基于单片机的恒温箱控制器的设计
基于单片机的恒温箱控制系统设计

基于单片机的恒温箱控制系统设计一、引言在现代科技的众多应用领域中,恒温控制技术扮演着至关重要的角色。
无论是在医疗、化工、科研还是在食品加工等行业,对环境温度的精确控制都有着严格的要求。
恒温箱作为实现恒温控制的重要设备,其性能的优劣直接影响到相关工作的质量和效率。
基于单片机的恒温箱控制系统凭借其精度高、稳定性好、成本低等优点,得到了广泛的应用。
二、系统总体设计(一)设计目标本恒温箱控制系统的设计目标是能够在设定的温度范围内,精确地控制箱内温度,使其保持恒定。
温度控制精度为±05℃,温度调节范围为 0℃ 100℃。
(二)系统组成该系统主要由温度传感器、单片机、驱动电路、加热制冷装置和显示模块等部分组成。
温度传感器用于实时采集恒温箱内的温度数据,并将其转换为电信号传输给单片机。
单片机作为核心控制单元,对采集到的温度数据进行处理和分析,根据预设的控制算法生成控制信号,通过驱动电路控制加热制冷装置的工作状态,从而实现对箱内温度的调节。
显示模块用于实时显示箱内温度和系统的工作状态。
三、硬件设计(一)单片机选型选择合适的单片机是系统设计的关键。
考虑到系统的性能要求和成本因素,本设计选用了_____型号的单片机。
该单片机具有丰富的片上资源,如 ADC 转换模块、定时器/计数器、通用 I/O 口等,能够满足系统的控制需求。
(二)温度传感器选用_____型号的数字式温度传感器,其具有高精度、低功耗、响应速度快等优点。
传感器通过 I2C 总线与单片机进行通信,将采集到的温度数据传输给单片机。
(三)驱动电路驱动电路用于控制加热制冷装置的工作。
加热装置采用电阻丝加热,制冷装置采用半导体制冷片。
驱动电路采用_____芯片,通过单片机输出的控制信号来控制加热制冷装置的通断,从而实现温度的调节。
(四)显示模块显示模块选用_____型号的液晶显示屏,通过单片机的并行接口与单片机进行连接。
显示屏能够实时显示箱内温度、设定温度以及系统的工作状态等信息。
基于单片机的恒温箱温度控制系统毕业论文带pid控制

第1章绪论1.1研究的目的和意义温度是工业生产中主要被控参数之一,温度控制自然是生产的重要控制过程。
工业生产中温度很难控制,对于要求严格的的场合,温度过高或过低将严重影响工业生产的产质量及生产效率,降低生产效益。
这就需要设计一个良好温度控制器,随时向用户显示温度,而且能够较好控制。
单片机具有和普通计算机类似的强大数据处理能力,结合PID,程序控制可大大提高控制效力,提高生产效益。
本文采用单片机STC89C52设计了温度实时测量及控制系统。
单片机STC89C52能够根据温度传感器DS18B20所采集的温度在LCD1602液晶屏上实时显示,通过PID控制从而把温度控制在设定的范围之内。
通过本次课程实践,我们更加的明确了单片机的广泛用途和使用方法,以及其工作的原理。
1.2国内外发展状况温度控制采用单片机设计的全数字仪表,是常规仪表的升级产品。
温度控制的发展引入单片机之后,有可能降低对某些硬件电路的要求,但这绝不是说可以忽略测试电路本身的重要性,尤其是直接获取被测信号的传感器部分,仍应给予充分的重视,有时提高整台仪器的性能的关键仍然在于测试电路,尤其是传感器的改进。
现在传感器也正在受着微电子技术的影响,不断发展变化。
恒温系统的传递函数事先难以精确获得,因而很难判断哪一种控制方法能够满足系统对控制品质的要求。
但从对控制方法的分析来看,PID控制方法最适合本例采用。
另一方面,由于可以采用单片机实现控制过程,无论采用上述哪一种控制方法都不会增加系统硬件成本,而只需对软件作相应改变即可实现不同的控制方案。
因此本系统可以采用PID的控制方式,以最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。
现在国内外一般采用经典的温度控制系统。
采用模拟温度传感器对加热杯的温度进行采样,通过放大电路变换为 0~5V 的电压信号,经过A/D 转换,保存在采样值单元;利用键盘输入设定温度,经温度标度转换转化成二进制数,保存在片内设定值单元;然后调显示子程序,多次显示设定温度和采样温度,再把采样值与设定值进行 PID 运算得出控制量,用其去调节可控硅触发端的通断,实现对电阻丝加热时间的控制, 以此来调节温度使其基本保持恒定。
基于单片机的恒温箱温度控制系统的设计

基于单片机的恒温箱温度控制系统的设计课程设计题目:单片机恒温箱温度控制系统的设计本课程设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。
设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,能够使温度保持在要求的一个恒定范围内,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。
技术参数和设计任务:1、利用单片机AT89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。
2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。
3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到0.1℃。
4、温度超出预置温度±5℃时发出声音报警。
5、对升、降温过程没有线性要求。
6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。
一、本课程设计系统概述1、系统原理选用AT89C2051单片机为中央处理器,经过温度传感器DS18B20对恒温箱进行温度采集,将采集到的信号传送给单片机,在由单片机对数据进行处理控制显示器,并比较采集温度与设定温度是否一致,然后驱动恒温箱的加热或制冷。
2、系统总结构图总体设计应该是全面考虑系统的总体目标,进行硬件初步选型,然后确定一个系统的草案,同时考虑软硬件实现的可行性。
总体方案经过重复推敲,确定了以美国Atmel公司推出的51系列单片机为温度智能控制系统的核心,并选择低功耗和低成本的存储器、数码显示器等元件,总体方案如下图:图1系统总体框图二、硬件各单元设计1、单片机最小系统电路单片机选用Atmel公司的单片机芯片AT89C2051 ,完全能够满足本系统中要求的采集、控制和数据处理的需要。
基于单片机的恒温箱控制系统设计

基于单片机的恒温箱控制系统设计恒温箱是一种用于保持特定温度的设备,广泛应用于实验室、医疗、食品加工等领域。
为了实现对恒温箱的精确控制,我们可以利用单片机来设计一个智能的恒温箱控制系统。
我们需要选择合适的单片机作为控制核心。
常见的单片机有51系列、AVR系列、STM32系列等,我们可以根据实际需求选择合适的型号。
接下来,我们可以通过编程来实现对恒温箱的控制。
在编程之前,我们需要设计一个合适的硬件电路。
一个基本的恒温箱控制系统包括温度传感器、加热器、风扇、显示屏等组件。
温度传感器用于实时监测箱内温度,加热器和风扇用于调节箱内温度,显示屏用于显示当前温度和设定温度。
在编程方面,我们可以利用单片机的IO口和模拟输入输出功能来实现对各个组件的控制。
首先,我们需要通过温度传感器获取到当前的温度值。
然后,我们可以根据设定的温度范围来判断是否需要调节加热器或风扇。
如果当前温度低于设定温度,则启动加热器;如果当前温度高于设定温度,则启动风扇。
通过不断监测和调节,我们可以实现对恒温箱内温度的精确控制。
除了基本的温度控制功能,我们还可以加入一些其他的功能,以提升系统的智能化程度。
例如,我们可以设置定时开关机功能,实现按照设定的时间自动启动和关闭恒温箱。
我们还可以设计一个温度曲线显示功能,实时显示恒温箱内温度的变化趋势。
此外,我们还可以通过串口通信将实时温度数据传输到计算机上,方便用户进行数据分析和记录。
在系统设计过程中,我们需要考虑到安全性和稳定性。
首先,我们需要加入过温保护功能,当温度超过设定的安全范围时,系统会自动关闭加热器并发出警报。
其次,我们需要合理设计硬件电路,确保电路的稳定性和可靠性。
此外,我们还需要进行充分的测试和调试,确保系统工作正常并能够稳定运行。
基于单片机的恒温箱控制系统设计可以实现对恒温箱内温度的精确控制。
通过合理的硬件设计和编程,我们可以实现恒温箱的智能化控制,提升系统的功能和性能。
这不仅可以满足实验室、医疗、食品加工等领域对恒温箱的需求,还可以为科研人员提供一个稳定、可靠的实验环境。
基于单片机的恒温箱控制系统设计方案

设计一个基于单片机的恒温箱控制系统涉及到硬件设计和软件编程两个方面。
下面是一个简要的设计方案:硬件设计:1. 传感器选择:选择合适的温度传感器,如DS18B20数字温度传感器,用于实时监测箱内温度。
2. 执行器:选择合适的加热器或制冷器作为执行器,用于调节箱内温度。
3. 单片机:选择适合的单片机,如Arduino Uno或STM32等,作为控制核心。
4. 显示器:可以添加LCD显示屏,用于显示当前温度和设定温度。
5. 输入设备:可以添加旋钮或按钮,用于设定目标温度。
软件设计:1. 温度读取:编写程序从温度传感器读取实时温度数据。
2. 控制算法:设计恒温控制算法,比如PID控制算法,根据实际温度和设定温度调节加热器或制冷器。
3. 用户界面:编写程序实现与用户的交互,包括设定目标温度和显示当前温度。
4. 安全保护:添加温度过高或过低的报警功能,保护箱内物品和系统安全。
5. 实时监控:实现实时监控功能,定时记录温度数据并可通过串口或WiFi上传至PC进行分析。
实施步骤:1. 进行硬件连接,将温度传感器、执行器和单片机连接好。
2. 编写单片机程序,包括温度读取、控制算法等功能。
3. 测试程序功能,确保可以准确地读取温度并控制箱内温度。
4. 调试控制算法,优化控制效果,确保恒温箱可以稳定工作。
5. 添加用户界面和安全保护功能,完善系统设计。
通过以上硬件设计和软件编程,可以实现一个基于单片机的恒温箱控制系统,能够稳定地控制恒温箱内的温度,满足不同实验或存储需求。
在实际应用中,还可以根据具体需求对系统功能和性能进行进一步优化和扩展。
基于单片机的烘箱温度控制器设计

基于单片机的烘箱温度控制器设计目录1. 项目概述 (1)1.1. 该设计的目的及意义 (1)1.2. 该设计的技术指标 (2)2. 系统设计 (3)2.1. 设计思想 (3)2.2. 方案可行性分析 (4)2.3. 总体方案 (5)3. 硬件设计 (6)3.1. 硬件电路的工作原理 (6)3.2. 参数计算 (7)4. 软件设计 (8)4.1. 软件设计思想 (8)4.2. 程序流程图 (9)4.3. 程序清单 (10)5. 系统仿真与调试 (11)5.1. 实际调试或仿真数据分析 (11)5.2. 分析结果 (13)6. 结论 (12)7. 参考文献 (13)8. 附录 (14)1. 项目概述:1.1 .该设计的目的及意义温度的测量及控制,随着社会的发展,已经变得越来越重要。
而温度是生产过程和科学实验中普遍而且重要的物理参数,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。
在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。
它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。
而本设计正是为了保证生产过程的稳定运行并提高控制精度,采用以 51系列单片机为控制核心,对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。
通过本设计的实践,将以往学习的知识进行综合应用,是对知识的一次复习与升华,让以往的那些抽象的知识点在具体的实践中体现出来,更是对自己自身的挑战。
1.2 .该设计的技术指标设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。
炉温可以在一定范围内由人工设定,并能在炉温变化时实现自动控制。
若测量值高于温度设定范围,由单片机发出控制信号,经过驱动电路使加热器停止工作。
当温度低于设定值时,单片机发出一个控制信号,启动加热器。
通过继电器的反复开启和关闭,使炉温保持在设定的温度范围内。
(完整word版)单片机控制自动恒温箱的设计开题报告
绥化学院本科毕业设计开题报告基于单片机控制自动恒温箱的设计学生姓名:李科智学号:200851392专业:电气工程年级: 2008级指导教师:杨倩职称:讲师1. 国内外研究现状及趋势恒温控制在工业生产过程中举足轻重,温度的控制直接影响着工业生产的产量和质量。
与传统的热敏电阻有所不同,DS18B20可直接将被测温度转化成串行数字信号,以供单片机处理,具有连线简单、微型化、低功耗、高性能、抗干扰能力强、精度高等特点。
因此用它来组成一个测温系统,具有电路简单,在一根通信线上可以挂很多这样的数字温度计,十分方便。
目前已被众多行业进行广泛的运用(锅炉、温控表粮库、冷库、工业现场温度监控、仪器仪表温度监控、农业大棚温度监控等)。
2. 选题的理由或意义,论文研究内容选题意义单片机有着微处理器所不具备的功能,他可独立的完成现代工业控制所要求的智能化控制功能,能够取代以前用复杂电子线路或数字电路构成的控制系统,可用软件控制实现,因此,现在其控制范畴无所不在。
本文通过自动恒温控制,完成了对单片机做出系统而又全面的了解,更好的掌握专业基础知识。
论文研究的主要内容(1)本文利用AT89C51对温度进行控制采用单总线传输方式的DS18B20作为温度传感器,与按键、数码显示、报警器等外部辅助硬件共同组成一个温度控制系统。
(2)仿真时采用了静态显示,并利用软件来模拟温度的变换,从而仿真得到系统工作的整个过程。
(3)对设计的电路进行分析。
3. 研究方法和技术路线研究方法:1 键盘管理:监测键盘输入,接收温度预置,启动系统工作。
2 显示:显示设置温度及当前温度。
3 温度检测及温度值变换:完成A/D转换及数字滤波。
4 温度控制:根据检测到的温度控制电炉工作。
5 报警:当预置温度或当前炉温越限时报警。
技术路线:根据恒温箱控制器的功能要求并结合对51系列单片机的资源分析,即单片机软件编程自由度大,可用编程实现各种控制算法和逻辑控制。
所以采用AT89C51作为电路系统的控制核心。
基于单片机的智能恒温箱设计
基于单片机的智能恒温箱设计智能恒温箱是一种可以使温度保持在设定值的设备,它在许多领域都有着广泛的应用,如科研实验室、医药行业、食品存储等。
随着科技的不断发展,智能恒温箱的设计也越来越多样化和智能化。
在这种发展的趋势下,成为了一种比较先进和有效的设计方案。
在传统的恒温箱设计中,使用电子元器件和控制器来实现温度的调节和监控。
然而,传统的设计通常存在着温度控制精度不高、反应速度慢、功耗大等问题。
而基于单片机的智能恒温箱设计则可以有效地解决这些问题,提高恒温箱的性能和稳定性。
单片机是一种集成了处理器、内存和输入输出接口等功能的微型计算机芯片,它的小巧灵活和强大的计算能力使得它可以广泛应用于各种控制系统中。
在智能恒温箱设计中,单片机可以通过传感器实时监测箱内温度,并根据预先设定的温度范围进行精准的控制,以维持恒定的温度。
同时,单片机还可以通过通信接口实现与用户的交互,使得用户可以方便地设定温度、监控箱内情况。
由于智能恒温箱通常需要在长时间内保持恒定的温度,因此其温度控制性能对于实验结果的准确性和稳定性至关重要。
基于单片机的智能恒温箱设计在温度控制性能上有着明显的优势。
首先,单片机具有较高的计算能力和响应速度,在监测温度变化时可以做出快速准确的反应,提高了温度控制的精度。
其次,单片机可以根据箱内温度情况自动进行调节,并通过PID等算法实现温度控制的闭环反馈,使得恒温箱可以更加稳定地保持设定温度。
此外,单片机还可以通过程序可编程的方式进行控制,可以根据不同的需求进行灵活的配置和调整,提高了恒温箱的适应性和智能化程度。
除了温度控制性能外,基于单片机的智能恒温箱设计在节能和环保方面也具有一定的优势。
单片机可以通过智能控制系统实现温度自动调节,根据箱内温度情况动态调整制冷和制热设备的工作状态,使得能耗能够得到有效控制。
同时,单片机还可以通过数据采集和分析实现对能源消耗情况的监测和优化,从而降低恒温箱的运行成本和对环境的影响。
基于51单片机恒温箱设计
学院课程设计报告课题名称:恒温箱设计姓名***学号***专业年级***指导教师***目录摘要第一章绪论1.1背景1.2课程目的1.3课程意义第二章硬件设计及工作原理2.1.AT89C512.2 温度传感器2.3光耦合2.4 MAX2322.5 显示部分2.6输入部分2.7 执行部分2.8系统电路以及工作过程第三章系统的应用软件设计3.1键盘管理模块3.2 显示模块3.3 检测模块第四章结束语参考文献摘要介绍了基于AT89S51单片机的恒温箱控制系统,系统分为硬件和软件两部分,其中硬件包括:温度传感器、显示、控制和报警的设计;软件包括:键盘管理程序设计、显示程序设计、控制程序设计和温度报警程序设计。
编写程序结合硬件进行调试,能够实现设置和调节初始温度值,并实现了温度在±1℃误差的自动调节,进行数码管显示。
本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机AT89S51作为主控芯片,数码管作为显示输出,实现了对温度的实时测量与恒定控制。
关键词:单片机AT89C51 恒温控制ABSTRACTIntroduces the AT89S51 based on the constant temperature box control system, hardware and software system is divided into two parts, the hardware include: temperature sensor, display, control and alarm design; The software includes: the keyboard management program design, display program design, control program design and temperature alarm program design. Write a program combined with hardware debugging, will be able to realize the set and adjust the initial temperature, and realize the temperature in ± 1 ℃ error automatic adjustment, digital tube display. This design from practical application were selected based on small volume, relatively high precision of the digital temperature sensor DS18B20 as a temperature acquisition unit, SCM AT89S51 as a master control chip, digital tube display as output, realize the real-time measurement of temperature and constant control.key word :SCM AT89C51 Thermostatic control第一章绪论1.1背景温度控制是工业生产过程中经常遇到的过程控制,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用,其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。
基于单片机的电加热恒温箱控制器设计
基于单片机的电加热恒温箱控制器设计摘要:恒温箱作为一种重要的工具广泛地应用于医疗、工业生产和食品加工等领域。
在常规的环境参数中,由于温度受其它因素影响较大,且难以校准,温度也是最难准确测量的一个参数。
因此,恒温箱的性能在很大程度上取决于对温度的控制性能。
本设计采用单片机对恒温箱的温度进行PID控制,使其温度稳定在某一个设定值上。
并且具有键盘输入温度给定值、定时时间,LED数码管显示温度值/时间和定时报警的功能,实现了自动控制温度的目的。
基于P89V51RD2的恒温箱温度控制系统主要实现了温度采集、A/D转换、软件滤波、温度控制及定时等功能。
首先,介绍了恒温箱设计的课题背景及意义,并结合设计要求和实际情况选择了设计所涉及到的主要功能器件,同时重点介绍了P89V51RD2、ADC0809、Pt100的主要功能。
其次,阐述了系统的工作原理,完成了系统结构图的设计,把系统划分为5大模块并完成了各大模块的设计工作,同时附以系统硬件电路原理图。
最后,设计了系统的软件。
系统软件是用C语言进行软件设计的,C语言具有指令简单,数据量小等特点。
关键词:恒温箱;温度控制;单片机;PID控制The Design of Electricity Heating Incubator Control SystemBased on the MCUAbstract: Incubators as an important tool widely used in medical, industrial production and food processing in areas such as.Temperature is affected by other factors in the conventional environmental parameters, and also difficult to proofreading ; therefore, the temperature is one of the most difficult to measure accurately parameters .So, The performance of the incubator to a large extent depends on the temperature control performance.The design uses single chip microcomputer to control the oven temperature through the PID control,causing its temperature control into suppose in the definite value in some.And the system has the keyboard entry temperature and time given value , LED displays temperature/timing value and surmounting boundary of the time reports outside.It realizes temperature control automatically.Based on P89V51RD2, the oven temperature control system main realizes temperature collection, A/D conversion, software filtering, PID control and timing functions.First, the paper introduces the background of the subject. Combined with the design requirements and the actual situation of the design ,the main devices that related to subject are confirmed. At the same time the main functions of P89V51RD2, ADC0809, Pt100 is written down.Secondly, it describes the principle of the system, and achieves the concrete structure photo of the design. The system is divided into five modules and every major module of the design is completed .The hardware circuit schematics of the system is attached at last.Finally, the software of the system is designed. The system software is written by C language, it is because the programme runs faster, and saves storage space.Key Words: incubator ;temperature control;single-chip microcontroller ;PID control目录1 概述 (1)1.1 课题研究背景 (1)1.2 课题研究意义 (2)1.3 课题研究内容 (2)2 总体设计方案 (3)2.1 课题要求 (3)2.2 系统总体设计 (3)2.3系统功能模块方案设计 (4)2.3.1单片机的选择 (4)2.3.2显示电路的选择 (5)2.3.3键盘电路的选择 (6)2.3.4温度采集电路的选择 (6)2.3.5温度控制电路的选择 (9)2.4 控制方法的选择 (10)2.5开发环境及编程语言的选择 (10)2.5.1硬件开发环境选择 (10)2.5.2软件开发环境选择 (12)2.5.3编程语言的选择 (13)3系统的硬件设计 (14)3.1 系统硬件功能分析 (14)3.2系统硬件电路设计 (14)3.2.1单片机最小系统的设计 (14)3.2.2温度检测电路的设计 (15)3.2.3四分频电路的设计 (17)3.2.4显示接口电路的设计 (18)3.2.5 键盘电路的设计 (19)3.2.6 温度控制电路的设计 (19)3.2.7 报警电路的设计 (20)3.2.8抗干扰措施的设计 (21)3.2.9 PCB图的绘制 (21)4数字PID及其算法 (22)4.1 PID算法的数字化 (22)4.2 PID算法的程序设计 (23)4.2.1 位置型PID算法程序的设计 (23)4.2.2 增量型PID算法的程序设计 (24)5 系统的软件设计 (26)5.1 系统软件功能分析 (26)5.2 主程序的设计 (26)5.3 子程序的设计 (27)5.3.1 系统初始化模块的设计 (27)5.3.2 显示模块的设计 (28)5.3.3温度采集模块的设计 (29)5.3.4键扫描模块的设计 (31)5.3.5 温度控制模块的设计 (32)5.3.6报警模块的设计 (33)5.4 软件设计小结 (34)6结束语 (35)参考文献 (36)致谢................................................................................................. 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
唐山学院测控系统原理课程设计题目恒温箱控制器的设计系 (部) 机电工程系班级姓名学号指导教师2014 年 03 月 02 日至 03 月 13 日共两周2014年 03 月 13 日测控系统原理课程设计任务书课程设计成绩评定表目录摘要 (1)一.系统的硬件设计 (2)1.恒温箱控制系统框图 (2)2.微处理器AT89C52 (2)3.温度传感器 (3)4.显示部分 (4)5.键盘输入电路 (5)6.输出控制 (5)7.温度越线报警电路 (6)二.系统的软件设计 (7)1.温度传感器模块软件设计 (7)2.键盘管理模块 (7)3.显示模块 (8)4.控制模块 (8)5.温度报警模块 (9)三.PID控制算法 (10)1.PID的数学模型 (10)2.PID控制规律的离散化 (10)四.设计总结 (11)五.参考文献 (12)附录1元件清单 (13)附录2硬件电路图 (14)附录3程序清单 (15)摘要随着社会发展的需求,人们对恒温箱的应用和需求越来越广泛,在工业生产和日常生活或科学实验中,我们随处都可以看到恒温箱的应用。
如,可以根据动物生活习性的需要控制饲养棚合适的温度来进行孵卵或动物培养;在农业上,可用于种子的发芽;在医学上,可用于做细菌培养、放射免疫分析、血清溶化、石腊熔化、试管消毒等。
常用的恒温箱主要分为三类:高温恒温箱(高于60℃);中温恒温箱(-10~60℃);低温恒温箱(低于-1O℃)。
恒温箱的温度控制系统可分为人工调节和自动调节两种方式,人工调节是通过温度计进行测量后手动调节变压器,从而控制产生热量的大小;而自动调节往往通过热电偶传感器进行测温,输出电压值,经放大后加到电机上驱动电机来调节变压器,其优点是可以连续、实时、准确的来控制温度。
基于单片机技术的温控器和可编程温度传感器相结合使用是目前恒温箱温度控制较为先进的一种方式。
单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。
如果能利用单片机进行温度的测量和控制,将会大大提高温度测量和控制的可靠性和灵活性。
单片机对温度测量控制过程是借助于传感器、A/D转换器以及扩展接口和执行机构来进行的。
在闭环型过程控制中,过程的实时参数由传感器和A/D转换器来实时采集,并由单片机自动记录、处理并控制执行机构动作来进行调节和控制。
关键词:恒温箱,单片机,AT89C52,A/D转换,温度传感器,DS18B20一.系统的硬件设计1.恒温箱控制系统框图根据上面对工作流程的分析,系统可以分为以下几个功能模块:(1) 键盘管理:监测键盘输入,接收温度预置,启动系统工作。
(2) 显示:显示设置温度及当前温度。
(3) 温度检测及温度值变换(4) 温度控制:根据检测到的温度控制电炉工作。
(5) 报警:当预置温度或当前炉温越限时报警。
根据恒温箱控制器的功能要求,并结合对51系列单片机软件编程自由度大,可用编程实现各种控制算法和逻辑控制。
所以采用AT89C52作为电路系统的控制核心。
按键将设置好的温度值传给单片机,通过温度显示模块显示出来。
初始温度设置好后,单片机开启输出控制模块,使电热器开始加热,同时将从数字温度传感器DS18B20测量到的温度值实时的显示出来,当加热到设定温度值时,单片机控制声光报警模块,发出声光报警,同时关闭加热器。
当自然冷却到设定温度50摄氏度以下时,单片机再次启动加热器,如此循环反复,以达到恒温控制的目的。
2.微处理器AT89C52AT89C52单片机是一种低功耗、高性能内含8K字节闪电存储器的8位CMOS 微控制器,与工业标准MCS—51指令系列和引脚完全兼容有超强的加密功能,其片内闪电存储器的编程与擦除完全用电实现,数据不易挥发,编程/擦除速度快。
如图所示:AT89C52的引脚结构它的主要特点有:(1)内部程序存储器为电擦除可编程只读存储器EEPROM,容量8KB,内部数据存储器容量256B(不包括专用寄存器),外部数据存储器寻址空间64KB,外部程序存储器寻址空间64KB;(2)有三个16位的定时器/计数器;(3)可利用两根I/O口线作为全双工的串行口,有四种工作方式,可通过编程选定;(4)内部ROM中开辟了四个通用工作寄存器区,共32个通用寄存器,以适应多种中断或子程序嵌套的情况;(5)内部有6个中断源,分为二个优先级,每个中断源优先级是可编程的;(6)堆栈位置是可编程的,堆栈深度可达128字节;3.温度传感器采用数字温度传感器DS18B20,DS18B20提供九位温度读数,测量范围-55℃~125℃,采用独特1-WIRE 总线协议,只需一根口线即实现与MCU 的双向通讯,具有连接简单,高精度,高可靠性等特点。
并且,DS18B20支持一主多从,若想实现多点测温,可方便扩展。
DS18B20的特点:(1)独特的单线接口方式,与单片机通信只需一个引脚,DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。
(2)在使用中不需要任何外围元件。
(3)可用数据线供电,电压范围:+3.0~+5.5 V。
(4)测温范围为-55~+125 ℃。
在-10~+85℃范围内误差为0.5 ℃。
(5)通过编程可实现9~12位的数字读数方式。
(6)用户可自设定非易失性的报警上下限值。
(7)支持多点组网功能,通过识别芯片各自唯一的产品序列号从而实现单线多挂接,多个DS18B20可以并联在唯一的线上,简化了分布式温度检测的应用,实现多点测温。
(8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。
(3)DS18B20在电路中的连接,见图:DS18B20测温电路4.显示部分显示采用 3 位共阳LED 动态显示方式,显示内容有温度值的十位、个位及小数点后一位。
用P2 口作为段控码输出,并用74ls164 作驱动。
P0.0—P0.2作为位控码输出,用PNP型三极管做驱动。
如下图所示:显示部分5.键盘输入电路键盘设定:用于温度设定。
共三个按键。
KEY1(P1.1): 状态切换;温度设置确认;温度重新设置。
KEY2(P1.2): 设置温度“+”。
KEY3(P1.3): 设置温度“-”。
如图所示:键盘输入电路6.输出控制采用光电藕合器,控制信号与输出信号可以很好的隔离,增强了系统的安全性和抗干扰能力。
输出控制电路,MOC3021内部带有过零控制电路,MOC3021输出端额定电压为400V。
加热电路中采用MOC3021的目的有两个:其一是实现强电与弱电的隔离;其二是实现双向可控硅的过零触发,从而使流过双向可控硅的电流波形为正弦波,减少谐波。
电路连接如图所示,其在电路中的工作原理是单片机根据传感器和设定开关输入的控制指令,控制电器的电源通断。
SW1为双向开关,其最大通态电流为1A。
当电源控制电路的输出管脚P1.6送出的开关控制指令为高电平,MOC3021截止,Q2截止,电器被关闭;当电源控制电路的输出管脚P1.6送出的开关控制指令为低电平,MOC3041导通,Q2导通,电器被打开。
通过MOC3021内部的过零触发电路,保证Q2在电压过零时导通和截止,对供电系统干扰极小。
R6和C6是Q2的保护电路。
如下图:光耦控制输出电路7.温度越线报警电路报警电路如图所示,该电路采用一个小功率三极管Q2驱动蜂鸣器,当单片机接收到超额温度信号或危险信号时,输出脚P1.7输出高点平,Q2导通,致使蜂鸣器得电工作,发出报警声。
同时,电路中的发光二极管指示出电路的工作状态。
报警电路二.系统的软件设计1.温度传感器模块软件设计对DS18B20操作时,首先要将它复位。
复位时,DQ线被拉为低电平,时间为480~960us;接着将数据线拉为高电平,时间为15~60us;最后DS18B20发出60~240us的低电平作为应答信号,这时主机才能进行读写操作。
进行写操作时,将数据线从高电平拉至低电平,产生写起始信号。
从DQ线的下降沿起计时,在15us到60us这段时间内对数据线进行检测,如数据线为高电平则写1;若为低电平,则写0,完成了一个写周期。
在开始另一个写周期前,必须有1us以上的高电平恢复期。
每个写周期必须要进行写操作时,将数据线从高电平拉至低电平,产生写起始信号。
从DQ线的下降沿起计时,在15us到60us这段时间内对数据线进行检测,如数据线为高电平则写1;若为低电平,则写0,完成了一个写周期。
温度转换读取温度数值程序流程如下图所示。
温度转换读取温度数值程序流程2.键盘管理模块键盘管理子程序流程如图所示:当通电或复位以后,系统进入键盘管理状态,单片机只接收设定温度和启动。
当检测到有键闭合时先去除抖动,这里采用软件延时的方法,延时一段时间后,再确定是否有键闭合,然后将设定好的值送入预置温度数据区,并调用温度合法检测报警程序,当设定温度超过最大值如100℃时就会报警,最后当启动键闭合时启动加热。
键盘设定:用于温度设定。
共三个按键。
KEY1(P1.1): 状态切换;温度设置确认;温度重新设置。
KEY2(P1.2): 设置温度“+”。
KEY3(P1.3): 设置温度“-”。
系统上电后,数码管全部显示为零,根据按 KEY1 次数,决定显示的状态,根据相应的状态,利用KEY2、KEY3进行加减,当温度设定好之后,再按KEY1确定,系统开始测温,启加热器。
3.显示模块显示子程序的功能是将缓冲区的二进制数据先转换成3个BCD码,再将其分别存入百位、十位、个位3个显示缓冲区,送往串行口,利用单片机的P0口进行扫描,让数据动态的显示出来,可显示设置温度和测量温度。
4.控制模块温度控制子程序流程如图所示,将当前温度与设定好的温度比较,若当前温度小于设定温度时,开启电热器;若当前温度大于设定温度时,关闭电热器;若二者相等时,电热器保持这一状态。
5.温度报警模块报警子程序流程如图所示。
根据设计要求,当检测到当前温度值高于设定温度值1℃时报警,报警的同时关闭电热器。
为了防止误报,设置了报警允许标志,只有在允许报警的情况下,温度值高于设定温度值时才报警。
三.PID 控制算法1.PID 的数学模型PID 控制是一种比较成熟的控制理论,它通过比例、积分、微分三部分的合理组合可以用比较简单的方法获得令人满意的控制效果。
PID 的数学模型如图表示:PID 数学模型给定值R(t)与实际值Y(t)构成控制误差:E (t )=R (t )-Y (t ) 式2-1 PID 控制器根据E(t)将误差的比例(P)、积分(I)、和微分(D)通过线性组合构成控制量,对受控对象进行控制,其控制规律如式2所示:U(t)=K P [e(t)+()1()td iT de t E t dt T dt+⎰] 式2-2 U(t)——控制器输出函数;E(t)——控制器误差函数; K P ——比例系数;T i ——积分时间常数;T d ——微分时间常数。