模拟CMOS集成电路设计:震荡器

合集下载

CMOS模拟集成电路设计_ch10稳定性和频率补偿

CMOS模拟集成电路设计_ch10稳定性和频率补偿

– 减小带宽
– 密勒补偿 :需要考虑RHZ
G
18.08.2021
BAv(0)|p1|gCm CI
p2
g mII CL
z
g mII CC
23
编辑课件
二级运放设计实例(optional)
• 约束条件
– 电源电压 – 工艺 – 温度
设计描述
小信号增益
频率响应,增 益带宽积GB
相位裕度PM 输入共模范围
13
编辑课件
• 单级运放的频率补偿(续)
Bode图,β=1
18.08.2021
14
编辑课件
• 单级运放的频率补偿(续)
方法: ▪增加负载电容,即调整主极点 ▪避免镜像极点 ▪第一非主极点,必须离原点尽量远(大于等于GB)
18.08.2021
15
编辑课件
• 单级运放的频率补偿(续)
↑ Rout→AV↑,虽然ωp,out=(RoutCL)-1降低, 由于不影响GX和PX,因此,增大Rout并不能对运放进行补偿
18.08.2021
3
• 增益交点 • 相位交点
编辑课件
在一般反馈电路的处理中,β小于或等于1,且与频率无关;当β<1,幅值 曲线会下移,增益交叉点会向原点方向移动,系统更易稳定。因此,常分 析βH=H (β=1)的相位图和幅值图。
18.08.2021
4
编辑课件
• 波特(Bode)图
1、在每个零点频率处,幅值曲线 的斜率按20dB/dec变化;在每个极 点频率处,其斜率按-20dB/dec变 化。 2、对一个在左半平面的极点(零 点)频率ωm ,相位约在0.1 ωm处开 始下降(上升),在ωm处经历- 45°( +45)的变化,在大约10 ωm处达到-90 °( +90 °)的变 化。右半平面的情况,反之。

CMOS模拟集成电路设计

CMOS模拟集成电路设计

CMOS模拟集成电路设计CMOS模拟集成电路是一种基于互补金属氧化物半导体(CMOS)技术实现的集成电路,主要用于设计和制造各种模拟电路,如运放、滤波器、振荡器、功率放大器等。

本文将介绍CMOS模拟集成电路设计的原理、方法和相关技术。

CMOS模拟集成电路的设计原理是基于CMOS技术中的n型和p型金属氧化物半导体场效应晶体管(NMOS和PMOS)。

这两种晶体管互补工作在导通和截止之间,通过改变栅极电压来控制电流的流动。

此外,CMOS技术还使用了源沟道结构和金属氧化物半导体(MOS)的结构特性,以提供可靠的电流和电压增益。

CMOS模拟集成电路设计的方法涉及到几个关键的步骤。

首先,设计师需要进行电路架构设计,确定电路所需的功能和性能指标。

然后,根据电路的需求,设计师需要选择和设计适当的基本电路单元,如差分放大器、共源共极放大器等。

接下来,设计师需要利用各种仿真工具对电路进行模拟和验证,以确保电路的稳定性和可靠性。

最后,设计师需要进行版图设计和布线,生成最终的集成电路布局。

在CMOS模拟集成电路设计过程中,设计师需要考虑到多种因素。

首先,设计师需要选择适当的工艺和器件参数,以满足电路性能和功率需求。

其次,设计师需要进行功耗和噪声分析,以优化电路的能耗和信号质量。

此外,设计师还需要考虑温度和工作条件下电路的性能稳定性。

CMOS模拟集成电路设计中的一项重要任务是电路的性能评估和优化。

设计师可以使用各种技术和工具来提高电路的性能,如电流镜设计、电源抑制技术、反相器结构优化等。

此外,设计师还可以通过器件和工艺的改进来提高电路的性能。

总结起来,CMOS模拟集成电路设计是一项复杂的任务,需要设计师具备深厚的电路和器件知识,以及熟练的仿真和设计工具的使用。

通过深入理解电路原理和方法,设计师可以设计出高性能和可靠的模拟集成电路。

在未来,随着CMOS技术的不断发展和改进,CMOS模拟集成电路将在各种应用领域发挥越来越重要的作用。

cmos模拟集成电路工程实例设计

cmos模拟集成电路工程实例设计

cmos模拟集成电路工程实例设计标题:CMOS模拟集成电路工程实例设计一、引言CMOS(Complementary Metal-Oxide-Semiconductor)是一种互补型金属氧化物半导体,是目前主流的集成电路技术。

本文将通过一个具体的工程实例来展示如何进行CMOS模拟集成电路的设计。

二、实例选择为了使讨论更具实践性,我们选择了低噪声运算放大器作为我们的设计实例。

运算放大器是最基本也是最重要的模拟电路元件之一,广泛应用于信号处理、电源管理等领域。

三、设计流程1. 确定设计指标:首先,我们需要明确运算放大器的设计指标,包括增益、带宽、输入失调电压等参数。

2. 设计电路架构:根据设计指标,我们可以选择合适的电路架构,例如折叠共源共栅、共源共栅等。

3. 设计版图:在确定电路架构后,我们需要使用EDA工具进行版图设计,以确保电路性能的同时满足工艺限制。

4. 仿真验证:完成版图设计后,我们需要进行电路仿真,以验证电路性能是否满足设计指标。

5. 制造测试:最后,我们需要将设计好的版图发送给晶圆厂进行制造,并对制造出的芯片进行测试,以确认其实际性能。

四、设计细节在这个实例中,我们将采用折叠共源共栅架构。

这种架构具有高增益、低噪声和良好的线性度等优点,非常适合用于低噪声运算放大器的设计。

五、结论通过对低噪声运算放大器的实例设计,我们展示了CMOS模拟集成电路的设计流程和技术要点。

这只是一个基础的示例,实际的设计过程中可能会遇到更多的挑战和复杂的问题。

但只要遵循正确的设计流程,结合理论知识和实践经验,我们就能够成功地设计出高性能的CMOS模拟集成电路。

六、参考文献[1] Gray, P.R., Hurst, P.J., Lewis, S.H., Meyer, R.G. (2001). Analysis and Design of Analog Integrated Circuits. John Wiley & Sons.[2] Razavi, B. (2001). Design of Analog CMOS Integrated Circuits. McGraw-Hill Education.[3] Sedra, A.S., Smith, K.C. (2014). Microelectronic Circuits. Oxford University Press.。

CMOS模拟集成电路设计第二版课程设计 (2)

CMOS模拟集成电路设计第二版课程设计 (2)

CMOS模拟集成电路设计第二版课程设计一、设计目标本次课程设计目标是:通过对CMOS模拟集成电路设计第二版中的一个电路设计实例进行仿真分析、电路优化及布局设计,深入理解和掌握CMOS模拟集成电路的基本原理及设计方法,培养学生分析和设计模拟集成电路的能力。

二、课程设计内容1.复习:基本模拟电路的分析和设计方法在进行CMOS模拟集成电路设计前,学生需要具备基本模拟电路的分析和设计方法。

本节将对常见的放大电路(比如共射放大电路,共基放大电路和共集放大电路等)的分析和设计方法进行复习。

2.CMOS反相器设计实例讲解本部分将讲解CMOS反相器的结构及原理,并通过具体的例子进行电路设计分析和仿真。

帮助学生了解CMOS反相器的设计方法、电路特性及其影响因素。

3.电路优化与参数选择在本部分,我们将重点介绍电路优化及参数选择的方法。

从电路的性能和稳定性等方面进行优化选择,并通过仿真结果来证明优化参数的效果。

4.布局设计与模拟验证本部分将介绍CMOS模拟集成电路的布局设计及模拟验证方法。

布局设计不仅可以影响电路的性能,也会影响电路的稳定性和可靠性。

通过模拟验证对电路进行分析验证。

三、设计评分方案本次课程设计采用滚动评分的方式,共计100分,具体评分如下:1.复习及设立问题:10分2.设计实例介绍及分析:20分3.参数选择及电路优化:30分4.布局设计及模拟验证:40分四、设计要求1.学生需要独立完成所有实验任务,不允许抄袭2.电路模拟软件使用HSPICE或者Spectre等,本节课程以HSPICE为例3.学生需要提交电路仿真截图、仿真结果以及电路设计原理图等作为实验报告。

五、总结通过本次课程设计的学习,学生可以深入了解CMOS模拟集成电路设计的基本原理及设计方法,并且培养分析和设计模拟集成电路的能力,为以后的研究或工作打下更好的基础。

同时,通过本次课程设计,学生能进一步加深对学过的知识的理解,增强把理论知识转化为实际工程应用的能力,提高实际应用能力和工程素质。

CMOS模拟集成电路设计课程设计

CMOS模拟集成电路设计课程设计

CMOS模拟集成电路设计课程设计概述本设计以CMOS工艺为基础,要求完成一个简单的模拟集成电路的设计。

本课程旨在让同学们获得实践经验,强化相关知识的掌握程度,提高实验能力。

本设计的主要内容包括:基本电路设计、实验测试以及技术文献综述。

设计目标设计一个可靠、高性能且低功耗的CMOS模拟电路。

本设计中,将以一款CMOS 芯片为基础,使用新一代技术来实现其设计方案。

该方案应考虑到多个设计要素,如速度、功耗、面积、噪声等等。

设计过程基本电路设计本设计中的基本电路为一个基本差分放大器电路,该电路的特点是它可以将平衡的差分信号转换成单端输出信号。

差分放大器有以下几个优点:•高CMRR值•提高电压增益•减少同相信号噪声此外,差分放大器也具有以下几个劣势:•增加了复杂度•增加了功耗•增加了芯片面积实验测试完成差分放大器电路设计后,应进行实验测试以验证其性能。

在本设计中需要进行以下测试:•静态电流测试•差分输入电压放大测试•CMRR测试•带宽测试技术文献综述在本设计的最后阶段,应完成技术文献综述。

在这一部分,学生需要在IEEE、ACM、IEEEXPLORE等学术平台中寻找与本设计相关的学术论文,并对其内容进行概述、分析和讨论,以进一步理解CMOS模拟集成电路设计的核心原理。

结论本设计可以让学生获得机会与机器设计专业知识方面的知识和技能,同时将其与实际工程实践相结合。

本设计可用于培养学生的分析、协作以及研究技能,以满足我们日益增长的需求。

对于这些方面的学习,不仅可以从学术上获得好处,还可以为实际工程做好准备,开发出更优秀的产品。

CMOS模拟集成电路设计与仿真

CMOS模拟集成电路设计与仿真

CMOS模拟集成电路设计与仿真CMOS(互补金属-氧化物半导体)模拟集成电路设计与仿真在当前半导体行业中具有重要的地位。

CMOS模拟集成电路是指利用CMOS工艺制作的电路,它融合了模拟电路和数字电路的特点,可以实现复杂的模拟信号处理和调制解调等功能。

在本文中,我们将介绍CMOS模拟集成电路的设计流程、仿真方法以及相关应用。

CMOS模拟集成电路设计的流程包括需求分析、电路拓扑设计、器件选型和尺寸确定、偏置电流源设计、电路级仿真与优化等几个步骤。

首先,需求分析是确定电路的性能指标和功能要求,包括增益、带宽、功耗等。

然后,根据需求分析,设计电路的拓扑结构,确定电路中各个电子器件的连接关系和整体布局。

接下来,从器件库中选择合适的器件,并确定器件的尺寸,以满足性能指标。

偏置电流源设计是保证电路工作的稳定性和线性度的关键,其中包括长尾对偏置、电流镜等方式。

最后,进行电路级仿真与优化,通过仿真分析电路的静态和动态性能,并对电路参数进行优化。

CMOS模拟集成电路的仿真方法有很多种,常见的包括电路级仿真和系统级仿真。

电路级仿真主要是使用电路仿真工具(如Cadence、SPICE 等)对电路进行详细的分析和验证,包括直流工作点分析、交流增益分析、噪声分析、失调分析等。

系统级仿真则是利用系统仿真工具(如MATLAB、Simulink等)对整个模拟集成电路进行性能评估和验证,包括输入输出特性、信噪比、动态范围等。

仿真结果可以帮助设计人员理解电路的工作原理、验证电路的性能指标,同时可以指导设计改进和优化。

CMOS模拟集成电路的应用非常广泛,包括通信、媒体、医疗和电力等领域。

以通信领域为例,CMOS模拟集成电路可以用于信号调制和解调、频率合成、射频前端等。

在媒体领域,它可以用于音频放大器、视频处理、图像传感器等。

在医疗领域,CMOS模拟集成电路可以实现心电图放大器、血压测量设备等。

在电力领域,它可以用于电力传输和转换、能量管理等。

两种高频CMOS压控振荡器的设计与研究

两种高频CMOS压控振荡器的设计与研究

两种高频CMOS压控振荡器的设计与研究锁相环在通讯技术中具有重要的地位,在调制、解调、时钟恢复、频率合成中都扮演着不可替代的角色。

可控振荡器是锁相环的核心部分。

最近,鉴于对集成电路低功耗和高集成度的追求,越来越多的研究人员投人到基于CMOS工艺的压控振荡器的设计。

环形压控振荡器因为具有宽的调谐范围和小的芯片面积,在电路的精心设计下也可以具有不错的相位噪声性能,从而在数字通信系统中得到广泛的应用。

而随着CMOS工艺特征尺寸的不断减小,根据CMOS工艺按比例缩小理论,电源电压也要同比例降低。

与采用1.8 V电源电压的0.18 &mu;m CMOS工艺相比,传统全差分延时单元结构的输出信号的摆幅被限制在非常小的区域内,不但降低了输出信号的信噪比(SNR),而且必须经过放大等一系列处理后才能送给下一级电路。

文中分析了影响压控振荡器性能的重要参数,同时设计实现了两种多谐压控振荡器,给出了相应的实验结果。

1 VCO的工作原理与性能指标VCO是一个电压/频率转换电路,在环路中作为被控振荡器,它的输出频率应随控制电压线性地变化。

一个理想的VCO其输出频率和输入频率的关系&omega;out=&omega;0+KVCOVcont (1)式中,&omega;0是控制电压Vcont为零时的振荡器的固定频率,KVCO为VCO的增益或灵敏度(单位为rad/s&middot;V-1)。

由式(1)可以推导出VCO的传输函数由式(2)可以得出,当VCO被放在锁相环中时,其输出经分频器后接到鉴相器的输入,对鉴相器输出起作用的不是其频率,而是相位。

所以在锁相环中VCO通常被看作输入为控制电压,输出为相位的系统。

所以VCO在锁相环系统中就像一个理想的积分器,其传输函数可以表示为在实际应用中,VCO的线性范围有限,超出这个范围之后,环路的参数就会变化较大,不利于环路设计。

通常,评价VCO的好坏主要有以下特征:(1)低抖动或低相位噪声:由于电路结构、电源噪声、地噪声等因素的影响,VCO的输出信号并不是理想的方波或正弦波,其输出信号存在一定的抖动,转换成频域后可看出信号中心频率附近也会有较大的能量分布,即相位噪声。

模拟cmos集成电路设计知识点总结

模拟cmos集成电路设计知识点总结

模拟cmos集成电路设计知识点总结模拟CMOS集成电路设计是一个涉及多个学科领域的复杂课题,包括电子工程、物理、材料科学和计算机科学等。

以下是一些关键知识点和概念的总结:1. 基础知识:半导体物理:理解半导体的基本性质,如本征半导体、n型和p型半导体等。

MOSFET(金属-氧化物-半导体场效应晶体管)工作原理:理解MOSFET的基本构造和如何通过电压控制电流。

2. CMOS工艺:了解基本的CMOS工艺流程,包括晶圆准备、热氧化、扩散、光刻、刻蚀、离子注入和退火等步骤。

理解各种工艺参数对器件性能的影响。

3. CMOS电路设计:了解基本的模拟CMOS电路,如放大器、比较器、振荡器等。

理解如何使用SPICE(Simulation Program with Integrated Circuit Emphasis)进行电路模拟。

4. 噪声:理解电子器件中的噪声来源,如热噪声、散粒噪声和闪烁噪声等。

了解如何减小这些噪声的影响。

5. 功耗:理解CMOS电路中的功耗来源,如静态功耗和动态功耗。

了解降低功耗的方法,如电源管理技术和低功耗设计技术。

6. 性能优化:理解如何优化CMOS电路的性能,如提高速度、减小失真和提高电源效率等。

7. 可靠性问题:了解CMOS电路中的可靠性问题,如闩锁效应和ESD(静电放电)等。

8. 版图设计:了解基本的版图设计规则和技巧,以及如何使用EDA(Electronic Design Automation)工具进行版图设计和验证。

9. 测试与验证:理解如何测试和验证CMOS集成电路的性能。

10. 发展趋势与挑战:随着技术的进步,模拟CMOS集成电路设计面临许多新的挑战和发展趋势,如缩小工艺尺寸、提高集成度、应对低功耗需求等。

持续关注最新的研究和技术进展是非常重要的。

以上是对模拟CMOS集成电路设计的一些关键知识点的总结,具体内容可能因实际应用需求和技术发展而有所变化。

深入学习这一领域需要广泛的知识基础和持续的研究与实践。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H ( j0 ) 1 則電路會在 ω0 振盪。H ( j0 ) 1800
為了在溫度和製程變化下能確保振盪出現,一般來說我 們選擇迴路增益至少為所需值的二或三倍。
類比CMOS積體電路設計 第十四章 振盪器
682
振盪回授系統
振盪回授系統的不同觀點。

類比CMOS積體電路設計 第十四章 振盪器
683
例題 14.1
益可被導出為
A0
1
1
OSC 0
2
那就是說A0=√2。如預期地,此數值比三級環形振盪器還小。
類比CMOS積體電路設計 第十四章 振盪器
695
例題 14.3〈續〉
答: 利用每級 45o 相位偏移,振盪器提供了四個相位及其互補組態。如圖 14.16所示。
類比CMOS積體電路設計 第十四章 振盪器
696
例題 14.4
維持於飽和區時,我們得到 ISSRP≦VTH,也就是在每個汲極之峰對峰振
幅不可超過 VTH。
如何決定最小供應電壓呢?如果 VDD 被降低時,在每個差動對之共 源極節點電壓會下降,如圖14.17(a)之 VP,且最後會驅使繼承電晶體進 入三極管區。因此我們必須計算最差情況之 VP 值,注意 VP 的確隨時間 變化,因為當輸入差變大時,M1 和 M2 所攜帶之電流不同。
答:
如果每級電路增益比 2 大,則振幅會成長直到每個差動對遇到完全的切 換,那就是說直到 ISS 在每半個週期中完全被導入其中一邊。所以在每 個節點之振幅為 ISSR1,從圖14.12之波形來看,我們也觀察到每級電路 都在一部份週期中位於其高增益區中(舉例來說當 |VX-VY| 很小時)。
類比CMOS積體電路設計 第十四章 振盪器
691
環形振盪器
使用CMOS反轉器之環形振盪器。
類比CMOS積體電路設計 第十四章 振盪器
692
環形振盪器
當一個節點由 VDD 初始化時之環形振盪器的波形。
類比CMOS積體電路設計 第十四章 振盪器
693
環形振盪器
(a)五級單端環形振盪器;(b)四級差動環形振盪器。
類比CMOS積體電路設計 第十四章 振盪器
類比CMOS積體電路設計 第十四章 振盪器
679
一般性考慮
回授系統。
Vout (s) H (s)
Vin
1 H (s)
如果放大器本身在高頻時遇到相位偏移使得整體回授變 正時,則會產生振盪現象。
類比CMOS積體電路設計 第十四章 振盪器
680
一般性考慮
振盪系統隨時間的進展。
如果∠H(jω0)=180o
689
三級環形振盪器之極點位置
s1 ( A0 1)0
s2,3
A0
(1 2
j
3)
10
Vout (t)
a exp
A0 2
2
0t
cos
A0 2
3
0t
類比CMOS積體電路設計 第十四章 振盪器
690
例題 14.2
如圖14.12所示為圖14.8之振盪器之差動實現。每級電路之最大電壓振幅 為何?
第十四章 振盪器
類比CMOS積體電路設計
678
簡目
14.1 一般性考慮 14.2 環形振盪器 14.3 LC振盪器
14.3.1 交錯耦合振盪器 14.3.2 Colpitts振盪器 14.3.3 單埠振盪器
14.4 電壓控制振盪器
14.4.1 環形振盪器中的調諧 14.4.2 LC振盪器中的調諧
14.5 VCOs之數學模型
694
例題 14.3
在圖14.15(b)之四級振盪器中,每級組態所需之最小電壓增益為何?此電 路提供了多少的信號相位呢?
答:
使用相似於圖14.8之符號,我們得到:
H
(s)
1
A04
s
0
4
若電路要產生振盪,每級電路必須貢獻一頻率相關相位偏移為
180o/4=45o。此時頻率為 tan-1ωOSC/ω0=45o,因此ωOSC=ω0。最小電壓增
加入一理想反轉組態,在頻率零附近提供負回授且消除 了箝制的的問題。但因為迴路增益在非常高頻時會消失, 我們觀察到電路無法在同樣的頻率下滿足巴克豪森條件, 故無法產生振盪現象。
類比CMOS積體電路設計 第十四章 振盪器
686
三級環形振盪器
三級環形振盪器之波形。
類比CMOS積體電路設計 第十四章 振盪器
687
三級環形振盪器
忽略閘極-汲極重疊電容效應並以 -A0/(1+s/ω0) 來象徵每
個組態之轉移函數,我們得到迴路增益為:
H
(s)
1
A03 s
0
3
振盪發生的頻率被給定為
tan 1 OSC 600 0
OSC
3 0
在 ωOSC 之迴路增益大小等於一
A03
3 1 A0 2
1
OSC 0
2
解釋為何如果一個單一共源極組態位於單增益迴路中無法產生振盪。
答:
從圖14.4中,可看出開路迴路電路僅包含了一個極點,因此提供最大頻 率相關相位偏移為 90o(在無限大頻率時),因為共源極組態顯示了由閘極 至源極之信號反轉所產生之直流相位偏移為 180o,最大整體相位偏移為 270o。因此迴路將無法維持振盪的成長。
類比CMOS積體電路設計 第十四章 振盪器
684
雙極點回授系統
兩個重要的極點會出現在信號路徑上,允許頻率相關相 位偏移趨近於 180o。不幸的是,由於經過每個共源極組
態之信號反轉,此電路在頻率零附近顯示了正回授現象,
所以它僅產生箝制而非振盪現象。
類比CMOS積體電路設計 第十四章 振盪器
685
雙極點回授系統
決定使用電阻性負載之差動對的環形振盪器之最大電壓振幅和最小供應 電壓,如果沒有電晶體必須進入三極管區時。假設每級電路都遇到完全 切換。
答:
類比CMOS積體電路設計 第十四章 振盪器
697
例題 14.4〈續〉
答:
圖14.17顯示了兩個疊加組態。如果每級電路都遇到完全切換時,則每個 汲極電壓如 VX 或 VY,將在 VDD 和 VDD-ISSRP 之間變化。因此,當 M1 完 全開啟時,其閘極和汲極電壓分別等於 VDD 和 VDD-ISSRP。當此電晶體
VX V0 H ( j0 )V0 H ( j0 ) 2V0 H ( j0 ) 3V0
如果 |H(jω0)|>1,上述的和將會發散,而如果 |H(jω0)|<1
時,則
VX
1
V0
H ( j0 )
類比CMOS積體電路設計 第十四章 振盪器
681
巴克豪森條件
如果一負回授電路具有一迴路增益能滿足下列兩個條件:
類比CMOS積體電路設計 第十四章 振盪器
688
三級環形振盪器之線性模型
Vout (s) Vin (s)
(1
A03
s /
0
)3
1
(1
A03
s /0
)3
(1
s
A03
/ 0 )3
A03
1
s
0
3
A03
1
s
0
A0
1
s
0
2
1
s
0
A0
A02
類比CMOS積體電路設計 第十四章 振盪器
相关文档
最新文档