七年级数学下册《图形的旋转》
《图形的旋转》教案

3.实践活动中的分组讨论和实验操作,让学生们充分参与到课堂中来。他们通过合作交流,加深了对图形旋转的理解。不过,我也注意到部分学生在操作过程中遇到了困难,这可能是因为他们对旋转角度的判断不够准确。在以后的教学中,我会加强对这一难点的讲解和指导。
3.增强学生的问题解决能力,运用旋转知识解决实际问题,激发创新思维和策略运用。
4.培养学生的数学表达和交流能力,学会用准确的语言描述旋转过程,进行有效沟通。
5.培养学生的逻辑推理能力,通过探索旋转的性质和规律,形成严密的逻辑思维。
三、教学难点与重点
1.教学重点
-理解旋转的定义及要素:旋转中心、旋转方向、旋转角度。通过实例演示和练习,使学生掌握图形旋转的基本概念。
五、教学反思
在今天的教学中,我发现学生们对图形旋转的概念和操作表现出很大的兴趣。他们通过观察和动手实践,逐渐理解了旋转中心、旋转方向和旋转角度的重要性。在讲授过程中,我注意到以下几点值得反思和改进:
1.学生们在理解旋转中心时,起初有些困惑。为了帮助他们更好地把握这个概念,我采用了直观教具进行演示,让学生亲眼看到旋转中心并不是图形的一部分,而是固定点。在今后的教学中,我还可以增加更多实际生活中的例子,让学生感受旋转中心在日常物体运动中的应用。
《图形的旋转》教案
一、教学内容
《图形的旋转》教案,本章节内容基于人教版小学数学四年级下册第五章《几何图形的认识》第三节《旋转》。
教学内容如下:
湘教版数学七年级下册_《旋转》提高训练

《旋转》提高训练一、选择题1.如图,将方格纸中的图形绕点O顺时针旋转90°后得到的图形是()A.B.C.D.2.如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是()A.∠AOC B.∠AOD C.∠AOB D.∠BOC3.在平面直角坐标系中,将点P(﹣3,2)绕坐标原点O顺时针旋转90°,所得到的对应点P'的坐标为()A.(﹣2,﹣3)B.(2,3)C.(﹣3,﹣2)D.(3,2).4.在平面直角坐标系中,O为坐标原点,点A的坐标为(2,5),把OA绕点O 逆时针旋转90°,那么A点旋转后所得到点的坐标是()A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)5.如图,∠AOB=90°,把∠AOB顺时针旋转50°得到∠COD,则下列说法正确的是()A.∠AOC与∠BOD互余B.∠BOC=50°C.∠BOC的余角只有∠AOC D.∠AOD=140°二、填空题6.如图,在△ABC中,∠ACB=90°,AC=3,CB=5,点D是CB边上的一个动点,将线段AD绕着点D顺时针旋转90°,得到线段DE,连结BE,则线段BE的最小值等于.7.将点B(﹣3,1)绕坐标原点O旋转180°,则点B的对应点B1的坐标为.8.如图,在平面直角坐标系中,已知点A(3,0),B(0,4),如果将线段AB 绕点B顺时针旋转90°至CB,那么点C的坐标是.9.如图,OA⊥OB,Rt△CDE的边CD在OB上,∠ECD=45°,CE=4,若将△CDE 绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OC的长度为.10.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC ∥BC',∠ABC=70°,则旋转的角度是.三、解答题11.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求证:AD⊥EF;(2)求CG的长.12.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD.(1)试判断△CBD的形状,并说明理由;(2)求∠BDC的度数.13.已知△ABC在平面直角坐标系中的位置如图所示.(1)写出A,B,C三点的坐标;(2)将△ABC绕着点C顺时针方向旋转90°后得到△A1B2C,画出旋转后的△A1B1C,并写出A1,B1的坐标.14.如图,△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°,得到△DEC(其中点D、E分别是A、B两点旋转后的对应点).(1)请画出旋转后的△DEC;(2)试判断DE与AB的位置关系,并证明你的结论.15.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴向右平移4个单位,在图中画出平移后的△A1B1C1(2)作△ABC关于坐标原点成中心对称的△A2B2C2.(3)求B1的坐标,C2的坐标.《旋转》提高训练参考答案与试题解析一、选择题1.如图,将方格纸中的图形绕点O顺时针旋转90°后得到的图形是()A.B.C.D.【分析】利用已知将图形绕点O顺时针旋转90°得出符合题意的图形即可.【解答】解:如图所示:将方格纸中的图形绕点O顺时针旋转90°后得到的图形是,故选:B.【点评】本题考查了生活中的旋转现象,在找旋转中心时,要抓住“动”与“不动”,熟悉图形的性质是解题的关键.2.如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是()A.∠AOC B.∠AOD C.∠AOB D.∠BOC【分析】根据旋旋转角的定义即可判断;【解答】解:如图,把△AOB绕点O顺时针旋转得到△COD,旋转角是∠AOC或∠BOD,故选:A.【点评】本题考查旋转变换,旋转角等知识,解题的关键是熟练掌握基本知识,属于中考基础题.3.在平面直角坐标系中,将点P(﹣3,2)绕坐标原点O顺时针旋转90°,所得到的对应点P'的坐标为()A.(﹣2,﹣3)B.(2,3)C.(﹣3,﹣2)D.(3,2).【分析】根据旋转中心为点O,旋转方向顺时针,旋转角度90°,作出点P的对称图形P′,可得所求点的坐标.【解答】解:如图所示,由图中可以看出点P′的坐标为(2,3).故选:B.【点评】本题考查了坐标与图形的变换﹣旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.4.在平面直角坐标系中,O为坐标原点,点A的坐标为(2,5),把OA绕点O 逆时针旋转90°,那么A点旋转后所得到点的坐标是()A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)【分析】首先根据旋转的性质作图,利用图象则可求得点B的坐标.【解答】解:过点B作BC⊥x轴于点C,过点B作BC⊥y轴于点F,∵点A的坐标为(2,5),将OA绕原点O逆时针旋转90°到OB的位置,∴BC=2,CO=5∴点B的坐标为:(﹣5,2),故选:A.【点评】此题考查了旋转的性质,解题的关键是数形结合思想的应用得出BC,BF的长.5.如图,∠AOB=90°,把∠AOB顺时针旋转50°得到∠COD,则下列说法正确的是()A.∠AOC与∠BOD互余B.∠BOC=50°C.∠BOC的余角只有∠AOC D.∠AOD=140°【分析】根据旋转变换的性质得到∠BOD=∠AOC=50°,根据余角和补角的概念判断即可.【解答】解:由旋转变换的性质可知,∠BOD=∠AOC=50°,∵∠AOB=90°,∴∠COB=40°,∴∠AOC与∠BOD相等,不互余,A错误;B错误;∠BOC的余角有∠AOC和∠BOD,C错误;∠AOD=∠AOB+∠BOD=140°,D正确;故选:D.【点评】本题考查的是旋转的性质、余角和补角的概念,掌握旋转变换的性质、认识旋转角是解题的关键.二、填空题6.如图,在△ABC中,∠ACB=90°,AC=3,CB=5,点D是CB边上的一个动点,将线段AD绕着点D顺时针旋转90°,得到线段DE,连结BE,则线段BE的最小值等于.【分析】过E作EF⊥BC于F,根据余角的性质得到∠DEF=∠ADC,根据全等三角形的性质得到DF=AC=3,EF=CD,设CD=x,根据勾股定理得到BE2=x2+(2﹣x)2=2(x﹣1)2+2,于是得到结论.【解答】解:过E作EF⊥BC于F,∵∠C=∠ADE=90°,∴∠EFD=∠C=90°,∠FED+∠EDF=90°,∠EDF+∠ADC=90°,∴∠DEF=∠ADC,在△EDF和△DAC中,,∴△EDF≌△DAC(AAS),∴DF=AC=3,EF=CD,设CD=x,则BE2=x2+(2﹣x)2=2(x﹣1)2+2,∴AD2的最小值是2,∴AD的最小值是,故答案为:.【点评】本题考查了全等三角形的性质和判定,旋转的性质,二次函数的最值,勾股定理的应用,关键是得出二次函数的解析式.7.将点B(﹣3,1)绕坐标原点O旋转180°,则点B的对应点B1的坐标为(3,﹣1).【分析】根据题意可得,点B和点B的对应点B1关于原点对称,据此求出B1的坐标即可.【解答】解:∵将点B(﹣3,1)绕坐标原点O旋转180°后,得到的对应点B1,∴点B和点B1关于原点对称,∵点B的坐标为(﹣3,1),∴B1的坐标为(3,﹣1).故答案为:(3,﹣1).【点评】本题考查了坐标与图形变化﹣旋转,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.8.如图,在平面直角坐标系中,已知点A(3,0),B(0,4),如果将线段AB 绕点B顺时针旋转90°至CB,那么点C的坐标是(﹣4,1).【分析】作CD⊥y轴于点D,如图,根据旋转的性质得∠ABC=90°,BC=BA,再利用等角的余角相等得到∠CBD=∠A,则可证明△ABO≌△BCD得到BD=OA=3,CD=OB=4,然后根据第二象限内点的坐标特征写出C点坐标.【解答】解:如图,作CD⊥y轴于点D,∵A(3,0),B(0,4),∴OA=3,OB=4,∵线段AB绕点B顺时针旋转90°至CB,∴∠ABC=90°,BC=BA,∵∠ABO+∠A=90°,∠ABO+∠CBD=90°,∴∠CBD=∠A,在△ABO和△BCD中,∴△ABO≌△BCD(AAS),∴BD=OA=3,CD=OB=4,∴OD=OB﹣BD=4﹣3=1,∴C点坐标为(﹣4,1).故答案为:(﹣4,1).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.解决本题的关键是作CD⊥y 轴于点D后求出CD和OD的长.9.如图,OA⊥OB,Rt△CDE的边CD在OB上,∠ECD=45°,CE=4,若将△CDE 绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OC的长度为2.【分析】根据旋转得出∠NCE=75°,求出∠NCO,根据直角三角形30度角的性质可得:OC=CN,可得结论.【解答】解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,CN=CE=4,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,∴OC=CN=2,故答案为:2.【点评】本题考查了含30度角的直角三角形性质,旋转性质,三角形的内角和定理等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较好.10.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC ∥BC',∠ABC=70°,则旋转的角度是40°.【分析】根据旋转前后的两个图形全等,则:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,所以∠A=∠AA'B=70°,根据三角形的内角和定理可得∠ABA'=40°.【解答】解:由旋转得:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,∵AC∥BC',∴∠AA'B=∠A'BC'=70°,∴∠A=∠AA'B=70°,∴∠ABA'=180°﹣70°﹣70°=40°,即旋转角是40°,故答案为:40°.【点评】本题考查了旋转的性质:旋转前后两图形全等,明确对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等腰三角形的性质和三角形内角和定理.三、解答题11.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF 过点D.(1)求证:AD⊥EF;(2)求CG的长.【分析】(1)由平移的性质可知:AB∥DF,再利用平行线的性质即可证明;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】(1)证明:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠ADF+∠DAB=180°∴∠ADF=90°,∴AD⊥EF.(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴=,∵AC=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.【点评】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB 是解本题的关键.12.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD.(1)试判断△CBD的形状,并说明理由;(2)求∠BDC的度数.【分析】(1)根据图形旋转不变性的性质得出△ABC≌△EBD,故可得出BC=BD,由此即可得出结论;(2)根据图形选旋转不变性的性质求出∠EBD的度数,再由等腰三角形的性质即可得出∠BDC的度数.【解答】解:(1)∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∴△CBD是等腰三角形.(3)∵△ABC≌△EBD,∴∠EBD=∠ABC=30°,∴∠DBC=180﹣30°=150°,∵△CBD是等腰三角形,∴∠BDC===15°.【点评】本题考查的是旋转的性质,熟知图形旋转不变性的性质是解答此题的关键.13.已知△ABC在平面直角坐标系中的位置如图所示.(1)写出A,B,C三点的坐标;(2)将△ABC绕着点C顺时针方向旋转90°后得到△A1B2C,画出旋转后的△A1B1C,并写出A1,B1的坐标.【分析】(1)根据平面坐标系得出A、B、C三点的坐标即可;(2)分别画出A,B的对应点A1,B2,写出A1,B1的坐标即可.【解答】解:(1)如图所示:A、B、C三点的坐标分别为:(﹣1,2),(﹣3,1),(0,﹣1);(2)△A1B2C如图所示,A1,B1的坐标分别为(3,0),(2,2).【点评】本题考查作图﹣旋转变换,解题的关键是熟练掌握基本知识,属于中考常考题型.14.如图,△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°,得到△DEC(其中点D、E分别是A、B两点旋转后的对应点).(1)请画出旋转后的△DEC;(2)试判断DE与AB的位置关系,并证明你的结论.【分析】(1)根据要求画出△DCE即可;(2)利用“8字型”证明∠AFE=∠DCE即可解决问题;【解答】解:(1)旋转后的△DEC如图所示.(2)结论:DE⊥AB.理由:延长DE交AB于点F.由旋转不变性可知:∠A=∠D,∠ACB=∠DCE=90°,∵∠AEF=∠DEC,∠∠AFE=∠DCE=90°,∴DE⊥AB.【点评】本题考查旋转变换,解题的关键是熟练掌握利用“8字型”证明角相等,属于中考常考题型.15.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴向右平移4个单位,在图中画出平移后的△A1B1C1(2)作△ABC关于坐标原点成中心对称的△A2B2C2.(3)求B1的坐标(2,﹣2),C2的坐标(4,1).【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点△A2,B2,C2即可;(3)根据B1,C2,的位置写出坐标即可;【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)求B1的坐标(2,﹣2),C2的坐标(4,1).【点评】本题考查作图﹣旋转变换,平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.。
《图形的旋转一》教学设计

《图形的旋转一》教学设计作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么问题来了,教学设计应该怎么写?以下是店铺整理的《图形的旋转一》教学设计(精选5篇),希望对大家有所帮助。
《图形的旋转一》教学设计1教学目标:1、通过动手操作、实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。
2、通过操作、观察,进一步培养学生的空间思维观念。
教学重点:了解一个简单的图形经过旋转制作复杂图形的过程教学难点:让学生清楚的表述图形的旋转过程。
教学准备:学生准备基本图形卡片、带有小方格的纸教师准备多媒体演示文稿、纸做小风车。
教学时间:20分钟教学过程:一、在游戏中导入新知1、教师手拿风车走向讲台。
问:同学们,认识它吗?玩过吗?在今天这个舞台上你敢玩吗?找一名学生上台展示玩法。
问:在你玩的过程中,这个风车的风叶是怎样运动的?它又是怎样旋转的呢?2、看了刚才这位同学的精彩表演,大家是不是也想玩一玩呀?那么就请同学们想办法让手中的东西、桌子上的东西、包中的东西旋转起来,我们来比一比,看谁最会玩?学生活动,教师巡视。
1、刚才,老师看了一下这位同学的玩法,这位同学的玩法很独特,我们就请到前面来展示一下他的玩法。
你能用语言具体描述一下它的旋转过程吗?(说清绕哪一点、按什么方向旋转,旋转的角度)1、刚才大家都让自己手中的东西旋转了起来,玩的开心吗?下面我们换一个玩法。
大家猜想一下,如果我们让一个基本图形旋转起来,会形成什么样的图案呢?2、大屏幕呈现一些美丽的图案。
这些图案美不美?这里的每一个图案都是经过一个图形的旋转而得到的,今天我们就走进图形旋转的天地。
板书课题:图形的旋转二、在实践中探索图形的旋转过程1、请大家继续欣赏这些美丽的图案,他们分别是由哪些基本图形经过旋转得到的呢?下面我们就这两幅图为例来探讨一下。
初中数学下册图形旋转教案

初中数学下册图形旋转教案教学目标:1. 理解旋转的定义和性质,掌握图形旋转的基本方法。
2. 能够运用旋转的性质解决实际问题,提高学生的解决问题的能力。
3. 培养学生的空间想象能力和逻辑思维能力。
教学内容:1. 旋转的定义和性质2. 图形旋转的基本方法3. 旋转在实际问题中的应用教学过程:一、导入(5分钟)1. 利用多媒体展示一些生活中的旋转现象,如旋转门、风车等,引导学生观察和思考。
2. 提问:这些现象有什么共同特点?它们是如何实现的?二、新课讲解(15分钟)1. 讲解旋转的定义:在平面内,将一个图形绕着某一点转动一个角度的图形变换叫做旋转。
2. 讲解旋转的性质:旋转不改变图形的大小和形状,只改变图形的位置。
3. 讲解图形旋转的基本方法:以某一点为旋转中心,将图形绕该点旋转指定角度。
4. 示例讲解:如何将一个图形绕某一点旋转?如何确定旋转后的位置?三、课堂练习(15分钟)1. 让学生独立完成教材中的相关练习题,巩固旋转的基本概念和操作方法。
2. 教师选取部分学生的作业进行点评,指出优点和不足之处。
四、应用拓展(15分钟)1. 出示一些实际问题,让学生运用旋转的知识解决,如:如何设计一个旋转楼梯?如何布局旋转型的园林?2. 学生分组讨论,提出解决方案,并进行展示。
3. 教师对学生的解决方案进行评价和指导。
五、总结(5分钟)1. 回顾本节课所学内容,让学生总结旋转的定义、性质和应用。
2. 强调旋转在实际生活中的重要性,激发学生学习兴趣。
教学评价:1. 课后作业:检查学生对旋转知识的掌握程度。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
3. 应用拓展:评估学生在解决实际问题时的创新能力和发展空间。
教学反思:本节课通过生活中的旋转现象导入,激发学生的学习兴趣。
在讲解过程中,注重让学生动手操作,培养学生的空间想象能力和逻辑思维能力。
课堂练习和应用拓展环节,及时巩固所学知识,提高学生的解决问题的能力。
《图形旋转》评课稿

《图形旋转》评课稿《图形旋转》评课稿(4篇)《图形旋转》评课稿1《图形的旋转》属于“空间与图形”领域,在学习这部分内容之前,学生已经在三年级初步感受了生活中的平移和旋转现象,并能在方格纸上画出一个沿水平、垂直方向平移后的图形。
本课学习的内容是在上述基础上的延伸,把学生的视角引入到图形的旋转,意在通过欣赏、探索、创作等一系列活动,使学生体验到简单图形变成复杂图形的过程,理解旋转的中心点,进一步发展学生的空间观念,为今后继续学习图形变换奠定基础。
本堂课吴老师以学生的认识水平为出发点,通过创设生动、有趣的学习情境,开展观察、动手操作、合作交流等系列活动,放手让学生大胆的去想,去说,去做,使学生的空间观念,观察能力、想象能力和动手能力得到了进一步发展。
一、创设情境,激发兴趣上课伊始,吴老师让学生介绍旋转现象,再用课件为学生展示了几组旋转着的物体,精美的画面立刻吸引了学生的注意力。
接着课件演示了时针在钟面上的运动,学生通过观察初步感知旋转的方向和角度。
然后课件展示了一组通过旋转得到的精美图案,同时提出问题:“观察这些图案,你发现了什么?”这样的设计,极大的吸引了学生的注意力,激发了学生的好奇心和求知欲,同时很自然的就将学生带入新课中。
二、小组合作,探索新知把一个简单图形旋转成复杂图形的过程本身就是复杂的,学生的获取不会一蹴而就。
吴老师遵循“以学生为主体,教师为主导,数学活动为主线”的指导思想,放手让学生自己探究。
首先让学生独立观察思考,这些图案是由哪些基本图形旋转而来的?又是以怎样的方式旋转的?然后突出两个重点图,在小组内阐述自己的观点,利用教师提供的学习材料在小组内演示旋转的过程。
三、开拓视野,大胆创造学生经过了欣赏—模仿制作—欣赏的活动过程,肯定会萌发出创造的火花。
这时吴老师大胆放手,让学生以小组为单位,自制一个基本图形,并通过旋转基本图形创造出美丽的图案。
在实际操作过程中,吴老师以朋友的身份参与到学习有困难的小组,循序渐进的引导学生和老师共同完成。
全国初中数学优质课一等奖《图形的旋转》教学设计

23.1图形的旋转一、设计理念数学教学是数学活动的教学,是师生之间、学生之间,交流互动与共同发展的过程.在教学中应力求从学生实际出发,创设有助于学生自主学习的情境,引导学生通过实践、探索、交流,获得知识,形成技能,发展思维,学会学习.二、教材分析1. 教材的内容、地位与作用《图形的旋转》选自人教版义务教育标课程标准实验教科书九年级上册第二十三章第一课时。
内容主要是研究旋转的有关概念,旋转性质及应用旋转解决有关问题.旋转变换是继平移变换、轴对称变换之后的另外一种全等变换,它既是全等知识的深化,又是学习中心对称的基础,在教材中起着承上启下的作用.在有关旋转的动态几何问题中,蕴含着重要的转化思想.同时,旋转在生活中应用也十分广泛,利用旋转可以帮我们解决许多生活中的问题.2.教学重点、难点教学重点:理解图形旋转有关概念,通过合作探究得出旋转的性质及应用.教学难点:旋转性质探究及灵活应用.3.目标分析知识技能:由生活中广泛存在的旋转现象,让学生感受旋转;在合作探究中归纳旋转的性质.数学思考:在图形旋转的过程中,理解旋转概念,体会旋转特性;解决问题:学生能根据自己的操作,画出旋转前、后的图形,归纳出旋转性质,利用旋转,转化图形,解决问题;情感态度:感受旋转与生活的紧密联系,体会数学的应用价值.三、教法学法分析九年级学生具有一定的数学基础和思维能力. 因此我借助多媒体辅助教学,分散教学难点.以学生活动为主线,引导学生在观察、操作、合作、交流等具体过程中突破本节课的难点,理解图形旋转的形成过程及归纳旋转的性质.在学习活动中,尽量让每一位学生积极参与,最终让他们学会学习.本节课主要采用实验探索法,利用实验探究,突破重难点,并设置了“感受旋转---认识旋转—探索旋转—应用旋转—内化旋转”五个环节来展开教学.本着学生已有经验,以学生熟悉的游戏为出发点,利用多媒体创设情境,引导学生观察、理解旋转有关概念,体会旋转三要素.以通俗易懂,简单活泼的风格呈现教学内容,利用自制教具引导学生在动手操作、合作交流中探究问题.四、教学程序环节名称具体内容与呈现形式学生行为预设教师行为预设设计意图(一)感受旋转屏幕上显示学生熟悉的“俄罗斯方块”游戏,设置关卡,学生在寻求解决方法情景中自然引入“旋转”.引入课题《23.1图形的旋转》.学生观看屏幕演示游戏,回答问题.估计学生凭借自己已有经验,可以考虑到平移,旋转.教师播放课件,提出问题:同学们都玩过这个游戏吗?要怎样消掉下面三行小方块呢?那这个要怎么办呢?(第二个)然后引入课题.用游戏的方式迅速集中学生的注意力,使学生明确本节课的学习内容,自然进入到新课程中来.(二) 认识旋转1.实际上,现实生活中,旋转现象随处可见,都有哪些物体的运动属于旋转呢?2.如果把钟表时针、电扇的叶片看成一个平面图形,那么这些图形的运动有什么特点?能描述一下什么是旋转吗?3.以三角形的旋转为例,设置旋转概念有关的问题学生举出生活中旋转实例.估计绝大多数的学生都可以答出图形都绕某一定点转动,也可能答出顺时针方向,角度教师要求学生举出生活中常见旋转的例子,学生在举例中初步感受旋转.接着教师请学生看屏幕,演示生活中常见的旋转:①钟表指针的转通过生活中旋转现象的举例,让学生初步认识旋转.从学生熟悉的生活经验入如图,在硬纸板上,挖一个三角形洞,再挖一个小洞O 作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形洞(△ABC ),然后围绕O 转动硬纸板,再描出这个挖掉的三角形洞(△A'B'C'),移开硬纸板.A BCA′B′C′O试探究:线段OA 和OA′有什么关系?∠AOA′与∠BOB′有什么关系?△ABC 与△A'B'C'的形状和大小有什么关系?1.如图将△AOB 绕点O 逆时针旋转80°得到△COD ,若∠A 的度数为110°,∠D 的度数为40°,则∠α的度数是()A.60°B.50°C.40°D.30°ABOCDαB2.如图,在等腰直角三角形ABC 中,∠B=90°,将△ABC 绕点A 顺时针方向旋转一个角度后得到△AB ′C ′,若∠BAC ′=15°,则旋转角等于()A.50°B.55°C.60°D.65°AB'C′B CC 3.如图,△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP′重合.(1)旋转角是哪个角?等于多少度?(2)线段AP 旋转到哪里?(3)如果AP=3,则线段PP′等于多少?ABP′PC(1)∠BAC 和∠PAP′=90°(2)AP′的位置.(3) 231.如图∠ADC=∠B=90°,DE ⊥AB ,E 为AB 上的一点,且AD=CD ,DE=5.请用旋转的方法求出四边形ABCD 的面积.FA BCDE2.如图是一个直角三角形的苗圃,由正方形花坛和两块直角三角形草皮组成,如果直角三角形的两条斜边长分别为3米和6米,你能求出草皮的面积吗?BCA DEF A′识体系,感悟数学思想方法.作业必做题: P60第5题和第8题选做题:如图,P 为正方形ABCD 内一点,PA=1,PB=2,PC=3,求∠APB 的度数.让每一次作业成为学生数学思维能力的成长点,深化认识、提高能力.板书设计板书设计力求简洁美观,重点突出.五、设计说明1.本节课体现“做数学”的特点,问题串设计得合理、有效,力求使教学条理清晰,学生活动充分,体现“数学·活动·思维”的理念.23.1图形的旋转一定义:把一个平面图形绕着平面内的某一个点转动一个角度,叫图形的旋转.二性质:(1)对应点与旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角.(3)旋转前、后的图形全等.ABCDE例题12.教学中,要努力营造自主探究的课堂氛围,让学生在亲身体验中“认识数学,学习数学”.归纳与演绎的有机结合,力求使教学张弛有度,在充分发展学生能力的同时实现方法的迁移.3.为了“达到面向全体,实现有差异的发展”,我们必须认真审视自己的教学.用好的问题来充实我们的课堂,发展学生的思维,让数学教学焕发出生命与活力.《图形的旋转》评课稿《图形的旋转》一课体现“以生为本”的教育理念。
图形的旋转课件(通用7篇)

图形的旋转课件(通用7篇)图形的旋转课件1一、教学目标1、知道图形旋转的概念,能找出旋转图形中的旋转中心、旋转角度和对应关系。
2、通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、观察能力,以及与人合作交流的能力。
3、经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感。
二、教学重点掌握旋转的有关概念,探索和发现旋转后图形的形状和大小都没有发生变化;会准确找出对应点、对应线段、对应角,旋转中心、旋转角。
三、教学难点对图形旋转过程中旋转角相等的理解,会准确找出旋转角。
旋转中心不在三角形顶点时旋转角的确定。
四、课时安排:一课时五、教学过程一、出示学习目标1、板书课题同学们,本节课我们一同来学习“图形的旋转”。
本节课的学习目标是(投影)2、出示学习目标(1)通过实例观察,认识并描述图形的旋转。
(2)了解一个简单的图形经过旋转制作复杂图形的过程,知道图形旋转的三要素(点、方向、度数)。
(3)欣赏图形的旋转变换所创造出的美,感受旋转在生活中的应用,体会数学的价值。
二、出示生活图片(一)图形的旋转,旋转中心,旋转角,方向1、[演示]:演示生活中常见的转动,观察转动时各点的运动情况得到图形在转动时,位置始终不变的那一点叫做旋转中心。
图形转动的角度叫做旋转角。
区分顺时针旋转和逆时针旋转,以及旋转的三要素。
2、由钟表的旋转,得到线段转动的旋转角,学生描述钟表的旋转,加深旋转三要素的记忆,同时培养学生的语言表达能力。
再由线段的旋转引申到几何图形的旋转,进一步得到:旋转前后的两个图形形状和大小不变,只是位置发生变化。
(二)感受生活中的旋转在日常生活中,我们可以看到,一些图形绕着某一个点旋转一定角度时,能与自身重合。
你能举出这样的例子吗?(三)全课,巩固方法今天我们学习了图形的一种运动————旋转。
通过学习你有什么收获?(四)布置作业:1、课本习题2、32、动手操作:请设计一个绕一点旋转一定角度后能与自身重合的图形。
《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)《图形的旋转》教案1[课时]:1节课[教学内容]:复制粘贴和旋转功能的使用[教学目标]:1、使同学熟练掌握复制粘贴和旋转功能的使用方法。
2、使同学养成在实际操作中的动手动脑和小组合作的学习习惯。
3、培养同学对电脑绘图的兴趣。
[教学重点]:复制、旋转的操作使用[教学难点]:在实际绘图中的复制的多种用法[教学准备]:多媒体教室、远志多媒体教室广播软件[教学过程]:一、导入播放《欢乐的小鸡》图师:在这图里你看到了什么?生回答师:同学们,观察得真仔细啊!这幅图里的小鸡小花不是都要我们一笔一笔的画呢?其实我们只要画好其中的一朵花,一只鸡就可以利用绘图软件中的一个新功能来实现这幅画了,今天老师就来和大家一起学习新知识。
二、复制功能的学习。
师:要完成那么多的小花的绘制,我们得先画出一朵花。
活动一:下面请大家选好前景色,用工具栏中的'“椭圆”、“刷子”等来花小花。
1、教师先示范,同学动手一起画一朵花。
(可参考课本第20页的方法,画出一朵花)2、单击“图像”菜单,检查菜单中“不透明处置”前是否有打钩,有的话把钩去掉。
3、单击工具箱中“选定”工具,在小花周围拖动鼠标把要复制的小花围出。
4、选“编辑”菜单的“复制”,再点“粘贴”。
5、在出现新的小花选区上按住鼠标左键就可以把小花拖到其他位置,这样就复制了一朵小花了。
6、教学新的复制方法:选择要复制的图像后按CTRL键同时用鼠标脱动也可以复制。
让同学动手,教师指导,让好的同学进行演示。
三、画小鸡大家庭师:在草地上有许多的小鸡,大家能用刚才学习的知识进行绘制吗?但是如何绘制有大有小的呢?活动二:1、请同学们先用学的知识进行操作,画出1只小鸡。
2、然后复制一只小鸡后用选定工具再将一只小鸡选中,将鼠标指针移到“选定”框四周图像大小调整柄上,拖动鼠标后你发现什么?(变大变小)3你们试一试。
完成练习后,老师根据实际中出现的问题进行讲解并请一些操作较好的同学进行讲解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:如图,P为等边三角形ABC内 的一点,将△ABP绕点A逆时针旋转 60°后能与△ACP’重合,如果AP=3, 试问PP’是多少?为什么?
A
解:PP′=3, 理由如下: ∵△ABC是等边三角形, ∴∠BAC=60° ∵△ABP绕A点 逆时针旋转后与△ACP′重合, ∴∠PAP'=∠BAC=60°,AP=AP' ∴△APP'是正三角形, ∴PP'=AP=3
这些情境中的转动现象,有什么共同特征?
认识旋转1 –点的旋转
O 45
0
B
A
顺时针方向,转动了__ O 点,往___ 45 度到点B. 点A绕__
认识旋转2-线段的旋转
B
/
B
90
0
A
A
/
P
汽车前挡风玻璃上的刮雨器的摆动
P 点,往逆时针 线段AB绕__ ___方向,转动了__ 90 度到线段A’B’.
. ·
E
D C
B
旋转变换的作法
如图,O是△ABC外一点。以点O为旋转中心,将△ABC按 逆时针旋转60°,作出经旋转变换后的像。
旋转的基本性质:
(1)旋转不改变图形的大小和 形状; (2)对应点到旋转中心的距离 相等; (3)两组对应点分别与旋转中 心的连线所成的角相等.等于 旋转的角度。
A'
C'
B'
A
C O B
∴△A’B’C’就是所求作的旋转变换后的像
例2 四边形ABCD是正方形,△ADF旋转 一定角度后得到△ABE,如图所示,如果 AF=4,AB=7, ∠ADF=35°求: (1)指出旋转中心和旋转角度; (2)求DE的长度; (3)∠EBC的度数;
解 :(1)旋转中心为点A, 旋转角度是90度。 (2)DE=3 (3) ∠EBC=55°
P' P C
B
1.像这样,把一个平面图形绕着某一定点按某个
方向转动一定的角度,这样的图形运动就叫与它在旋转下的点A′ 叫做旋转下的对应点。
3.转动的角∠AO A′ 称为旋转角
旋转方向:顺时针
A A′
图形旋转的三要素: 旋转中心. 旋转角度. 旋转方向.
旋转角
o
旋转中心
例1 如图:ABC是等腰三角形,D是BC上一点, ∠BAC=90度,ABD经过 旋转后到达ACE的位 置。
(1)旋转中心是哪一点? (2) 分别指出点B,D的对应点、∠ADB ,∠BAD的对 应角、BD,AD的对应边; A (3)旋转的角度是多少度?
解:(1)旋转中心是顶点A; (2)点B,D的对应点为点C,E;∠ADB , ∠BAD的对应角分别为∠CAE、 ∠E ; BD,AD的对应边分别为CE、AE; (3)顺时针旋转了90度;逆时 针旋转了270度