生测试卷一、填空:(每小题6分,共84分)1. 333×332332333-332×333333332=__________.333×332332333-332×333333332=333×(332332332+1)—332×(333333333—1)=333×332332332+333×1-(332×33333333—332×1)=333×332332332+333-332×333333333+332=333×332×1001001+333—332×333×1001001+332=6652. 小明带20元去文具店买作业本,他买了5个小练习本和2个大练习本后,剩下的钱若买3个小练习本还多8角,若买3个大练习本还差1元。
每个大练习本_____元。
答:大的2.4元,小的1.8元解:设大的x 元,小的y 元则有 2x+8y=19.2 ; 5x+5y=21联立解方程组 x=2。
4,y=1。
83. 甲、乙、丙三人外出参观。
午餐时,甲带有4包点心,乙带有3包点心,丙带有7元钱却没有买到食物,他们决定把甲、乙二人的点心平均分成三份食用,由丙把7元钱还给甲和乙,那么甲应分得_____元。
答:每包7÷【(4+3)÷3】=3元;甲分3×4—7=5元;乙分3×3-7=2元。
4. 3042乘以一个自然数 A ,乘积是一个整数的平方,那么A 最小是( ).答:A=2了 因为3024=231322⨯⨯所以3024只须乘以2就可变成78的平方。
练习:3465乘以一个自然数a,乘积是一个整数的平方,那么a 最小是多少答:3465 = 117532⨯⨯⨯,所以 如果 3465a 是平方数,则a 最小是 5*7*11 = 3854. 6枚壹分硬币叠在一起与5枚贰分硬币一样高,4枚壹分硬币与3枚伍分硬币一样高。
如果用壹分、贰分、伍分硬币叠成一个圆柱体,并且三个圆柱体一样高,共用了155枚硬币,这些硬币的币值为____元。
答:解:设壹分硬币X 枚。
155=X+(5X/6)+(3X/4) 解得X=60 所以贰分硬币有60*(5/6)=50枚 伍分硬币有60*(3/4)=45枚 60+2*50+45*5=385(分)=3.85(元)另答:解,设每个一分高为A 、二分的高B 、为五分的为C. 得6A=5B 4A=3C 则连接两式,很12A=10B=9C , 三堆硬币一样高的话,个数比为12:10:9,所以(12+10+9)N=155,N=5。
所以一分的有60个,二分的有50个,五分的有45个,得,钱数=60*1+50*2+45*3=385分=3.85元 。
5. 如图,一个长方形由4个小长方形A 、B 、C 、D 组成,其中A 、B 、C 面积分别为16、12、24,D 的面积是( 32 )。
答:有规律,交叉相乘,A ×C=B ×D ,所以16×24=12×(),()里填32。
6. 某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下去追小偷,如其速度比小偷快一倍,比汽车慢4/5,则追上小偷要____秒。
答: s 是距离,小偷速度=x 米/秒,人速度=2x 米/秒;车速度=10x 米/秒人在车上和小偷反向走,他下车时与小偷相距10*(x+10x )=110x 米他追小偷,速度差是x,所用时间=110x/x=110秒。