中考数学选择题精选100题含答案
中考数学试卷 (含答案)

中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。
)1.(3分)﹣8的相反数是()A.﹣8 B.8 C.D.2.(3分)研究发现,银原子的半径约是0.00015微米,把0.00015这个数字用科学计数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣63.(3分)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.64.(3分)已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°5.(3分)下列各式计算正确的是()A.a+2a=3a B.x4•x3=x12C.()﹣1=﹣D.(x2)3=x56.(3分)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2) C.(2,0) D.(2,2)7.(3分)如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC关于直线EF 对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30°B.35°C.40°D.45°8.(3分)一组数据:3,4,5,x,8的众数是5,则这组数据的方差是()A.2 B.2.4 C.2.8 D.39.(3分)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A.B.C.D.10.(3分)九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.l1人C.12人D.15人11.(3分)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:512.(3分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999 B.10000 C.10001 D.10002二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)式子在实数范围内有意义,则x的取值范围是.14.(3分)如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是cm.15.(3分)已知直线y=ax(a≠0)与反比例函数y=(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是.16.(3分)如图,已知在⊙O中,半径OA=,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO=度.17.(3分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.18.(3分)如图,点C为Rt△ACB与Rt△DCE的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C作CF⊥AD于点F,延长FC交BE于点G.若AC=BC=25,CE=15,DC=20,则的值为.三、解答题(本大题共8小题,满分66分,)19.(6分)计算:﹣25÷23+|﹣1|×5﹣(π﹣3.14)020.(6分)解方程:2x2﹣4x﹣30=0.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.22.(8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.23.(8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C、G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)24.(10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?25.(10分)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度.26.(12分)如图,抛物线y=ax2+bx﹣与x轴交于A(1,0)、B(6,0)两点,D是y轴上一点,连接DA,延长DA交抛物线于点E.(1)求此抛物线的解析式;(2)若E点在第一象限,过点E作EF⊥x轴于点F,△ADO与△AEF的面积比为=,求出点E的坐标;(3)若D是y轴上的动点,过D点作与x轴平行的直线交抛物线于M、N两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。
中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
数学初三试卷含答案

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. 3B. 2.5C. √4D. √22. 若x + y = 5,x - y = 1,则x² - y²的值为()A. 24B. 16C. 9D. 103. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x²C. y = 3/xD. y = 2x³4. 在△ABC中,∠A = 30°,∠B = 45°,则∠C的度数是()A. 105°B. 75°C. 120°D. 90°5. 已知一元二次方程x² - 5x + 6 = 0的解为x₁和x₂,则x₁ + x₂的值为()A. 5B. 6C. 2D. -56. 在平面直角坐标系中,点A(2,3)关于y轴的对称点B的坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)7. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 1,3,5,78. 若a、b、c是△ABC的三边,且a + b = c,则△ABC是()A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形9. 已知正方形的对角线长为10cm,则其边长为()A. 5cmB. 10cmC. 20cmD. 15cm10. 下列命题中,正确的是()A. 所有的平行四边形都是矩形B. 所有的矩形都是正方形C. 所有的等腰三角形都是等边三角形D. 所有的等边三角形都是等腰三角形二、填空题(每题3分,共30分)11. 若x² - 4x + 3 = 0,则x² - 2x的值为______。
12. 函数y = 2x - 1的图像是一条______直线。
13. 在△ABC中,若∠A = 60°,∠B = 75°,则∠C的度数为______。
数学中考试题(含答案)

中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分1.(3分)32可表示为()A.3×2B.2×2×2C.3×3D.3+32.(3分)如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.3.(3分)选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式4.(3分)如图,菱形ABCD的周长是4cm,∠ABC=60°,那么这个菱形的对角线AC的长是()A.1cm B.2 cm C.3cm D.4cm5.(3分)如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.B.C.D.6.(3分)如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是()A.30°B.45°C.60°D.90°7.(3分)如图,下面是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是()A.甲比乙大B.甲比乙小C.甲和乙一样大D.甲和乙无法比较8.(3分)数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3B.4.5C.6D.189.(3分)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B 和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2B.3C.D.10.(3分)在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线y=x+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2B.a<C.1≤a<或a≤﹣2D.﹣2≤a<二、填空题:每小题4分,共20分。
中考数学选择题精选100题(含答案)

中考数学选择题精选100题(含答案)2、在8,3-2,3-64,3.14,-π。
xxxxxxxx12…中,无理数有(b)4个。
3、算式2+2+2+2可化为(c)8.4、我国国民生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为(b)1.169×10^14.5、不等式2(x-2)≤x-2的非负整数解的个数为(a)1个。
6、不等式组{2x>-3,x-1≤8-2x}的最小整数解是(c)2.7、若天津到上海的路程为1326千米,提速前火车的平均速度为x千米/小时,提速后火车的平均速度为y千米/时,则x、y应满足的关系式是(b)y-x=7.42.8、一个自然数的算术平方根为a,则与它相邻的下一个自然数的算术平方根为(b)a+1.9、设A,B都是关于x的5次多项式,则下列说法正确的是(a)A+B是关于x的5次多项式。
10、实数a,b在数轴对应的点A、B表示如图,化简a|AB|-4a+4+|a-b|的结果为(c)2+b-2a。
11、某商品降价20%后出售,一段时间后恢复原价,则应在售价的基础上提高的百分数是(d)35%。
12、某种出租车的收费标准是:起步价7元,超过3km 以后,每增加1km加收2.4元。
某人乘坐这种车从甲地到乙地共支付车费19元,那么他行程的最大值是多少?答案:C、7km。
13、一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车。
轿车从开始追及到超越卡车,需要花费的时间约为多少秒?答案:B、4.32秒。
14、如果关于x的一元二次方程kx²-6x+9有两个不相等的实数根,那么k的取值范围是什么?答案:C、k<1且k≠0.15、若a²+ma+18在整数范围内可分解为两个一次因式的乘积,则整数m不可能是多少?答案:D、±19.16、在实数范围内把2x²-4x-8分解因式为什么?答案:C、2(x-1+5)(x-1-5)。
中考数学选择题精选100题(含答案)

72、如图:矩形花园ABCD 中,a AB =,b AD =,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。
若c RS LM ==,则花园中可绿化部分的面积为( )A 、2b ac ab bc ++- B 、ac bc ab a -++2C 、2c ac bc ab +-- D 、ab a bc b -+-2273、如图,某渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行半小时到B 处,在B 处看见灯塔M 在北偏东15°方向,此时灯塔M 与渔船的距离是( ) A 、27海里 B 、214海里 C 、7海里 D 、14海里 74、已知α为锐角,tan (90-α)=3,则α的度数为( )A 、30B 、45C 、60D 、7575、如图,割线PAB 交⊙O 于A 、B 两点,且PA :AB=2:1,PO 交⊙O 于C ,PC=3,OC=2,则PA 的长为( )A 、23B 、14C 、26D 、1076、右图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为已方一枚棋子,欲将棋子A 跳进对方区域(阴影部分的格点),则跳行的最少步数为( )A 、2步B 、3步C 、4步D 、5步77.两圆的半径长分别是R 和r (R >r ),圆心距为d ,若关于x 的方程0)(222=-+-d R rx x 有相等的两实数根,则两圆的位置关系是( )A 、一定相切B 、一定外切C 、相交D 、内切或外切 78、用一种如下形状的地砖,不能把地面铺成既无缝隙又不重叠的是( ) A 、正三角形 B 、正方形 C 、长方形 D 、正五边形 79、如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠P=50, 那么∠ACB 等于( ) A 、40 B 、50 C 、65 D 、130AC O B A2aCbB80、如图,PA 切⊙O 于点A ,割线PBC 经过O 点,连结AC 、AB ,则tanC 等于( )DQP A BM60° 15° 东 北(1)PA PB (2)PB PA (3)AB AC (4)AB BC(5)PA PCA 、(1)(2)(3)B 、(2)(3)(4)C 、(3)(4)(5)D 、(2)(3)(5)81、如图,在∆ABC 中,∠=︒==A AC a BC b 302,,,以直线AB 为轴,将∆ABC 旋转一周得到一个几何体,这个几何体的表面积是( )A 、πa a b ()+12B 、22πa a b ()+C 、πa a b ()2+D 、πa a b ()3+82、观察下列数表:1 2 3 4 … 第一行 2 3 4 5 … 第二行 3 4 5 6 … 第三行 4 5 6 7 … 第四行根据数表所反映的规律,第n 行第n 列交叉点上的数应为( ) A、12-n B、12+n C、12-n D、2n83、下面四个图形均由六个相同的小正方形组成,其中是正方体表面展开图的是( )A 、B 、C 、D 、84、⊙O 1,⊙O 2半径r r 12,恰为一元二次方程x x 28120-+=的两根,圆心距d =4,则两圆的公切线条数为( )若改成直径,则两圆的公切线条数为( ) A 、4 B 、3 C 、2 D 、185、如图,∆ABC 中,D 为BC 边上一点,且BD :DC=1:2,E 为AD 中点,则S S ABE ABF ∆∆:=( )A 、2:1B 、1:2C 、 1:3D 、2:386、如图,∆ABC 中,CD AB BE AC DE BC ⊥⊥=,,25,则sin A 的值为( ) A .25B .215C .212D .3587、如图,把矩形ABCD 对折,折痕为MN (图甲),再把B 点叠在折痕MN 上的B '处。
九年级数学选择题(难)100道附解析

41.如图,已知点A1,A2,…,A2011在函数 位于第二象限的图象上,点B1,B2,…,B2011在函数 位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形 、 ,…, 都是正方形,则正方形 的边长为
A. 2010B. 2011 C. 2010 D. 2011
A.2 B.4 C.8 D.16
33.如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1单位长度分别沿B-A-D-C和B-C-D方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平房单位),S与t的函数图象如图2所示,则下列结论错误的是()
A.当t=4秒时,S=4
24.如图,反比例函数 (x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()
A.1 B.2 C.3 D.4
25.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AE⊥DP,垂足为E,设DP= ,AE= ,则能反映 与 之间函数关系的大致图象是()
A. B. C. D.
15.如图,已知菱形ABCD的边长为2㎝, ,点M从点A出发,以1㎝/s的速度向点B运动,点N从点A同时出发,以2㎝/s的速度经过点D向点C运动,当其中一个动点到达端点时,另一个动点也随之停止运动.则△AMN的面积 (㎝2)与点M运动的时间 (s)的函数的图像大致是()
16.已知反比例函数的图象过点M(-1,2),则此反比例函数的表达式为
A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2
23.已知在每个分支上y随x的增大而增大;
③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;
中考数学题库(含答案和解析)

中考数学题库(含答案和解析)一、选择题(共10小题.每小题3分.共30分)1.(3分)﹣3的倒数是()A.﹣3B.3C.D.﹣2.(3分)计算2x(3x2+1).正确的结果是()A.5x3+2x B.6x3+1C.6x3+2x D.6x2+2x 3.(3分)二次根式中字母x的取值范围是()A.x<1B.x≤1C.x>1D.x≥1 4.(3分)如图.已知AB是△ABC外接圆的直径.∠A=35°.则∠B的度数是()A.35°B.45°C.55°D.65°5.(3分)数据﹣2.﹣1.0.1.2的方差是()A.0B.C.2D.46.(3分)如图.已知Rt△ABC中.∠C=90°.AC=4.tan A=.则BC的长是()A.2B.8C.2D.47.(3分)已知一个布袋里装有2个红球.3个白球和a个黄球.这些球除颜色外其余都相同.若从该布袋里任意摸出1个球.是红球的概率为.则a等于()A.1B.2C.3D.48.(3分)如图.已知在Rt△ABC中.∠ABC=90°.点D是BC边的中点.分别以B、C为圆心.大于线段BC长度一半的长为半径画弧.两弧在直线BC上方的交点为P.直线PD交AC于点E.连接BE.则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED =AB中.一定正确的是()A.①②③B.①②④C.①③④D.②③④9.(3分)如图.已知正方形ABCD.点E是边AB的中点.点O是线段AE上的一个动点(不与A、E重合).以O为圆心.OB为半径的圆与边AD相交于点M.过点M作⊙O的切线交DC于点N.连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3.则下列结论不一定成立的是()A.S1>S2+S3B.△AOM∽△DMN C.∠MBN=45°D.MN=AM+CN10.(3分)在连接A地与B地的线段上有四个不同的点D、G、K、Q.下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向).则路程最长的行进路线图是()A.B.C.D.二、填空题(共6小题.每小题4分.共24分)11.(4分)方程2x﹣1=0的解是x=.12.(4分)如图.由四个小正方体组成的几何体中.若每个小正方体的棱长都是1.则该几何体俯视图的面积是.13.(4分)计算:50°﹣15°30′=.14.(4分)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况.记该月A市和B市日平均气温是8℃的天数分别为a天和b天.则a+b=.15.(4分)如图.已知在Rt△OAC中.O为坐标原点.直角顶点C在x 轴的正半轴上.反比例函数y=(k≠0)在第一象限的图象经过OA的中点B.交AC于点D.连接OD.若△OCD∽△ACO.则直线OA的解析式为.16.(4分)已知当x1=a.x2=b.x3=c时.二次函数y=x2+mx对应的函数值分别为y1.y2.y3.若正整数a.b.c恰好是一个三角形的三边长.且当a<b<c时.都有y1<y2<y3.则实数m的取值范围是.三、解答题(共8小题.共66分)17.(6分)计算:(3+a)(3﹣a)+a2.18.(6分)解方程组.19.(6分)已知在以点O为圆心的两个同心圆中.大圆的弦AB交小圆于点C.D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10.小圆的半径r=8.且圆O到直线AB的距离为6.求AC的长.20.(8分)如图.已知在平面直角坐标系xOy中.O是坐标原点.点A(2.5)在反比例函数y=的图象上.过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.21.(8分)已知2014年3月份在某医院出生的20名新生婴儿的体重如下(单位:kg)4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.0 4.53.64.8 4.3 3.6 3.4 3.5 3.6 3.5 3.7 3.7(1)求这组数据的极差;(2)若以0.4kg为组距.对这组数据进行分组.制作了如下的“某医院2014年3月份20名新生婴儿体重的频数分布表”(部分空格未填).请在频数分布表的空格中填写相关的量某医院2014年3月份20名新生儿体重的频数分布表组别(kg)划记频数略略3.55﹣3.95正一6略略略合计20(3)经检测.这20名婴儿的血型的扇形统计图如图所示(不完整).求:①这20名婴儿中是A型血的人数;②表示O型血的扇形的圆心角度数.22.(10分)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时.求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元.求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略.鼓励企业节约用水.该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费.规定:若企业月用水量x超过80吨.则除按2013年收费标准收取水费外.超过80吨部分每吨另加收元.若某企业2014年3月份的水费和污水处理费共600元.求这个企业该月的用水量.23.(10分)如图.已知在平面直角坐标系xOy中.O是坐标原点.抛物线y=﹣x2+bx+c(c>0)的顶点为D.与y轴的交点为C.过点C作CA∥x轴交抛物线于点A.在AC延长线上取点B.使BC=AC.连接OA.OB.BD和AD.(1)若点A的坐标是(﹣4.4).①求b.c的值;②试判断四边形AOBD的形状.并说明理由;(2)是否存在这样的点A.使得四边形AOBD是矩形?若存在.请直接写出一个符合条件的点A的坐标;若不存在.请说明理由.24.(12分)已知在平面直角坐标系xOy中.O是坐标原点.以P(1.1)为圆心的⊙P与x轴.y轴分别相切于点M和点N.点F从点M出发.沿x轴正方向以每秒1个单位长度的速度运动.连接PF.过点P作PE⊥PF交y轴于点E.设点F运动的时间是t秒(t>0).(1)若点E在y轴的负半轴上(如图所示).求证:PE=PF;(2)在点F运动过程中.设OE=a.OF=b.试用含a的代数式表示b;(3)作点F关于点M的对称点F′.经过M、E和F′三点的抛物线的对称轴交x轴于点Q.连接QE.在点F运动过程中.是否存在某一时刻.使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在.请直接写出t的值;若不存在.请说明理由.参考答案与试题解析一、选择题(共10小题.每小题3分.共30分)1.【分析】根据乘积为的1两个数互为倒数.可得到一个数的倒数.【解答】解:﹣3的倒数是﹣.故选:D.【点评】本题考查了倒数.分子分母交换位置是求一个数的倒数的关键.2.【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:原式=6x3+2x.故选:C.【点评】此题考查了单项式乘多项式.熟练掌握运算法则是解本题的关键.3.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得.x﹣1≥0.解得x≥1.故选:D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.4.【分析】由AB是△ABC外接圆的直径.根据直径所对的圆周角是直角.可求得∠ACB=90°.又由∠A=35°.即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径.∴∠C=90°.∵∠A=35°.∴∠B=90°﹣∠A=55°.故选:C.【点评】此题考查了圆周角定理.此题比较简单.注意掌握数形结合思想的应用.5.【分析】先求出这组数据的平均数.再根据方差的公式进行计算即可.【解答】解:∵数据﹣2.﹣1.0.1.2的平均数是:(﹣2﹣1+0+1+2)÷5=0.∴数据﹣2.﹣1.0.1.2的方差是:×[(﹣2)2+(﹣1)2+02+12+22]=2.故选:C.【点评】本题考查了方差:一般地设n个数据x1.x2.….x n的平均数为.则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].它反映了一组数据的波动大小.方差越大.波动性越大.反之也成立.6.【分析】根据锐角三角函数定义得出tan A=.代入求出即可.【解答】解:∵tan A==.AC=4.∴BC=2.故选:A.【点评】本题考查了锐角三角函数定义的应用.注意:在Rt△ACB 中.∠C=90°.sin A=.cos A=.tan A=.7.【分析】首先根据题意得:=.解此分式方程即可求得答案.【解答】解:根据题意得:=.解得:a=1.经检验.a=1是原分式方程的解.∴a=1.故选:A.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.8.【分析】根据作图过程得到PB=PC.然后利用D为BC的中点.得到PD垂直平分BC.从而利用垂直平分线的性质对各选项进行判断即可.【解答】解:根据作图过程可知:PB=CP.∵D为BC的中点.∴PD垂直平分BC.∴①ED⊥BC正确;∵∠ABC=90°.∴PD∥AB.∴E为AC的中点.∴EC=EA.∵EB=EC.∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.故正确的有①②④.故选:B.【点评】本题考查了基本作图的知识.解题的关键是了解如何作已知线段的垂直平分线.难度中等.9.【分析】(1)如图作MP∥AO交ON于点P.当AM=MD时.求得S1=S2+S3.(2)利用MN是⊙O的切线.四边形ABCD为正方形.求得△AOM ∽△DMN.(3)作BP⊥MN于点P.利用Rt△MAB≌Rt△MPB和Rt△BPN≌Rt△BCN来证明C.D成立.【解答】解:(1)如图.作MP∥AO交ON于点P.∵点O是线段AE上的一个动点.当AM=MD时.S梯形ONDA=(OA+DN)•ADS△MNO=S△MOP+S△MPN=MP•AM+MP•MD=MP•AD.∵(OA+DN)=MP.∴S△MNO=S梯形ONDA.∴S1=S2+S3.∴不一定有S1>S2+S3.(2)∵MN是⊙O的切线.∴OM⊥MN.又∵四边形ABCD为正方形.∴∠A=∠D=90°.∠AMO+∠DMN=90°.∠AMO+∠AOM=90°.∴∠AOM=∠DMN.在△AMO和△DMN中..∴△AOM∽△DMN.故B成立;(3)如图.作BP⊥MN于点P.∵MN.BC是⊙O的切线.∴∠PMB=∠MOB.∠CBM=∠MOB.∵AD∥BC.∴∠CBM=∠AMB.∴∠AMB=∠PMB.在Rt△MAB和Rt△MPB中.∴Rt△MAB≌Rt△MPB(AAS)∴AM=MP.∠ABM=∠MBP.BP=AB=BC.在Rt△BPN和Rt△BCN中.∴Rt△BPN≌Rt△BCN(HL)∴PN=CN.∠PBN=∠CBN.∴∠MBN=∠MBP+∠PBN.MN=MP+PN=AM+CN.故C.D成立.综上所述.A不一定成立.故选:A.【点评】本题主要考查了圆的切线及全等三角形的判定和性质.关键是作出辅助线利用三角形全等证明.10.【分析】分别构造出平行四边形和三角形.根据平行四边形的性质和全等三角形的性质进行比较.即可判断.【解答】解:如图A中、延长AC、BE交于S.∵∠CAB=∠EDB=45°.∴AS∥ED.则SC∥DE.同理SE∥CD.∴四边形SCDE是平行四边形.∴SE=CD.DE=CS.即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;如图B中、延长AF、BH交于S.作EG∥AS交BS于E.显然AF+FG+GH+HB<SA+SB.如图C中、延长AI到S.使得∠SBA=70°.SB交KM于T.显然AI+IK+KM+BM>SA+SB.如图D中、显然AN+NQ+QP+PB>SA+SB.如图D中.延长AN交BP的延长线于T.作∠RQB=45°.显然:AN+NQ+QP+PB>AN+NQ+QR=RB.即AN+NQ+PQ+PB>AI+IK+KM+MB.综上所述.D选项的所走的线路最长.故选:D.【点评】本题考查了平行线的判定.平行四边形的性质和判定的应用.注意:两组对边分别平行的四边形是平行四边形.平行四边形的对边相等.二、填空题(共6小题.每小题4分.共24分)11.【分析】此题可有两种方法:(1)观察法:根据方程解的定义.当x=时.方程左右两边相等;(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.【解答】解:移项得:2x=1.系数化为1得:x=.故答案为:.【点评】此题虽很容易.但也要注意方程解的表示方法:填空时应填若横线外没有“x=”.应注意要填x=.不能直接填.12.【分析】根据从上面看得到的图形是俯视图.可得俯视图.根据矩形的面积公式.可得答案.【解答】解:从上面看三个正方形组成的矩形.矩形的面积为1×3=3.故答案为:3.【点评】本题考查了简单组合体的三视图.先确定俯视图.再求面积.13.【分析】根据度化成分乘以60.可得度分的表示方法.根据同单位的相减.可得答案.【解答】解:原式=49°60′﹣15°30′=34°30′.故答案为:34°30′.【点评】此类题是进行度、分、秒的加法计算.相对比较简单.注意以60为进制即可.14.【分析】根据折线图即可求得a、b的值.从而求得代数式的值.【解答】解:根据图表可得:a=10.b=2.则a+b=10+2=12.故答案为:12.【点评】本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时.必须认真观察、分析、研究统计图.才能作出正确的判断和解决问题.15.【分析】设OC=a.根据点D在反比例函数图象上表示出CD.再根据相似三角形对应边成比例列式求出AC.然后根据中点的定义表示出点B的坐标.再根据点B在反比例函数图象上表示出a、k的关系.然后用a表示出点B的坐标.再利用待定系数法求一次函数解析式解答.【解答】解:设OC=a.∵点D在y=上.∴CD=.∵△OCD∽△ACO.∴=.∴AC==.∴点A(a.).∵点B是OA的中点.∴点B的坐标为(.).∵点B在反比例函数图象上.∴=.∴=2k2.∴a4=4k2.解得.a2=2k.∴点B的坐标为(.a).设直线OA的解析式为y=mx.则m•=a.解得m=2.所以.直线OA的解析式为y=2x.故答案为:y=2x.【点评】本题考查了相似三角形的性质.反比例函数图象上点的坐标特征.用OC的长度表示出点B的坐标是解题的关键.也是本题的难点.16.【分析】根据三角形的任意两边之和大于第三边判断出a最小为2.再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2.即小于2.5.然后列出不等式求解即可.【解答】方法一:解:∵正整数a.b.c恰好是一个三角形的三边长.且a<b<c.∴a最小是2.∵y1<y2<y3.∴﹣<2.5.解得m>﹣2.5.方法二:解:当a<b<c时.都有y1<y2<y3.即.∴.∴.∵a.b.c恰好是一个三角形的三边长.a<b<c.∴a+b<b+c.∴m>﹣(a+b).∵a.b.c为正整数.∴a.b.c的最小值分别为2、3、4.∴m>﹣(a+b)≥﹣(2+3)=﹣.∴m>﹣.故答案为:m>﹣.【点评】本题考查了二次函数图象上点的坐标特征.三角形的三边关系.判断出a最小可以取2以及对称轴的位置是解题的关键.三、解答题(共8小题.共66分)17.【分析】原式第一项利用平方差公式计算.合并即可得到结果.【解答】解:原式=9﹣a2+a2=9.【点评】此题考查了整式的混合运算.熟练掌握运算法则是解本题的关键.18.【分析】方程组利用加减消元法求出解即可.【解答】解:.①+②得:5x=10.即x=2.将x=2代入①得:y=1.则方程组的解为.【点评】此题考查了解二元一次方程组.利用了消元的思想.消元的方法有:加减消元法与代入消元法.19.【分析】(1)过O作OE⊥AB.根据垂径定理得到AE=BE.CE=DE.从而得到AC=BD;(2)由(1)可知.OE⊥AB且OE⊥CD.连接OC.OA.再根据勾股定理求出CE及AE的长.根据AC=AE﹣CE即可得出结论.【解答】(1)证明:过O作OE⊥AB于点E.则CE=DE.AE=BE.∴BE﹣DE=AE﹣CE.即AC=BD;(2)解:由(1)可知.OE⊥AB且OE⊥CD.连接OC.OA.∴OE=6.∴CE===2.AE===8.∴AC=AE﹣CE=8﹣2.【点评】本题考查的是垂径定理.根据题意作出辅助线.构造出直角三角形是解答此题的关键.20.【分析】(1)根据待定系数法.可得答案;(2)根据三角形的面积公式.可得答案.【解答】解:(1)把A(2.5)分别代入y=和y=x+b.得.解得k=10.b=3;(2)作AC⊥x轴于点C.由(1)得直线AB的解析式为y=x+3.∴点B的坐标为(﹣3.0).∴OB=3.∵点A的坐标是(2.5).∴AC=5.∴=5=.【点评】本题考查了反比例函数与一次函数的交点问题.利用了待定系数法.三角形的面积公式.21.【分析】(1)根据求极差的方法用这组数据的最大值减去最小值即可;(2)根据所给出的数据和以0.4kg为组距.分别进行分组.再找出各组的数即可;(3)①用总人数乘以A型血的人数所占的百分比即可;②用360°减去A型、B型和AB型的圆心角的度数即可求出O型血的扇形的圆心角度数.【解答】解:(1)这组数据的极差是4.8﹣2.8=2(kg);(2)根据所给出的数据填表如下:某医院2014年3月份20名新生儿体重的频数分布表组别(kg)划记频数2.75﹣3.15略23.15﹣3.55略73.55﹣3.95正一63.95﹣4.35略24.35﹣4.75略24.75﹣5.15略1合计20(3)①A型血的人数是:20×45%=9(人);②表示O型血的扇形的圆心角度数是360°﹣(45%+30%)×360°﹣36°=360°﹣270°﹣36°=54°.【点评】此题考查了频数(率)分布表、扇形统计图以及极差的求法.读图时要全面细致.同时.解题方法要灵活多样.切忌死记硬背.要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.22.【分析】(1)设y关于x的函数关系式y=kx+b.代入(50.200)、(60.260)两点求得解析式即可;(2)把y=620代入(1)求得答案即可;(3)利用水费+污水处理费=600元.列出方程解决问题.【解答】解:(1)设y关于x的函数关系式y=kx+b.∵直线y=kx+b经过点(50.200).(60.260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知.当y=620时.x>50.∴6x﹣100=620.解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600.化简得x2+40x﹣14000=0解得:x1=100.x2=﹣140(不合题意.舍去).答:这个企业2014年3月份的用水量是100吨.【点评】此题考查一次函数的运用.一元二次方程和一元一次方程的运用.注意理解题意.结合图象.根据实际选择合理的方法解答.23.【分析】(1)①将抛物线上的点的坐标代入抛物线即可求出b、c 的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=.再根据勾股定理可得OC=BC.AC=OC.可求得横坐标为﹣c.纵坐标为c.【解答】解:(1)①∵AC∥x轴.A点坐标为(﹣4.4).∴点C的坐标是(0.4)把A、C两点的坐标代入y=﹣x2+bx+c得..解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4.∵y=﹣(x+2)2+8.∴顶点D的坐标为(﹣2.8).过D点作DE⊥AB于点E.则DE=OC=4.AE=2.∵AC=4.∴BC=AC=2.∴AE=BC.∵AC∥x轴.∴∠AED=∠BCO=90°.∴△AED≌△BCO.∴AD=BO.∠DAE=∠OBC.∴AD∥BO.∴四边形AOBD是平行四边形.(2)存在.点A的坐标可以是(﹣2.2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°.∵∠ABO=∠OBC.∴△ABO∽△OBC.∴=.又∵AB=AC+BC=3BC.∴OB=BC.∴在Rt△OBC中.根据勾股定理可得:OC=BC.AC=OC.∵C点是抛物线与y轴交点.∴OC=c.∴A点坐标为(﹣c.c).∴顶点横坐标=﹣c.b=﹣c.顶点D纵坐标是点A纵坐标的2倍.为2c.顶点D的坐标为(﹣c.2c)∵将D点代入可得2c=﹣(﹣c)2+c•c+c.解得:c=2或者0.当c为0时四边形AOBD不是矩形.舍去.故c=2;∴A点坐标为(﹣2.2).【点评】本题主要考查了二次函数对称轴顶点坐标的公式.以及函数与坐标轴交点坐标的求解方法.24.【分析】(1)连接PM.PN.运用△PMF≌△PNE证明;(2)分两种情况:①当t>1时.点E在y轴的负半轴上;②当0<t≤1时.点E在y轴的正半轴或原点上.再根据(1)求解.(3)分两种情况.当1<t<2时.当t>2时.三角形相似时还各有两种情况.根据比例式求出时间t.【解答】证明:(1)如图.连接PM.PN.∵⊙P与x轴.y轴分别相切于点M和点N.∴PM⊥MF.PN⊥ON且PM=PN.∴∠PMF=∠PNE=90°且∠NPM=90°.∵PE⊥PF.∠NPE=∠MPF=90°﹣∠MPE.在△PMF和△PNE中..∴△PMF≌△PNE(ASA).∴PE=PF;(2)解:分两种情况:①当t>1时.点E在y轴的负半轴上.如图1.由(1)得△PMF≌△PNE.∴NE=MF=t.PM=PN=1.∴b=OF=OM+MF=1+t.a=NE﹣ON=t﹣1.∴b﹣a=1+t﹣(t﹣1)=2.∴b=2+a.②0<t≤1时.如图2.点E在y轴的正半轴或原点上.同理可证△PMF≌△PNE.∴b=OF=OM+MF=1+t.a=OE=ON﹣NE=1﹣t.∴b+a=1+t+1﹣t=2.∴b=2﹣a.综上所述.当t>1时.b=2+a;当0<t≤1时.b=2﹣a;(3)存在;①如图3.当0<t<1时.∵F(1+t.0).F和F′关于点M对称.M的坐标为(1.0).∴F′(1﹣t.0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q.∴Q(1﹣t.0)∴OQ=1﹣t.由(1)得△PMF≌△PNE∴NE=MF=t.∴OE=1﹣t.当△OEQ∽△MPF∴=∴=.此时无解.当△OEQ∽△MFP时.∴=.=.解得.t=2﹣或t=2+(舍去);②如图4.当1<t<2时.∵F(1+t.0).F和F′关于点M对称.M的坐标为(1.0).∴F′(1﹣t.0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q.∴Q(1﹣t.0)∴OQ=1﹣t.由(1)得△PMF≌△PNE∴NE=MF=t.∴OE=t﹣1当△OEQ∽△MPF∴=∴=.解得.t=.当△OEQ∽△MFP时.∴=.=.解得.t=.③如图5.当t>2时.∵F(1+t.0).F和F′关于点M对称.∴F′(1﹣t.0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q.∴Q(1﹣t.0)∴OQ=t﹣1.由(1)得△PMF≌△PNE∴NE=MF=t.∴OE=t﹣1当△OEQ∽△MPF∴=∴=.无解.当△OEQ∽△MFP时.∴=.=.解得.t=2+.t=2﹣(舍去)所以当t=2﹣或或或t=2+时.使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.【点评】本题主要考查了圆的综合题.解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BCACCACCAB 中考数学试题之选择题100题1、在实数123.0,330tan ,60cos ,722,2121121112.0,,14.3,64,3,80032---- π中,无理数有( b ) A 、3个 B 、4个 C 、5个 D 、6个 2、下列运算正确的是( )A 、x 2 x 3 =x 6B 、x 2+x 2=2x 4C 、(-2x)2 =4x 2D 、(-2x)2 (-3x )3=6x 53、算式22222222+++可化为() A 、42 B 、28 C 、82 D 、1624、“世界银行全球扶贫大会”于2004年5月26日在开幕.从会上获知,我国国民生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为( ) A 、11.69×1410B 、1410169.1⨯C 、1310169.1⨯D 、14101169.0⨯5、不等式2)2(2-≤-x x 的非负整数解的个数为() A 、1B 、2C 、3D 、46、不等式组⎩⎨⎧-≤-->x x x 28132的最小整数解是()A 、-1B 、0C 、2D 、37、为适应国民经济持续协调的发展,自2004年4月18日起,全国铁路第五次提速,提速后,火车由XX 到的时间缩短了7.42小时,若XX 到的路程为1326千米,提速前火车的平均速度为x 千米/小时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关系式是( ) A 、x – y = 42.71326 B 、y – x = 42.71326C 、y x 13261326-= 7.42 D 、xy 13261326-= 7.42 8、一个自然数的算术平方根为a ,则与它相邻的下一个自然数的算术平方根为( ) A 、1+a B 、1+a C 、12+a D 、1+a9、设B A ,都是关于x 的5次多项式,则下列说确的是( )A 、B A +是关于x 的5次多项式 B 、 B A -是关于x 的4次多项式C 、 AB 是关于x 的10次多项式D 、BA是与x 无关的常数 10、实数a,b 在数轴对应的点A 、B 表示如图,化简aa ab 244-++-||的结果为( )A 、22a b --B 、22+-b aC 、2-bD 、2+b11、某商品降价20%后出售,一段时间后恢复原价,则应在售价的基础上提高的百分数是 ( ) A 、20% B 、25% C 、30% D 、35%12、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加,加收2.4元(不足1km 按1km 计),某人乘这种车从甲地到乙地共支付车费19元,那么,他行程的最大值是( ) A 、11 km B 、8 km C 、7 km D 、5km13、在高速公路上,一辆长4米,速度为110千米/小时的轿车准备超越一辆长12米,速度为100千米/小时的卡车,则轿车从开始追及到超越卡车,需要花费的时间约是( )A BA 、1.6秒B 、4.32秒C 、5.76秒D 、345.6秒14、如果关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,那么k 的取值围是( )A 、1<kB 、0≠kC 、1<k 且0≠kD 、1>k15、若a 2+ma +18在整数围可分解为两个一次因式的乘积,则整数m 不可能是( ) A 、±9 B 、±11 C 、±12 D 、±19 16、在实数围把8422--x x 分解因式为( )A 、)1)(3(2+-x xB 、)51)(51(--+-x xC 、)51)(51(2--+-x xD 、)51)(51(2++-+x x17、用换元法解方程xx x x +=++2221时,若设x 2+x=y, 则原方程可化为( ) A 、y 2+y+2=0 B 、y 2-y -2=0 C 、y 2-y+2=0 D 、y 2+y -2=018、某商品经过两次降价,由每件100元降至81元,则平均每次降价的百分率为( ) A 、8.5% B 、9% C 、9.5% D 、10%19、一列火车因事在途中耽误了5分钟,恢复行驶后速度增加5千米/时,这样行了30千米就将耽误的时间补了回来,若设原来的速度为x 千米/时,则所列方程为( )A 、30305560x x --=B 、30530560x x +-=C 、30305560x x -+=D 、303055x x -+=20、已知关于x 的方程02=+-m mx x 的两根的平方和是3,则m 的值是( ) A 、1- B 、1 C 、3 D 、1-或321、如果关于x 的一元二次方程0)1(222=+--m x m x 的两个实数根为βα,,则βα+的取值围是( )A 、1≥+βαB 、1≤+βαC 、21≥+βαD 、21≤+βα 22、已知数轴上的点A 到原点的距离为2,那么在数轴上到A 点的距离是3的点所表示的数有( ) A 、1个 B 、 2个 C 、 3个 D 、4个23、已知)0(1,≥+==a a y a x ,则y 和x 的关系是( )A 、x y =B 、1+=x y C 、2x y = D 、)0(12≥+=x x y24、点A (2 ,-1)关于y 轴的对称点B 在()A 、一象限B 、二象限C 、三象限D 、第四象限 25、点P(x+1,x -1)不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 26、已知函数式32+-=x y ,当自变量增加1时,函数值( )A 、增加1B 、减少1C 、增加2D 、减少227、在平面直角坐标系,A、B、C三点的坐标为(0,0) 、(4,0)、(3,2),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在( )A、第一象限 B、第二象限 C、第三象限 D、第四象限28、已知一元二次方程02=++c bx ax 有两个异号根,且负根的绝对值较大,则),(bc ab M 在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 29、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用21,S S 分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是( )30、直线)0(>+=b b kx y 与x 轴交于点)0,4(-,则当0>y 时,x 的取值围是( ) A 、4->x B 、 0>x C 、4-<x D 、0<x31、若点(3,4)是反比例函数xm m y 122-+=的图象上的一点,则函数图象必经过点( )A 、(2,6)B 、)6,2(-C 、)3,4(-D 、)4,3(- 32、如果将一次函数321+=x y 中的常数项改为2,那么它的图象( ) A 、向左平移一个单位 B 、向右平移一个单位 C 、向上平移一个单位 D 、向下平移一个单位 33、已知:k ba cc a b c b a =+=+=+,则k kx y 2+=一定经过( ) A 、第一、二、三象限 B 、第二、三、四象限 C 、第二、三象限 D 、第三、四象限34、对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系,从温度计上可以看出摄氏(℃)温度x 与华氏(℉)温度y 有如下表所示的对应关系,则确定y 与x 之间的函数关系式是( )A 、y =56x B 、y =1.8x +32 C 、y =0.562x +7.4x +32 D 、y =2.1x +26 35、如图,B A ,是函数xy 1=的图象上关于原点O 对称的任意两点,AC 平行于y 轴,BC 平行于x 轴,△ABC 的面积为S ,则( )A 、S =1B 、1< S < 2C 、S = 2D 、S >236、如上图是反比例函数xk y x ky x k y 321,,===在x 轴上方的图象,由此观察得到321,,k k k 的大小关系为( ) A 、321k k k >> B 、 123k k k >> C 、132k k k >> D 、213k k k >>37、针孔成像问题)根据图中尺寸(AB ∥A /B /),那么物像长y (A /B /的长)与x 的函数图象是()38、已知二次函数,2c bx ax y ++=且0,0>+-<c b a a ,则一定有( )A 、042>-ac b B 、042=-ac b C 、042<-ac b D 、042≤-ac b39、已知抛物线m m x m x y (141)1(22--++=为整数)与交于点A ,与y 轴交于点B ,且OB OA =,则m 等于( )A 、52+B 、52-C 、2D 、2-40、下列各图是在同一直角坐标系,二次函数c x c b ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )41、甲、乙两人在同样的条件下比赛射击,每人打5发子弹,命中环数如下:甲:6,8,9,9,8;乙:10,7,7,7,9,则两人射击成绩稳定情况是( )A 、甲比乙稳定B 、乙比甲稳定C 、甲和乙一样稳定D 、无法确定 42、已知样本321,,x x x 的方差是2S ,那么样本3213,3,3x x x 的方差是( ) A 、23S B 、29S C 、2S D 、32+S43、频率分布直方图中每个小长方形的面积表示( )A 、频数B 、频率C 、样本容量D 、组距44、要了解全市初三学生身高在某一数值围的学生所占比例的大小,需知道相应样本的( ) A 、平均数 B 、方差 C 、众数 D 、频率分布45、左下图是初三(2)班同学的一次体检中每分钟心跳次数的频率分布直方图(次数均为整数)。
已知该班只有5位同学的心跳每分钟75次,请观察右上图,指出下列说法中错误的是() A 、数据75落在第2小组B 、第4小组的频率为0.1 C 、心跳为每分钟75次的人数占该班体检人数的121D 、数据75一定是中位数46、甲、乙两人在一次赛跑中,路程s 与时间t 的关系如图1所示(实线为甲的路程与时间的关系图像,虚线为乙的路程与时间的关系图像),小王根据图像得到如下四个信息,其中错误的是( ) A 、这是一次1500米赛跑 B 、甲、乙两人中先到达终点的是乙 C 、甲乙同时起跑 D 、甲在这次赛跑中的速度为5米/秒 47、已知实数x 满足01122=+++x x x x ,那么x x 1+的值为( )A 、1或-2B 、-1或2C 、1D 、-248、如果关于x 的不等式1)1(+>+a x a 的解集为1<x ,那么a 的取值围是( ) A 、0>a B 、0<a C 、1->a D 、1-<a49、若|2|)2(2-=-x x ,则( )A 、2>xB 、2<xC 、2≥xD 、x 是全体实数50、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 部时,则∠A 与 ∠1+∠2之间的关系是( )A 、∠A =∠1+∠2B 、2∠A =∠1+∠2C 、 3∠A =∠1+∠2D 、3∠A =2(∠1+∠2)51、如图,,,30,0AD AE BAD AC AB ==∠=则EDC ∠的度数是( )A 、30°B 、15°C 、22.5°D 、10°52、如图所示,边长为2的正三角形与边长为1的正六边形重叠,且正三角形的中心是正六边形的一个顶点则重叠部分的面积为( ) A 、63 B 、43 C 、33 D 、因缺少数据无法计算 53、一个形如圆锥冰淇淋纸筒,其底面直径为6cm ,母线长为10cm ,围成这样的冰淇淋纸筒所需纸的面积是( ) A 、260cm π B 、230cm π C 、228cm π D 、215cm π54、直角三角形两锐角的角平分线所交成的角的度数( ) A 、45° B 、135° C 、45°或 135° D 、90°55、若等腰三角形的二边长分别为3、4,则等腰三角形的周长为( ) A、10 B、11 C、10或11 D、2456、半径分别为1cm 和5cm 的两圆相交,则圆心距d 的取值围是 ( ). A 、d<6 B 、4<d<6 C 、4≤d<6 D 、1<d<557、如果经过圆锥的轴的剖面是一个边长为4cm 的等边三角形,那么圆锥的表面积是A 、8πcm 2B 、10πcm 2C 、12πcm 2D 、16πcm 258、现有长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成三角形的个数为( ) A 、1 B 、2 C 、3 D 、459、已知在正方形网格中,每个小格都是边长为1的正方形,A、B两点在小正方形的顶点上,位置如图所示,点C也在下正方形的顶点上,且以A、B、C为顶点的三角形的面积为1个平方单位,则C点的个数为( ) A 、3个 B 、4个 C 、5个 D 、6个A DEB C G60、如图,梯形ABCD 中,AD//BC ,AC 为对角线,E 为DC 中点,AE 、BC 的延长线交于G 点,则图中相等的线段共有( ) A .2对B .3对 C .4对 D .5对 61、如图,在ABC ∆中,BD A AC AB ,36,0=∠=平分∠DE ABC ,∥BC ,那么在下列三角形中,与ABC ∆相似的三角形有( )个A 、4B 、3C 、2D 、162、如图,分别以点B A ,为两个顶点作位置不同的等腰直角三角形,共作出( ) A 、2个 B 、4个 C 、6个 D 、8个63、如图,PC BOP AOP ,150=∠=∠∥,,OA PD OA ⊥若,4=PC 则PD 等于( )A 、4B 、3C 、 2D 、164、如图,小芳在达网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网5米的位置上,如果她的击球高度是2.4米,则应站在离网的( )A 、15米处B 、10米处C 、8米处D 、7.5米处 65、ABC ∆中,,13,15==AC AB 高,12=AD 则ABC ∆的周长是( ) A 、42 B 、 32 C 、 42或32 D 、37或33 66、用两个边长为a 的等边三角形纸片拼成的四边形是( )A 、等腰梯形B 、正方形C 、矩形D 、菱形 67、顺次连结下列四边形各边的中点,所得的四边形为矩形的是( )A 、等腰梯形B 、矩形C 、菱形D 、平行四边形 68、n 边形的n 个角与某一外角的总和为1350°,则n 等于( ) A 、6 B 、7 C 、8 D 、969、P 是ABC Rt ∆的斜边BC 上异于C B ,的一点,过点P 作直线截ABC ∆,使截得的三角形与ABC ∆相似,满足这样条件的直线共有( )A 、1条B 、2条C 、3条D 、4条70、下列五种图形:①平行四边形 ②矩形 ③菱形 ④正方形 ⑤等边三角形。