专题4 解析几何

合集下载

解析几何知识点总结

解析几何知识点总结

解析几何知识点总结解析几何是数学中的一个分支,它研究几何图形在坐标系中的性质和变化规律。

在解析几何中,我们使用坐标系表示各种几何图形,通过运用代数的方法来研究它们的性质和关系。

本文将对解析几何的核心知识点进行总结,包括直线、圆、曲线以及相应的性质和公式。

直线是解析几何中最基本的图形之一。

在平面直角坐标系中,一条直线可以通过两点确定。

若给出直线上两点的坐标为(x₁, y₁)和(x₂, y₂),则可以得到直线的斜率 k 为:k = (y₂ - y₁) / (x₂ - x₁)斜率表示了直线与 x 轴的夹角和斜率的大小关系。

若直线垂直于 x 轴,则斜率不存在;若直线平行于 x 轴,则斜率为零。

直线的方程可以用点斜式、斜截式和一般式等多种方式表示。

点斜式的形式为:y - y₁ = k(x - x₁)斜截式的形式为:y = kx + b一般式的形式为:Ax + By + C = 0其中 A、B、C 为常数。

圆是解析几何中的另一个重要概念。

在平面直角坐标系中,圆的方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r 为半径。

通过圆的方程,我们可以得到圆上任意一点(x,y)满足的条件。

解析几何还涉及到曲线的研究。

常见的曲线包括抛物线、椭圆和双曲线等。

以抛物线为例,它的一般方程为:y = ax² + bx + c其中 a、b、c 为常数。

根据 a 的正负和 a 的绝对值大小,可以确定抛物线的开口方向和形状。

在解析几何中,还有一些重要的性质和公式需要掌握。

例如,两条直线的位置关系可以通过它们的斜率来判断。

如果两条直线的斜率相等,则它们平行;如果两条直线的斜率互为倒数,则它们垂直。

此外,解析几何还涉及到点、线、圆之间的距离计算。

点(x₁, y₁)和点(x₂, y₂)之间的距离可以通过以下公式计算:d = √[(x₂ - x₁)² + (y₂ - y₁)²]同样地,点(x₁, y₁)到直线 Ax + By + C = 0 的距离可以通过以下公式计算:d = |Ax₁ + By₁ + C| / √(A² + B²)通过掌握以上基本原理和公式,我们可以进一步应用解析几何的知识,解决实际问题。

[中学联盟]辽宁省沈阳市第二十一中学高三数学专题复习总结学案:专题四-解析几何.doc

[中学联盟]辽宁省沈阳市第二十一中学高三数学专题复习总结学案:专题四-解析几何.doc

高考命题趋势纵观每年高考全国卷和有关省市自主命题卷,关于解析几何的命题有如下几个显著特点: 1 •高考题型:解析几何的试题一般是选择题、填空题、解答题都会出现。

2•难易程度:考查解析几何的选择题、填空题为基础题或中档题,解答题一般会综合考查, 以中等偏难试题为主。

3•高考热点:解析几何的热点仍然是圆锥曲线的性质,直线和圆锥曲线的位置关系以及轨 迹问题,仍然以考査方程思想及用韦达定理处理弦长和弦中点为重点。

坐标法使平面向量 与平面解析几何自然地联系并有机结合起来。

相关交汇试题应运而生,涉及圆锥曲线参数 的取值范围问题也是命题亮点复习备考方略1. 加强直线和圆锥曲线的基础知识,初步掌握了解决直线与圆锥曲线有关问题的基本技能 和基本方法。

2. 由于直线与圆锥曲线是高考考查的重点内容,选择、填空题灵活多变,思维能力要求 较高,解答题背景新颖、综合性强,代数推理能力要求高,因此有必要对直线与圆锥曲线 的重点内容、高考的热点问题作深入的研究。

3. 在第一轮复习的基础上,再通过纵向深入,横向联系,进一步掌握解决直线与圆锥曲 线问题的思想和方法,提高我们分析问题和解决问题的能力。

【内容解读】点与直线的位置关系有:点在直线上、直线外两种位置关系,点在直线外时, 经常考查点到直线的距离问题;点与圆的位置关系有:点在圆外、圆上、圆外三种;直线 与圆的位置关系有:直线与圆相离、相切、相交三点,经常用圆心到直线之间的距离与圆 的半径比较来确定位置位置关系;圆与圆的位置关系有:两圆外离、外切、相交、内切、 内含五种,一般用两点之间的距离公式求两圆之间的距离,再与两圆的半径之和或差比较。

【命题规律】本节内容一般以选择题或填空题为主,难度不大,属容易题1. 若圆” + / —2①一 4g = 0的圆心到直线x-y-^-a = 0的距离为乎,则a 的值为()2. 若直线y = x + b 与曲线y = 3-yj4x-x 2有公共点,则b 的取值范围是()A.[l-2V2,l + 2>/2]B.[ 1-72,3]考点一:点、直线. 第一讲: 直线和圆的位置关系问题A. 一2或2B.号或書C. 2 或0D. 一2或0C.卜1,1 + 2血] DJ1-2V2 ,3]3.圆Ox: 和圆ft: A/-4.F =0的位置关系是( (A) 相离 (B)相交 (C)外切 考点二:直线、圆的方程问题【内容解读】直线方程的解析式有点斜式、斜截式、两点式、•截距式、一般式五种形式, 各有特点,根据具体问题,选择不同的解析式来方便求解。

专题4解析几何ppt课件

专题4解析几何ppt课件

因此“-3<m<5”是“方程 x 2 + =y 21表示椭圆”的必要不充分条
5m m 3
件.
【答案】B
名师诊断
专案突破
对点集训
决胜高考
5.(2012年淮南五校联考)椭圆 x 2 + y 2 =1的离心率为 4 ,则k的值为
9 4k
5
()
(A)-21.
(B)21.
(C)-1 9 或21.
25
(D)1 9 或21.
(3)抛物线:开口向右时y2=2px(p>0);开口向左时y2=-2px(p>0);开口向 上时x2=2py(p>0);开口向下时x2=-2py(p>0).
3.圆锥曲线的几何性质:范围、顶点、对称中心与对称轴、离心率 、渐近线、准线等.
4.直线与圆锥曲线的位置关系:利用直线方程与圆锥曲线方程联立 方程组,由方程组解的个数来确定直线与圆锥曲线的位置关系.
名师诊断
专案突破
对点集训
决胜高考
6.易忽视焦点位置对双曲线方程的影响,双曲线的渐近线方程表示 形式与焦点位置有关.
7.(1)易将椭圆标准方程中参数a、b、c的关系与双曲线标准方程中 三者关系相混淆;
(2)涉及用点斜式设过一点的直线方程时,一定要优先考虑斜率是否 存在,有时需要分类讨论;
(3)列方程组求解直线与圆锥曲线关系问题时,不少学生一方面怕算, 另一方面不会用设而不求法或其他方式简化运算.
名师诊断
专案突破
对点集训
决胜高考
(1)平行⇔A1B2-A2B1=0且B1C2-B2C1≠0; (2)相交⇔A1B2-A2B1≠0; (3)重合⇔A1B2-A2B1=0且B1C2-B2C1=0. 特殊地,直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直⇔A1A2+B1B2 =0. 5.距离公式:

(浙江专用)高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线中的定点、定值、最值与范围问题学案-

(浙江专用)高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线中的定点、定值、最值与范围问题学案-

第3讲 圆锥曲线中的定点、定值、最值与范围问题高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.真 题 感 悟(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.解 (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.考 点 整 合1.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.2.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.热点一 定点与定值问题 [考法1] 定点的探究与证明【例1-1】 (2018·杭州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又由题意知(2+c )2+12=10,解得c =1, 故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k2.①∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7.由Δ>0,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2), 直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27, 直线过定点⎝ ⎛⎭⎪⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0. 探究提高 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[考法2] 定值的探究与证明【例1-2】 (2018·金丽衢联考)已知O 为坐标原点,直线l :x =my +b 与抛物线E :y 2=2px (p >0)相交于A ,B 两点. (1)当b =2p 时,求OA →·OB →;(2)当p =12且b =3时,设点C 的坐标为(-3,0),记直线CA ,CB 的斜率分别为k 1,k 2,证明:1k 21+1k 22-2m 2为定值.解 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,x =my +b ,消元得y 2-2mpy -2pb =0,所以y 1+y 2=2mp ,y 1y 2=-2pb .(1)当b =2p 时,y 1y 2=-4p 2,x 1x 2=(y 1y 2)24p2=4p 2, 所以OA →·OB →=x 1x 2+y 1y 2=4p 2-4p 2=0.(2)证明 当p =12且b =3时,y 1+y 2=m ,y 1y 2=-3.因为k 1=y 1x 1+3=y 1my 1+6,k 2=y 2x 2+3=y 2my 2+6, 所以1k 1=m +6y 1,1k 2=m +6y 2.因此1k 21+1k 22-2m 2=⎝ ⎛⎭⎪⎫m +6y 12+⎝ ⎛⎭⎪⎫m +6y 22-2m 2=2m 2+12m ⎝ ⎛⎭⎪⎫1y 1+1y 2+36⎝ ⎛⎭⎪⎫1y 21+1y 22-2m 2=12m ×y 1+y 2y 1y 2+36×(y 1+y 2)2-2y 1y 2y 21y 22=12m ×-m 3+36×m 2+69=24,即1k 21+1k 22-2m 2为定值.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练1-1】 (2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1),过点⎝ ⎛⎭⎪⎫0,12作直线l与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 把P (1,1)代入y 2=2px ,得p =12,所以抛物线C 的方程为y 2=x ,焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ), 由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0.所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点. 【训练1-2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 0=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值.热点二 最值与范围问题[考法1] 求线段长度、面积(比值)的最值【例2-1】 (2018·湖州调研)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 分别相交于P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 的中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y 得,k 2x 2-(8k +4)x +16=0(1<k <2).设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k 2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k2 =2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6.(2)由于S 1S 2=|PA ||PB |=x 1x 2,由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2=⎝ ⎛⎭⎪⎫1k +22-2∈⎝ ⎛⎭⎪⎫174,7, 由S 1S 2+S 2S 1>174得,4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0, 解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14.由S 1S 2+S 2S 1<7得,⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0, 解得7-352<S 1S 2<7+352,又S 1S 2<1,所以7-352<S 1S 2<1. 综上,7-352<S 1S 2<14,即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 探究提高 (1)处理求最值的式子常用两种方式:①转化为函数图象的最值;②转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).【训练2-1】 (2018·温州质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且过点⎝⎛⎭⎪⎫1,63.(1)求椭圆C 的方程;(2)设与圆O :x 2+y 2=34相切的直线l 交椭圆C 与A ,B 两点,求△OAB 面积的最大值,及取得最大值时直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧1a 2+23b2=1,c a =63,a 2=b 2+c 2,解得a 2=3,b 2=1,∴x 23+y 2=1.(2)①当k 不存在时,直线为x =±32,代入x 23+y 2=1,得y =±32, ∴S △OAB =12×3×32=34;②当k 存在时,设直线为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,消y 得(1+3k 2)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km1+3k2,x 1x 2=3m 2-31+3k2,直线l 与圆O 相切d =r 4m 2=3(1+k 2), ∴|AB |=1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-12(m 2-1)1+3k 2=3·1+10k 2+9k41+6k 2+9k 4=3·1+4k21+6k 2+9k4 =3×1+41k 2+9k 2+6≤2.当且仅当1k 2=9k 2,即k =±33时等号成立,∴S △OAB =12|AB |×r ≤12×2×32=32,∴△OAB 面积的最大值为32, ∴m =±34⎝ ⎛⎭⎪⎫1+13=±1, 此时直线方程为y =±33x ±1. [考法2] 求几何量、某个参数的取值范围【例2-2】 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 解 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk2, 故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk2. 由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t. 由2|AM |=|AN |得23+tk 2=k3k 2+t , 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. (3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.【训练2-2】 (2018·台州调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c ,0), 则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由|FM |=(c +c )2+⎝ ⎛⎭⎪⎫233c -02=433, 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23(x +1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x, 即y =mx (x ≠0),与椭圆方程联立, 整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是 ⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决; (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.一、选择题1.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( )A.-2B.1C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1.答案 B2.(2018·镇海中学二模)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A.2B.12C.14D.18解析 根据题意,设P 到准线的距离为d ,则有|PF |=d .抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案 D3.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析 (1)当焦点在x 轴上,依题意得 0<m <3,且3m ≥tan ∠AMB 2= 3.∴0<m <3且m ≤1,则0<m ≤1. (2)当焦点在y 轴上,依题意m >3,且m3≥tan ∠AMB2=3,∴m ≥9,综上,m 的取值范围是(0,1]∪[9,+∞). 答案 A4.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=( ) A.3B.5C.6D.10解析 因y 2=8x ,则p =4,焦点为F (2,0),准线l :x =-2.如图,M 为FN 中点, 故易知线段BM 为梯形AFNC 的中位线, ∵|CN |=2,|AF |=4, ∴|MB |=3,又由定义|MB |=|MF |, 且|MN |=|MF |,∴|NF |=|NM |+|MF |=2|MB |=6. 答案 C5.(2018·北京西城区调研)过抛物线y 2=43x 的焦点的直线l 与双曲线C :x 22-y 2=1的两个交点分别为(x 1,y 1),(x 2,y 2),若x 1·x 2>0,则直线l 的斜率k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫-22,22D.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 解析 易知双曲线两渐近线为y =±22x ,抛物线的焦点为双曲线的右焦点,当k >22或k <-22时,l 与双曲线的右支有两个交点,满足x 1x 2>0. 答案 D6.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A ,B ,则直线AB 恒过的点的坐标为( ) A.(0,1)B.(0,2)C.(2,0)D.(1,0)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2,又点Q (t ,-2)的坐标适合这两个方程, 代入得-2=12x 1t -y 1,-2=12x 2t -y 2,这说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过点(0,2).答案 B 二、填空题7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2. 因为直线bx ±ay =0和圆(x -2)2+y 2=2相交, 所以|2b |a 2+b2<2,整理得b 2<a 2.从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)8.(2018·金华质检)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________,椭圆的离心率为________.解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中垂直于长轴的弦最短,即2b 2a=3,可求得b 2=3,即b=3,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-34=12.答案3 129.已知抛物线C :x 2=8y 的焦点为F ,动点Q 在C 上,圆Q 的半径为1,过点F 的直线与圆Q 切于点P ,则FP →·FQ →的最小值为________,此时圆Q 的方程为________. 解析 如图,在Rt △QPF 中,FP →·FQ →=|FP →||FQ →|cos ∠PFQ =|FP →||FQ →||PF →||FQ →|=|FP →|2= |FQ →|2-1.由抛物线的定义知:|FQ →|=d (d 为点Q 到准线的距离),易知,抛物线的顶点到准线的距离最短,∴|FQ →|min =2, ∴FP →·FQ →的最小值为3. 此时圆Q 的方程为x 2+y 2=1. 答案 3 x 2+y 2=110.(2018·温州模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0). 则|AC |+|BD |=y 1+x 2=y 1+y 224.又y 1y 2=-p 2=-4,∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x (x <0),则g ′(x )=x 3+82x2,从而g (x )在(-∞,-2)递减,在(-2,0)递增.∴当x =-2时,|AC |+|BD |取最小值为3. 答案 311.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0), 则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b24=0,①又因为b 2=a 2-c 2,代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 答案 63三、解答题12.(2018·北京海淀区调研)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0. 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.13.(2018·杭州调研)已知F 是抛物线T :y 2=2px (p >0)的焦点,点P ()1,m 是抛物线上一点,且|PF |=2,直线l 过定点(4,0),与抛物线T 交于A ,B 两点,点P 在直线l 上的射影是Q .(1)求m ,p 的值;(2)若m >0,且|PQ |2=|QA |·|QB |,求直线l 的方程. 解 (1)由|PF |=2得,1+p2=2,所以p =2,将x =1,y =m 代入y 2=2px 得,m =±2.(2)因为m >0,故由(1)知点P (1,2),抛物线T :y 2=4x .设直线l 的方程是x =ny +4,由⎩⎪⎨⎪⎧x =ny +4,y 2=4x 得,y 2-4ny -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4n ,y 1·y 2=-16. 因为|PQ |2=|QA |·|QB |,所以PA ⊥PB , 所以PA →·PB →=0,且1≠2n +4,所以(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0,且n ≠-32.由(ny 1+3)(ny 2+3)+(y 1-2)(y 2-2)=0得, (n 2+1)y 1y 2+(3n -2)(y 1+y 2)+13=0,-16(n 2+1)+(3n -2)·4n +13=0,4n 2+8n +3=0,解得,n =-32(舍去)或n =-12,所以直线l 的方程是:x =-12y +4,即2x +y -8=0.14.(2018·绍兴模拟)如图,已知函数y 2=x 图象上三点C ,D ,E ,直线CD 经过点(1,0),直线CE 经过点(2,0).(1)若|CD |=10,求直线CD 的方程; (2)当△CDE 的面积最小时,求点C 的横坐标. 解 设C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 直线CD 的方程为:x =my +1.由⎩⎪⎨⎪⎧x =my +1,y 2=x 得:y 2-my -1=0,从而⎩⎪⎨⎪⎧y 1y 2=-1,y 1+y 2=m . (1)由题意,得|CD |=1+m 2×m 2+4=10,得m =±1, 故所求直线方程为x =±y +1,即x ±y -1=0.(2)由(1)知y 2=-1y 1,同理可得y 3=-2y 1,E ⎝ ⎛⎭⎪⎫4y 21,-2y 1,并不妨设y 1>0,则E 到直线CD 的距离为d =⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2,S △CDE =121+m 2×m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2=12m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-1,而m =y 1+y 2=y 1-1y 1,所以S △CDE =12y 21+1y 21+2×⎪⎪⎪⎪⎪⎪2y 21+1=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫y 1+1y 1×⎝ ⎛⎭⎪⎫2y 21+1,得S △CDE =12⎝ ⎛⎭⎪⎫y 1+3y 1+2y 31.考虑函数f (x )=x +3x +2x3,令f ′(x )=1-3x 2-6x 4=x 4-3x 2-6x 4=0,得x 2=3+332时f (x )有最小值, 即x 1=y 21=3+332时,△CDE 的面积最小, 也即△CDE 的面积最小时,点C 的横坐标为3+332. 15.(2018·湖州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴长为2.直线l :y =kx +m 与椭圆C 交于M ,N 两点,又l 与直线y =12x ,y =-12x 分别交于A ,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点).(1)求椭圆C 的方程;(2)求OM →·ON →的取值范围.解 (1)由于b =1且离心率e =22, ∴c a =a 2-1a =22,则a 2=2, 因此椭圆的方程为x 22+y 2=1. (2)联立直线l 与直线y =12x ,可得点A ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k , 联立直线l 与直线y =-12x ,可得点B ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k , 又点A 在第一象限,点B 在第二象限,∴⎩⎪⎨⎪⎧2m 1-2k >0,-2m 1+2k <0⎩⎪⎨⎪⎧m (1-2k )>0,m (1+2k )>0, 化为m 2(1-4k 2)>0,而m 2≥0,∴1-4k 2>0.又|AB |=⎝ ⎛⎭⎪⎫2m 1-2k +2m 1+2k 2+⎝ ⎛⎭⎪⎫m 1-2k -m 1+2k 2=4|m |1-4k 21+k 2, 原点O 到直线l 的距离为|m |1+k 2,即△OAB 底边AB 上的高为|m |1+k 2, ∴S △OAB =124|m |1+k 21-4k 2·|m |1+k 2=2m 21-4k2=2,∴m 2=1-4k 2.设M (x 1,y 1),N (x 2,y 2),将直线l 代入椭圆方程,整理可得: (1+2k 2)x 2+4kmx +2m 2-2=0,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2, Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=48k 2>0,则k 2>0,∴y 1·y 2=(kx 1+m )(kx 2+m )=m 2-2k 21+2k 2, ∴OM →·ON →=x 1x 2+y 1y 2=2m 2-21+2k 2+m 2-2k 21+2k 2=81+2k 2-7. ∵0<k 2<14,∴1+2k 2∈⎝ ⎛⎭⎪⎫1,32, ∴81+2k 2∈⎝ ⎛⎭⎪⎫163,8,∴OM →·ON →∈⎝ ⎛⎭⎪⎫-53,1. 故OM →·ON →的取值范围为⎝ ⎛⎭⎪⎫-53,1.。

微专题4解析几何初步中几个易错问题(pdf版,无答案)-江苏省启东中学高一数学“空中课堂”学案

微专题4解析几何初步中几个易错问题(pdf版,无答案)-江苏省启东中学高一数学“空中课堂”学案

微专题4解析几何初步中几个易错问题
一、斜率与倾斜角之间范围互化致误
例1、(1)直线l经过A(2,1),B(1,m2)(m∈R)两点,则直线l的倾斜角的取值范围为.
(2)直线x cosα+3y+2=0的倾斜角的范围是.
例2、求过点(-4,0),倾斜角的正弦值为10
10的直线方程.
二、求直线的方程时漏解致误
(1)用截距式设方程,漏掉过原点的情形
例3、过点P(2,3)且在两坐标轴上截距相等的直线方程为.
(2)用点斜式设直线方程,忘记讨论斜率不存在情形
例4、(1)直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为________.
(2)经过点P(2,4)的圆(x-1)2+(y-1)2=1的切线方程为________.
(3)过点M(4,-8)作直线l与圆C:x2+y2-4x+2y-3=0的割线交圆于A、B两点,若|AB|=4,求直线l的方程.
二、“两直线平行”与“斜率相等”等价吗?
例5、(1)已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0平行,求a的值.。

专题4 阿基米德三角形

专题4 阿基米德三角形

专题4 阿基米德三角形专题3 阿基米德三角形 微点1 阿基米德三角形 【微点综述】在近几年全国各地高考的解析几何试题中可以发现许多试题涉及到与一个特殊的三角形——由抛物线的弦及过弦的端点的两条切线所围成的三角形有关的问题,这个三角形常被称为阿基米德三角形. 阿基米德三角形包含了直线与圆锥曲线相交、相切两种位置关系,聚焦了轨迹方程、定值、定点、弦长、面积等解析几何的核心问题,“坐标法”的解题思想和数形结合方法的优势体现得淋漓尽致,能很好的提升学生解决圆锥曲线问题的能力,落实逻辑推理、数学抽象、数学运算等核心素养.鉴于此,微点研究阿基米德三角形。

一、预备知识——抛物线上一点的切线方程(1)过抛物线()220y px p =>上一点()00,M x y 的切线方程为:()00y y p x x =+;(2)过抛物线()220y px p =−>上一点()00,M x y 的切线方程为:()00y y p x x =−+;(3)过抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00x x p y y =+; (4)过抛物线()220x py p =−>上一点()00,M x y 的切线方程为:()00x x p y y =−+.下面仅以情形(3)为例给出证明,同理可证其余三种情形。

证法1:设抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00y y k x x −=−,代入22x py =,整理得2002220x pkx py pkx −−+=,由0x ∆=,得()222000044220,220,p k py pkx pk x k y +−=∴−+=抛物线上一点处的切线唯一,∴ 关于k 的一元二次方程200220pk x k y −+=有两个相等的实数根,0,x k p∴=∴所求的切线方程为()000x y y x x p−=−,即2000x x x py py =+−,又2002x py =,∴过抛物线()220x py p =>上一点()00,M x y 的切线方程为:()00x x p y y =+。

解析几何知识点总结

解析几何知识点总结

解析几何知识点总结一、直线1、直线的倾斜角直线倾斜角的范围是0, π)。

当直线与 x 轴平行时,倾斜角为 0;当直线与 x 轴垂直时,倾斜角为π/2 。

2、直线的斜率经过两点 P₁(x₁, y₁),P₂(x₂, y₂)(x₁≠x₂)的直线的斜率 k =(y₂ y₁)/(x₂ x₁)。

当直线的倾斜角α≠π/2 时,直线的斜率 k =tanα 。

3、直线的方程(1)点斜式:y y₁= k(x x₁) ,其中(x₁, y₁) 是直线上的一点,k 是直线的斜率。

(2)斜截式:y = kx + b ,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) ,其中(x₁, y₁),(x₂, y₂) 是直线上的两点。

(4)截距式:x/a + y/b = 1 ,其中 a 是直线在 x 轴上的截距,b是直线在 y 轴上的截距。

(5)一般式:Ax + By + C = 0 (A、B 不同时为 0)。

4、两条直线的位置关系(1)平行:若两条直线的斜率都存在,分别为 k₁,k₂,则 k₁=k₂;若两条直线的一般式方程分别为 A₁x + B₁y + C₁= 0 ,A₂x+ B₂y + C₂= 0 ,则 A₁B₂ A₂B₁= 0 且 A₁C₂ A₂C₁ ≠ 0 。

(2)垂直:若两条直线的斜率都存在,分别为 k₁,k₂,则k₁k₂=-1 ;若两条直线的一般式方程分别为 A₁x + B₁y + C₁=0 ,A₂x + B₂y + C₂= 0 ,则 A₁A₂+ B₁B₂= 0 。

5、点到直线的距离点 P(x₀, y₀) 到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²) 。

6、两条平行线间的距离两条平行线 Ax + By + C₁= 0 ,Ax + By + C₂= 0 (C₁≠C₂)间的距离 d =|C₁ C₂| /√(A²+ B²) 。

专题精品课件4--解析几何解答题的解法

专题精品课件4--解析几何解答题的解法
(4)交轨法:动点是两条动曲线的交点构成的,由x,y满足的两个动曲线方程中 消去参数,可得所求方程.故交轨法也属参数法.
解析几何解答题的解法
应试策略
2.熟练掌握直线、圆及圆锥曲线的基本知识
(1)直线和圆 ①直线的倾斜角及其斜率确定了直线的方向.需要注意的是:(ⅰ)倾斜角α的范围是: 0≤α<π;(ⅱ)所有的直线必有倾斜角,但未必有斜率. ②直线方程的四种特殊形式,每一种形式都有各自成立的条件,应在不同的题设条 件下灵活使用.如截距式不能表示平行于x轴,y轴以及过原点的直线,在求直线方程时尤其 是要注意斜率不存在的情况. ③讨论点与圆、直线与圆、圆与圆的位置关系时,一般可从代数特征(方程组解的个 数)或几何特征(点或直线到圆心的距离与两圆的圆心距与半径的关系)去考虑,其中几何 特征较为简捷、实用.
解析几何解答题的解法
试题特点
2007年高考各地的19套试卷中,每套都有1道解答题,椭圆的有10道,双曲线的有
2道,抛物线的5道,直线与圆的有2道,涉及到圆锥曲线中的最值问题、轨迹问题、中
点弦问题、存在性问题的探讨,以及定点定值问题的探讨等.
在2008年高考的解析几何试题中,像有关面积的问题是高考的热点问题,但在2007年 及以前主要是讨论三角形的面积,而近两年有多处出现了讨论四边形面积的问题,如2007年 全国卷一理科第21题;2008年北京卷理科第19题等等.以后还会讨论多边形的问题.
解析几何解答题的解法
应试策略
②椭圆的标准方程有两种形式,决定于焦点所在的坐标轴.焦点
是F(±c,0)时,标准方程为 x2
y
2
=1(a>b>0);焦点是F(0,±c)
时,标准方程为y 2
x2
a2 b2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【考向预测】从近三年高考新课标全国卷的试题特点来看,解析几何在高考中的考查基本稳定,命题趋势与理科的差异越来越小,其中2012年文科考题与理科考题设计完全相同,只是题目序号略有不同(仅理科第8题为文科第10题);2013年文科与理科仅有一道小题设计不同.2011年、2012年对直线与圆和三种圆锥曲线均有考查,2011年未考双曲线知识.小题重点考查圆锥曲线的定义与标准方程,求基本量的值;考查圆锥曲线的几何性质,涉及焦点、对称轴、离心率、抛物线准线等知识,尤其是圆锥曲线的离心率每年都考.大题考查以直线与圆锥曲线为载体,和几何图形(如三角形、圆)相结合的综合问题,知识交汇、构题新颖、推理要求高、运算量适中、综合性较强,但难度趋于平稳.预测2014年关于解析几何的命题趋势,仍然是难易结合,考查解析几何基本知识与数学能力,有2个小题,1个大题.小题以考查圆锥曲线的定义、标准方程及几何性质为主,重点考查以三角形等几何图形为背景,求解圆锥曲线中与a、b、c、p有关的问题,如长(实)轴长、短(虚)轴长、焦距、离心率、标准方程、双曲线的渐近线方程及三角形面积计算等.大题主要以椭圆或抛物线为载体,将定义、性质等知识与平面向量、直线、圆巧妙地交汇立意,第一问求曲线(轨迹)的方程,第二问利用图中直线与椭圆或抛物线的关系,构建考查众多知识交汇与重要思想方法的新颖综合题型.【问题引领】1.(2013江西卷)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是.2.(2012新课标全国卷)设F1,F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为().A.B.C.D.3.(2013新课标全国Ⅰ卷)已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为().A.y=±xB.y=±xC.y=±xD.y=±x4.(2013山东卷)抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p等于().A.B.C.D.5.已知a、b为正数,且直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,则2a+3b的最小值为.6.如图,椭圆E:+=1(a>b>0)的离心率e=,椭圆的顶点A、B、C、D围成的菱形ABCD的面积S=4.(1)求椭圆的方程.(2)设直线2x+y=0与椭圆E相交于M、N两点,在椭圆上是否存在点P、Q,使四边形PMQN为菱形?若存在,求PQ的长;若不存在,请说明理由.7.已知点M(-1,0)、N(1,0),动点P(x,y)满足|PM|+|PN|=2.(1)求P的轨迹C的方程.(2)是否存在过点N(1,0)的直线l与曲线C相交于A、B两点,并且曲线C存在点Q,使四边形OAQB为平行四边形?若存在,求出直线l的方程;若不存在,说明理由.【知识整合】一、直线与圆1.直线的倾斜角直线倾斜角的范围是.2.直线的斜率(1)直线倾斜角为α(α≠90°)的直线的斜率k=tan α,倾斜角为90°的直线的斜率不存在;(2)经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为(x1≠x2).3.直线的方程(1)点斜式:y-y0=k(x-x0)(不包括垂直于x轴的直线);(2)斜截式:y=kx+b(不包括垂直于x轴的直线);(3)两点式:=(不包括垂直于坐标轴的直线);(4)截距式:+=1(不包括垂直于坐标轴的直线和过原点的直线);(5)一般式:任何直线均可写成Ax+By+C=0(A、B不同时为0)的形式;(6)设直线方程的一些常用技巧:①与直线l:Ax+By+C=0平行的直线可设为Ax+By+C1=0;②与直线l:Ax+By+C=0垂直的直线可设为.4.两条直线的位置关系直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0的位置关系:(1)平行⇔A1B2-A2B1=0且B1C2-B2C1≠0;(2)相交⇔A1B2-A2B1≠0;特殊地,直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直⇔.(3)重合⇔A1B2-A2B1=0且B1C2-B2C1=0.5.距离公式:(1)点A(x1,y1),B(x2,y2),A、B两点间的距离d=;(2)点P(x0,y0)到直线Ax+By+C=0的距离d= ;(3)两平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0(C1≠C2)间的距离d=.6.圆的方程:(1)圆的标准方程:(x-a)2+(y-b)2=r2;(2)圆的一般方程:x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0).7.直线与圆的位置关系直线l:Ax+By+C=0和圆C:(x-a)2+(y-b)2=r2(r>0)的位置关系的判断:(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔,Δ<0⇔,Δ=0⇔;(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d,则d<r⇔相交,d>r⇔相离,d=r⇔相切.8.圆与圆的位置关系:设两圆圆心分别为O1、O2,半径分别为r1、r2(设r1≠r2),|O1O2|=d.d>r1+r2⇔外离⇔两圆有4条公切线;d=r1+r2⇔外切⇔两圆有3条公切线;|r1-r2|<d<r1+r2⇔相交⇔两圆有2条公切线;d=|r1-r2|⇔内切⇔两圆有1条公切线;0≤d<|r1-r2|⇔内含⇔两圆无公切线.判断两个圆的位置关系也可以通过联立方程组由公共解的个数来解决.二、圆锥曲线1.灵活运用圆锥曲线的定义要重视“括号”内的限制条件:椭圆中,与两个定点F1、F2的距离的和等于常数2a,且此常数2a一定要大于|F1F2|;双曲线中,与两定点F1、F2的距离的差的绝对值等于常数2a,且此常数2a一定要小于|F1F2|,定义中的“绝对值”与2a<|F1F2|不可忽视;抛物线中,到定点的距离等于到定直线的距离,要注意定点不在定直线上.2.圆锥曲线的标准方程(1)椭圆:焦点在x轴上时,+=1(a>b>0);焦点在y轴上时,+=1(a>b>0).(2)双曲线:焦点在x轴上时,-=1(a>0,b>0);焦点在y轴上时,-=1(a>0,b>0).(3)抛物线:开口向右时,y2=2px(p>0);开口向左时,y2=-2px(p>0);开口向上时,x2=2py(p>0);开口向下时,x2=-2py(p>0).3.圆锥曲线的几何性质:范围、顶点、对称中心、对称轴、离心率、渐近线和准线等.4.直线与圆锥曲线的位置关系:利用直线方程与圆锥曲线方程联立方程组,由方程组解的个数来确定直线与圆锥曲线的位置关系.5.弦长公式:若直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,则|AB|=|x1-x2|,若y1、y2分别为A、B的纵坐标,则|AB|=|y1-y2|.6.圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.特别提醒:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,注意别忘了检验Δ>0.7.常用结论(1)双曲线-=1(a>0,b>0)的渐近线方程为;(2)以y=±x为渐近线的双曲线方程为-=λ(λ为参数,λ≠0);(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为mx2+ny2=1;(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)长为,抛物线的通径长为2p,焦准距为p;(5)通径是所有焦点弦(过焦点的弦)中最短的弦;(6)若抛物线y2=2px(p>0)的焦点弦为AB,A(x1,y1),B(x2,y2),则①|AB|=x1+x2+p,②x1x2= ,y1y2= ;(7)若OA、OB是过抛物线y2=2px(p>0)顶点O的两条互相垂直的弦,则直线AB恒经过定点.8.动点轨迹(或方程)(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;(2)求轨迹方程的常用方法:①直接法,②待定系数法,③定义法,④代入转移法,⑤参数法.【考点聚焦】热点一:两条直线的位置关系此类试题一般以选择题或填空题的形式出现,难度不大,属于基础题,试题主要考查两条直线平行、垂直的判断或求交点坐标,求解过程中要注重对相关知识的灵活应用,同时要注意思维的严谨性.(1)已知过点A(-2,m)和点B(m,4)的直线为l1,直线2x+y-1=0为l2,直线x+ny+1=0为l3.若l1∥l2,l2⊥l3,则实数m+n的值为().A.0B.-2C.-10D.8(2)“k=4”是“直线l1:(k-2)x+(3-k)y+1=0与l2:2(k-2)x-2y+4=0平行”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】(1)先写出直线l1、l2、l3的斜率,再利用l1∥l2求出m的值,利用l2⊥l3求出n的值,进而计算m+n的值.(2)应用两条直线平行的条件,结合充要条件的概念进行判断.【解析】(1)依题意知直线l1的斜率存在,则有l1的斜率为k1=,l2的斜率为k2=-2.∵l1∥l2,∴=-2,得m=-8.又l2⊥l3,∴2×1+1×n=0,得n=-2,∴m+n=-10,选C.(2)若l1∥l2,则2(k-2)(3-k)+2(k-2)=0,解得k=2或k=4.结合充要条件的概念知选A.【答案】(1)C (2)A【归纳拓展】(1)解决与直线方程有关的问题时,一要灵活选择方程形式,二要注意隐含条件.(2)在判断两条直线平行或垂直时,需要考虑两条直线的斜率是否存在.在不重合的直线l1与l2的斜率都存在的情况下才可以应用结论:l1∥l2⇔k1=k2,l1⊥l2⇔k1·k2=-1.变式训练1(1)已知点A(1,-2)、B(m,2),且线段AB的垂直平分线是x+2y-2=0,则实数m的值是().A.-2B.-7C.3D.1(2)已知直线l1:2x-y+a=0(a>0)与直线l2:4x-2y-1=0的距离为,则a= .热点二:直线与圆的位置关系直线与圆主要考查直线与圆的基本知识,如圆的标准方程、圆的一般式方程、直线与圆的位置关系等,试题可能是以选择题、填空题的形式出现,也可能蕴含在解答题中,一般是基础题,难度不大,解题时应注意挖掘圆的几何性质以及数形结合思想的应用.(1)若两条直线l1:3x+4y+a=0与l2:3x+4y+b=0都与圆x2+y2+2x+4y+1=0相切,则|a-b|等于().A.B.2C.10 D.20(2)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是().A.0≤k≤B.k<0或k>C.≤k≤D.k≤0或k>【分析】(1)利用“当两条平行直线与圆相切时,两条平行直线间的距离等于圆的直径”求解,简单快捷.(2)由已知圆的圆心到直线y=kx-2的距离不大于圆的半径与1的和,建立含斜率k的不等式可求解.【解析】(1)∵圆的方程可化为(x+1)2+(y+2)2=4,∴半径r=2.由l1与l2都与圆相切,得=4,∴|a-b|=20,选D.(2)∵圆C的方程为(x-4)2+y2=1,∴圆心为(4,0),半径r=1.依据题意,可得d=≤1+1=2,解得0≤k≤,选A.【答案】(1)D (2)A【归纳拓展】(1)求解直线与圆的位置关系的问题有几何法(即将圆心到直线的距离与圆的半径的大小进行比较)和代数法(即转化为一元二次方程,运用判别式判断)两种方法.经过圆x2+y2=r2上一点M(x0,y0)的圆的切线方程是x0x+y0y=r2.(2)直线与圆的位置关系以及圆与圆的位置关系问题常利用圆的几何性质来解决,这样可简化运算.涉及弦长问题常用弦心距、弦长之半及半径三者间的关系求解.(3)求圆的方程:①利用圆的几何性质求出圆心坐标和半径,进而写出方程.②运用待定系数法,若已知条件与圆的圆心和半径有关,则选用标准方程求解;若已知条件没有明确给出圆的圆心和半径,则选用圆的一般方程求解.变式训练2(1)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为().A.2x+y-3=0B.2x-y-3=0C.4x-y-3=0D.4x+y-3=0(2)已知P是圆x2+y2=1上的动点,则P点到直线l:x+y-2=0的距离的最小值为().A.1B.C.2D.2热点三:圆锥曲线的定义圆锥曲线的定义是这部分内容的基础,常在圆锥曲线的方程与性质中考查,是高考的热点,既可以出现在选择、填空题中,也可以出现在解答题的第一问,难度中等偏易.(1)(2011新课标全国卷)在平面直角坐标xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为.(2)已知F1、F2分别为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|=().A.2B.4C.6D.8(3)(2013全国Ⅰ卷)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为().A.2B.2C.2D.4【分析】(1)由特殊三角形的周长及椭圆定义可求出长半轴长a,再利用离心率求短半轴长b.(2)可利用余弦定理及双曲线的定义,通过整体代入求解.(3)利用抛物线的定义,作直角三角形,计算点P到OF的距离,进而计算三角形面积使问题获解.【解析】(1)设椭圆C的方程为+=1(a>b>0),则△ABF2的周长为|AF2|+|BF2|+|AB|=|AF2|+|BF2|+|AF1|+|BF1|=4a=16,∴a=4.又e=,∴b=2,故椭圆C的方程为+=1.(2)在△F1PF2中,有|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos∠F1PF2=(|PF1|-|PF2|)2+2|PF1|·|PF2|-2|PF1|·|PF2|cos∠F1PF2,又双曲线方程为x2-y2=1,∴2a=2,2c=2,且∠F1PF2=60°,∴(2)2=22+|PF1|·|PF2|,得|PF1|·|PF2|=4,选B.(3)抛物线的焦点坐标为(,0),设点P坐标为(x0,y0),则|PF|=x0+=4,解得x0=3,代入抛物线方程得到y0=±2,S△POF=|OF|·|y0|=××2=2,所以答案为C.【答案】(1)+=1(2)B(3)C【归纳拓展】(1)遇到与到焦点的距离有关的问题时,应先考虑用定义来求解.(2)双曲线的定义中,要注意两点:一是到两定点的距离之差的绝对值(常数)必须小于两定点的距离;二是定义中的“绝对值”去掉,其图形仅为双曲线的一支.(3)抛物线的定义实际上是定点与定直线(定点不在定直线上)的相互转化的数学思想的体现,应用抛物线的定义解题,重视结合图形分析,巧用几何性质,常能起到化繁为简的作用.变式训练3(1)椭圆mx2+ny2=1的离心率为,则等于().A.B. C.或D.或(2)已知F1、F2分别是双曲线-=1(a>0,b>0)的左、右焦点,A和B是以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为.(3)已知抛物线x2=6y,过焦点F的直线与抛物线交于A、B两点,过A、B分别作x轴的垂线,垂足分别为C、D,则|AC|+|BD|的最小值为.热点四:圆锥曲线方程与性质圆锥曲线的方程与几何性质是解析几何的核心内容,是历年高考的必考点,试题重点考查圆锥曲线的方程与性质等基础知识和处理有关问题的基本技能、基本方法,多以选择、填空题的形式出现,一般是中档题.(1)(2013浙江卷)如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是().A.B.C.D.(2)已知直线l过双曲线C的一个焦点,且与C的对称轴垂直,l与C交于A、B两点,|AB|为C的实轴长的2倍,则C的离心率为().A.B.C.2 D.3(3)(2013江西卷)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线-=1相交于A,B两点,若△ABF为等边三角形,则p= .【分析】(1)利用椭圆与双曲线的关系及直角三角形建立关系式,可求双曲线的实半轴长,再结合椭圆方程求双曲线C2的离心率.(2)先求直线l与双曲线C的交点,得出|AB|的长,进而利用|AB|与实轴长的关系求离心率.(3)由抛物线、双曲线方程写出F、A的坐标,再利用等边三角形的性质得到p的等式求之.也可结合两点间的距离公式,运用两边相等求解,但计算复杂些,容易出错.【解析】(1)设|AF1|=m,|AF2|=n,则有m+n=4,m2+n2=12,∴12+2mn=16,∴mn=2.而(m-n)2=(2a)2=(m+n)2-4mn=16-8=8,∴双曲线方程中的a=,c=,则有e==.(2)设双曲线C的方程为-=1(a>0,b>0),由于直线过双曲线的焦点且与对称轴垂直,∴l的方程为x=c,x=-c,代入-=1,得y2=b2(-1)=,∴y=±,∴|AB|==4a,即=2,故离心率e==.(3)由题意可知A,B两点关于y轴对称,且|AB|=p,∴点A,B的坐标为(-p,-),(p,-),将其代入双曲线可得p=6.【答案】(1)D (2)B (3)6【归纳拓展】(1)求圆锥曲线的方程,一般采用待定系数法,其步骤是:①作判断(判断焦点的位置);②设方程(依据题意设出标准方程);③找关系(根据已知条件列出a、b、c、p的方程或方程组);④得方程(写出所求方程).当椭圆或双曲线的焦点位置不明确时,可以分类讨论,也可设方程为mx2+ny2=1(mn≠0且m、n不同时为负数).(2)圆锥曲线的性质问题,要重视对图形的分析,当涉及顶点、焦点、对称轴及a、b、c、p等基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系,同时注意与其他知识(包括平面几何知识)的结合.(3)求椭圆、双曲线的离心率是高考的高频考点之一,公式有e椭圆==,e双曲线==,依据题中给出的条件设法建立基本量a、b、c的关系式是求离心率的关键.若焦点位置不确定,则要考虑是否有两种可能.(4)对于涉及圆锥曲线中的范围或最值问题时,常用到:椭圆+=1(a>b>0)中的-a≤x≤a,-b≤y≤b及0<e<1;双曲线-=1(a>0,b>0)中的x≤-a或x≥a及e>1;抛物线y2=2px(p>0)中的x≥0这些不等关系求解.变式训练4(1)在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C上的点,若△OFM的外接圆与抛物线C的准线相切,且该圆的面积为9π,则p等于().A.2B.4C.6D.8(2)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为().A.B.2C.4 D.8热点五:曲线(轨迹)与方程从新课标全国卷这几年的试题来看,曲线(轨迹)与方程的考查较为稳定,一般为解答题中的第一问,既有考查用待定系数法求解,也有考查用直接法、定义法等其他方法求曲线轨迹的方程,难度中等.(2013新课标全国Ⅰ卷)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【分析】(1)涉及两圆相外切和相内切的问题,常用定义法求动圆圆心的轨迹方程,但需注意检验,剔除不符合题意的点.(2)①依据题意判断圆的最长半径,接着写出圆的方程;②利用直线与圆相切及圆的几何性质求出切线方程;③联立直线与曲线C的方程,运用弦长公式求出|AB|.需注意直线的倾斜角为90°这一情形.【解析】(1)由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M、N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为+=1(x≠-2).(2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.所以当圆P的半径最长时,其方程为(x-2)2+y2=4,若l的倾斜角为90°,则l与y轴重合,可得|AB|=2;若l的倾斜角不为90°,由r1≠R知l不平行于x轴,设l与x轴的交点为Q,则=,可求得Q(-4,0),所以可设l:y=k(x+4).由l与圆M相切得=1,解得k=±.当k=时,将y=x+代入+=1,并整理得7x2+8x-8=0,解得x1,2=.所以|AB|=|x2-x1|=.当k=-时,由图形的对称性可知|AB|=.综上,|AB|=2或|AB|=.【归纳拓展】(1)求曲线(轨迹)方程的常用方法有:直接法、待定系数法、定义法、相关点法、参数法、交轨法等,在解题训练中要有意识地归纳积累,依据问题特征合理选用方法,简化运算过程.(2)求曲线(轨迹)方程时,别忘了检验,如遇不符合题意的图形或点,应及时剔除,如本例中的第一问.(3)加强数形结合思想的运用,利用图形特征及几何性质探求曲线(轨迹)方程,思路直观且能避免复杂的推理计算,简化解题过程.变式训练5已知△ABC的两个顶点A、B的坐标分别是(0,-1)、(0,1),且AC、BC所在直线的斜率之积等于m(m≠0).(1)求顶点C的轨迹E的方程,并判断轨迹E为何种圆锥曲线.(2)当m=-时,过点F(1,0)的直线l交曲线E于M、N两点,设点N关于x轴的对称点为Q(M、Q不重合),试问直线MQ与x 轴的交点是不是定点?若是,求出定点;若不是,请说明理由.热点六:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系是高考的重点、热点之一,综合性较高,难度较大,常与圆锥曲线的方程与性质等一起考查.(2013安徽卷)设椭圆E:+=1的焦点在x轴上.(1)若椭圆E的焦距为1,求椭圆E的方程.(2)设F1、F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a 变化时,点P在某定直线上.【分析】(1)依据椭圆E的焦点在x轴上及基本量的关系式求出a2,写出椭圆方程.(2)利用图形中平行、垂直的关系,联立椭圆方程,通过推理转化、消参,得出点P在定直线上.【解析】(1)因为焦距为1,所以2a2-1=,解得a2=.故椭圆E的方程为+=1.(2)设P(x0,y0),F1(-c,0),F2(c,0),其中c=.由题设知x0≠c,则直线F1P的斜率=,直线F2P的斜率=.故直线F2P的方程为y=(x-c).当x=0时,y=,即点Q坐标为(0,).因此,直线F1Q的斜率为=.由于F1P⊥F1Q,所以·=·=-1.化简得=-(2a2-1). ①将①代入椭圆E的方程,由于点P(x0,y0)在第一象限,解得x0=a2,y0=1-a2,即点P在定直线x+y=1上.【归纳拓展】(1)直线与圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点、有两个公共点.可通过代数方法即方程组思想进行研究解决.(2)直线与圆锥曲线有唯一公共点,不等价于直线与圆锥曲线相切.平行于对称轴或与对称轴重合的直线与抛物线相交于一点,平行于渐近线的直线与双曲线只有一个交点,但直线与这些曲线均不相切.直线与圆锥曲线的位置关系一般用Δ>0、Δ=0、Δ<0来判断.(3)直线与圆锥曲线的位置关系,常涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题时,重视判别式和根与系数的关系的应用.(4)当直线与圆锥曲线的相交时,涉及弦长问题,运用“根与系数的关系”设而不求计算弦长(应用弦长公式);涉及弦长的中点,运用“点差法”设而不求,将弦所在直线的斜率与弦的中点坐标联系起来,利用量的关系灵活转化.解决直线与圆锥曲线的位置关系问题,可概括为联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘.变式训练6已知椭圆C:+=1(a>b>0)的右焦点为F(2,0),且过点(2,).直线l过点F且交椭圆C于A、B两点.(1)求椭圆C的方程;(2)若线段AB的垂直平分线与x轴的交点为M(,0),求直线l的方程.热点七:解析几何的综合问题解析几何综合问题既有自身相关知识的综合,如三种圆锥曲线的交汇,直线与圆锥曲线的位置关系,又常与向量、三角形及其面积、不等式、函数与方程等综合.一方面考查相关基础知识,另一方面考查综合运用相关知识分析和解决问题的能力,同时考查函数与方程、数形结合、分类讨论、化归转化的思想方法.解析几何综合问题是近年高考的必考题型,且久考不衰,常考常新.(2013江西卷)椭圆C:+=1(a>b>0)的离心率e=,a+b=3.(1)求椭圆C的方程.(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值.【分析】(1)依据条件等式求出a、b的值,再写出椭圆C的方程.(2)先写出直线AD、BP的方程,然后通过求交点M、N的坐标,写出MN的斜率证得结论.【解析】(1)因为e==,所以a=c,b=c,代入a+b=3得,c=,a=2,b=1.故椭圆C的方程为+y2=1.(2)(法一)因为B(2,0),P不为椭圆顶点,则直线BP的方程为y=k(x-2)(k≠0,k≠±),①将①代入+y2=1,解得P(,-).直线AD的方程为y=x+1. ②①与②联立解得M(,).由D(0,1),P(,-),N(x,0)三点共线知=,解得N(,0).所以MN的斜率为m===,则2m-k=-k=(定值).(法二)设P(x0,y0)(x0≠0,±2),则k=,直线AD的方程为y=(x+2),直线BP的方程为y=(x-2),直线DP的方程为y-1=x,令y=0,由于y0≠1可得N(,0),联立解得M(,),因此MN的斜率为m====,所以2m-k=-====(定值).【归纳拓展】解析几何的综合问题主要体现为圆锥曲线的综合问题:(1)定点与定值问题的处理方式一般有两种:一是从特殊点或特殊位置入手,求出这个定点(值),再说明这个定点(值)与变量无关;二是直接推理计算,并在计算过程中消去变量,从而得到定点(值).(2)求最值或范围常见的解法:①几何法.若题目的条件和结论能明显体现几何特征及意义,可考虑利用图形性质来解决.②代数法.若题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求最值或范围.(3)在利用代数法求最值或范围问题的常用途径:①运用判别式构造不等关系;②利用题设不等式建立不等关系;③挖掘隐含不等关系建立不等式;④通过已知的参数范围,求新参数的范围,但需建立两个参数的等量关系;⑤数形结合构建不等关系;⑥求目标函数的值域.变式训练7已知椭圆+=1(a>b>0)的离心率为.(1)若原点到直线x+y-b=0的距离为,求椭圆的方程.(2)设过椭圆的右焦点F且倾斜角为45°的直线和椭圆交于A、B两点.(ⅰ)当|AB|=时,求b的值;(ⅱ)对于椭圆上任一点M,若=λ+μ,求实数λ、μ满足的关系式.热点八:探索性问题圆锥曲线中的探索性问题是近年高考命题的热点,主要以解答题的形式出现,这类考题形式多样,解法灵活,考查的知识众多,能力要求高(尤其是运算能力),难度较大.椭圆+=1(a>b>0)的右焦点为F(1,0),M为椭圆的上顶点,O为坐标原点,且△OMF是等腰直角三角形.(1)求椭圆的方程.(2)是否存在直线l交椭圆于P、Q两点,且使F为△PQM的垂心(垂心:三角形三条高的交点)?若存在,求出直线l的方程;若不存在,请说明理由.【分析】(1)利用特殊三角形条件及半焦距c=1,求a、b的值,写出椭圆的方程;(2)先假设存在符合题意的直线l,在假设条件下,设出直线方程,与椭圆方程联立后,运用根与系数关系和设而不求的方法,利用高与底边垂直,其数量积为零的等式关系进行化简转化,通过验证判断符合题意的直线l是否存在.【解析】(1)由△OMF是等腰直角三角形,得b=1,a=b=,故椭圆方程为+y2=1.(2)假设存在直线l交椭圆于P、Q两点,且使F为△PQM的垂心.设P(x1,y1)、Q(x2,y2),∵M(0,1),F(1,0),∴k MF=-1,∴直线l的斜率k=1,∴设直线l的方程为y=x+m,由得3x2+4mx+2m2-2=0,由题意知Δ=16m2-4×3(2m2-2)>0,得m2<3,且x1+x2=-,x1x2=.由题意有·=0,又=(x1,y1-1),=(x2-1,y2),∴(x1,y1-1)·(x2-1,y2)=2x1x2+(m-1)(x1+x2)+m2-m=2×-(m-1)+m2-m=0,解得m=-或m=1.经检验,当m=1时,△PQM不存在,故舍去;当m=-时,所求直线y=x-满足题意.综上,存在直线l,且直线l的方程为3x-3y-4=0.【归纳拓展】(1)在探索性问题的考题中,大多数是存在性问题的探索,求解此类问题常采用“假设反证法”或“假设检验法”,也可先取特殊情况得到结论,再给出一般性的证明.(2)求解探索性问题的一般步骤:①假设结论成立;②从假设出发,结合题中给出的条件,进行推理转化;③若能推出合理结论,经验证符合题意,则肯定假设,即存在结论,若推出矛盾,则否定假设,即不存在结论.变式训练8已知中心在原点,顶点在x轴上,离心率为的双曲线经过点P(6,6).(1)求双曲线的方程;(2)动直线l经过定点G(2,2),与双曲线交于不同的两点M,N,问是否存在直线l,使G平分线段MN?试证明你的结论.限时训练卷(一)一、选择题1.已知直线l1过点A(-1,1)和B(-2,-1),直线l2过点C(1,0)和D(0,a),若l1∥l2,则a的值为().。

相关文档
最新文档