人教版七年级下册数学第六章基础练习题
完整版人教版七年级下册数学第六章 实数含答案

人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、下列说法:(1)带根号的数是无理数;(2)无理数是带根号的数;(3)开方开不尽的都是无理数;(4)无理数都是开方开不尽的;(5)无理数是无限小数;(6)无限小数是无理数;正确的有().A.2个B.3个C.4个D.5个2、介于下列哪两个整数之间()A.0与1B.1与2C.2与3D.3与43、下列实数中最大的是()A.1B.C.3D.4、64的立方根是()A.4B.±8C.8D.±45、计算的结果是()A.0B.1C.﹣1D.6、已知:m、n为两个连续的整数,且,以下判断正确的是()A. B. 的小数部分是0.236 C. 的整数部分与小数部分的差是 D.7、下列说法中,正确的是A. 是分数B.0是正整数C. 是有理数D. 是无理数8、在实数:0,,,,0.020020002…(每两个2之间零的个数依次增加1)中,无理数有()A.1个B.2个C.3个D.4个9、﹣8的立方根是()A.﹣2B.±2C.2D.﹣210、下列对实数说法正确的是()A.它是一个有理数B.它是一个单项式C.它是一个分数D.它的值等于1.0711、的算术平方根是()A.9B.±9C.3D.±312、在实数 0, , , ,3.14 ,2.3030030003…(相邻两个3之间0的个数逐渐加1)中,其中无理数的个数是()A.2B.3C.4D.513、的相反数是()A. B.- C. D.-14、下列说法正确的是()A.1的平方根是1B.0没有平方根C.0.01是0.1的一个平方根 D.1是1的一个平方根15、下列说法正确的有()(1)立方根是它本身的数是0和1 (2)没有平方根的数也没有立方根(3)异号两数相加,结果为负数(4)数轴上的点与有理数一一对应A.0个B.1个C.2个D.4个二、填空题(共10题,共计30分)16、 4的算术平方根是________,﹣64的立方根是________.17、一项工程甲单独完成需要20小时,乙单独完成需要12小时,则甲乙合作完成这项工程共需要________小时.18、比较大小:________2 .(填“>”、“=”、“<”).19、一个正数x的平方根分别是2a﹣3与5﹣a,则x等于________.20、估计的值在哪两个整数之间________21、tan30°﹣=________.22、与最接近的整数是________;23、探究:满足不等式的最小正整数n=________.24、已知a、b为两个连续整数,且a<<b,则a+b=________25、比较大小:2________ .(填“>”、“=”、“<”)三、解答题(共6题,共计25分)26、如图所示,在4×4的正方形网格中的每个小正方形边长都是1,画出两个边长为无理数的两个正方形,且使它的每个顶点都在小正方形的顶点上.并求出所画正方形的边长.27、求下列各式中的x.(1)4x2﹣16=0(2)27(x﹣3)3=﹣64.28、计算(1)﹣++(2)﹣>﹣3.29、计算:﹣|﹣2|+(﹣3)0﹣()﹣1.30、已知2x—y的平方根为±3,3x+y的立方根是1,求3x-2y的平方根.参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、A5、A6、C7、C8、C9、D10、B11、C12、B13、D14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。
第6章 实数 人教版数学七年级下册单元测试(含答案)

第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
人教版七年级下册数学第六章-实数含答案(附答案)

人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、8的立方根等于()A. 2B.-2C.±2D.2、的算术平方根是()A. B. C.± D.3、下列实数是无理数的是A. B. C. D.4、估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间5、下列说法正确的是()A.a的平方根是±B.a的立方根是C. 的平方根是0.1 D.6、下列等式正确是A. B. C. D.7、下列实数中的无理数是()A.1B.0C.D.π8、下列各数中,无理数的个数有()0,,,,2π,3.7878878887…(两个7之间依次多一个8),A.2个B.3个C.4个D.5个9、由图可知,a、b、c的大小关系为()A.a < b < cB.a < c <bC.c < a <bD.c < b < a10、给出四个实数﹣2,0,0.5,,其中无理数是()A.﹣2B.0C.0.5D.11、实数π,,﹣3. ,,中,无理数有()个.A.1B.2C.3D.412、下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个 C.4个D.5个13、下列说法正确的是()A. =±3B. 的立方根是2C.D.的算术平方根是214、在实数范围内,下列判断正确的是()A.若|a|=|b|,则a=bB.若|a|=()2,则a=bC.若a>b,则a 2>b 2D.若= ,则a=b15、如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点AB.点BC.点CD.点D二、填空题(共10题,共计30分)16、实数a、b在数轴上的位置如图所示,则化简|a+2b|﹣|a﹣b|的结果为________.17、设的小数部分为b,那么(4+b)b的值是________.18、比较下列实数的大小(在横线填上>、<或=)①2 ________ 3 ;② ________ ;③﹣________﹣.19、16的平方根是________,算术平方根是________.20、如果实数a、b在数轴上的位置如图所示,那么化简=________.21、若x3=﹣,则x=________.22、若=0.7160,=1.542,则=________,=________.23、比较大小:________1(填“ ”“ ”或“ ”)24、若|x|=3,y2=4,且x>y,则x﹣y=________.25、计算:(+π)0﹣2|1﹣sin30°|+()﹣1=________ .三、解答题(共6题,共计25分)26、已知的立方根是2,的算术平方根是4,的整数部分是,求的值.27、将下列各数填入相应的集合内:,1.010010001,,0,,…(相邻的两个2之间的3一次增加1个),.有理数集合{ …}无理数集合{ …}28、在数轴上作出表示的点.29、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+b+c的平方根.30、计算:9×(﹣)+ +|﹣3|参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、A5、B6、D7、D8、B9、C10、D11、B12、B13、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。
人教版七年级初一数学第二学期第六章 实数单元测试基础卷

人教版七年级初一数学第二学期第六章 实数单元测试基础卷一、选择题1.对于每个正整数n ,设()f n 表示(1)n n +的末位数字.例如:(1)2f =(12⨯的末位数字),(2)6f =(23⨯的末位数字),(3)2f =(34⨯的末位数字),…则(1)(2)(3)(2019)f f f f ++++的值为( )A .4040B .4038C .0D .4042 2.在有理数中,一个数的立方等于这个数本身,这种数的个数为( ) A .1B .2C .3D .43.下列各式正确的是( )A 4=±B 143= C 4=- D 4=4.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .65.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1; ③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直 A .0个B .1个C .2个D .3个6.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行; ②立方根等于它本身的数只有0; ③两条边分别平行的两个角相等; ④互为邻补角的两个角的平分线互相垂直 A .4个B .3个C .2个D .1个7.1是a 的相反数,那么a 的值是( )A .1B .1C .D8.下列各数中,属于无理数的是( )A .227B C D .0.10100100019.若x ,y 都表示有理数,那么下列各式一定为正数的是( ) A .212x +B .()2x y +C .22xy +D .5x +10.下列各组数中互为相反数的是( )A .3B .﹣||)C D .﹣2和12二、填空题11.如果一个有理数a 的平方等于9,那么a 的立方等于_____. 12.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________. 13.写出一个大于3且小于4的无理数:___________. 14.3是______的立方根;81的平方根是________;32-=__________.15.已知31.35 1.105≈,3135 5.130≈,则30.000135-≈________.16.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: [10]3[3]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________. 17.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________. 18.已知a 、b 为两个连续的整数,且a <19<b ,则a +b =_____.19.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.20.已知正实数x 的平方根是m 和m b +. (1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 1 2 3 4 5 6 7 8 9 10 11 12 13 F G H J K L Z X C V B N M 14151617181920212223242526给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 22.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数) (2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 23.下面是按规律排列的一列数: 第1个数:11(1)2--+. 第2个数:()()231112(1)11234⎡⎤⎡⎤----+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦. 第3个数:()()()()2345111113(1)111123456⎡⎤⎡⎤⎡⎤⎡⎤------+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦. …(1)分别计算这三个数的结果(直接写答案).(2)写出第2019个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果. 24.操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:(1)已知x=2,请画出数轴表示出x 的点:(2)在数轴上,我们把表示数2的点定为基准点,记作点O ,对于两个不同的点A 和B ,若点A 、 B 到点O 的距离相等,则称点A 与点B 互为基准等距变换点.例如图2,点A 表示数-1,点B 表示数5,它们与基准点O 的距离都是3个单位长度,我们称点A 与点B 互为基准等距变换点.①记已知点M 表示数m ,点N 表示数n ,点M 与点N 互为基准等距变换点.I .若m=3,则n= ;II .用含m 的代数式表示n= ;②对点M 进行如下操作:先把点M 表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N ,若点M 与点N 互为基准等距变换点,求点M 表示的数; ③点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度,对Q 点做如下操作: Q 1为Q 的基准等距变换点,将数轴沿原点对折后Q 1的落点为Q 2这样为一次变换: Q 3为Q 2的基准等距变换点,将数轴沿原点对折后Q 3的落点为Q 4这样为二次变换: Q 5为Q 4的基准等距变换点......,依此顺序不断地重复变换,得到Q 5,Q 6,Q 7....Q n ,若P 与Q n .两点间的距离是4,直接写出n 的值.25.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下: (1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ; 因为22=4,所以22个位上的数字是4; 因为23=8,所以23个位上的数字是8; 因为24= _____ ,所以24个位上的数字是_____; 因为25= _____ ,所以25个位上的数字是_____; 因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____.26.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点36c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先根据已知得出规律,f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f (3)=2(3×4的末位数字),f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,…,找出规律,进而求出即可.【详解】解:∵f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,…,∴每5个数一循环,分别为2,6,2,0,0…,∴2019÷5=403…4,∴f(1)+f(2)+f(3)+…+f(2019)=2+6+2+0+0+2+6+2+…+2+6+2+0=403×(2+6+2)+10=4040故答案为:A.【点睛】此题主要考查了数字变化规律,根据已知得出数字变化以及求出f(1)+f(2)+f(3)+…+f(2019)=403×(2+6+2)+10是解题关键.2.C解析:C【分析】设这个数为x, 根据题意列出关于x的方程,求出方程的解即可.【详解】=,解:设这个数为x,根据题意得:3x x解得:x=0或-1或1,共3个;故选:C.【点睛】此题考查了有理数的立方,熟练掌握运算法则是解本题的关键.3.D解析:D【分析】根据算术平方根的定义逐一判断即可得解.【详解】=,故原选项错误;4=,故原选项错误;D. 4=,计算正确,故此选项正确. 故选D. 【点睛】此题主要考查了算术平方根,解题的关键是掌握算术平方根的定义.4.C解析:C 【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8. 【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8. 【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….5.A解析:A 【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直. 【详解】仅当开方开不尽时,这个数才是无理数,①错误; 立方根等于本身的有:±1和0,②错误; 0.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误 故选:A 【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.6.D解析:D【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项. 【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题; ③两条边分别平行的两个角相等或互补,故错误,是假命题; ④互为邻补角的两个角的平分线互相垂直,正确,是真命题, 真命题有1个, 故选:D . 【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.7.A解析:A 【详解】只有符号不同的两个数,我们称这两个数互为相反数,则1)1=-=-a 考点:相反数的定义8.B解析:B 【分析】无限不循环小数是无理数,根据定义解答即可. 【详解】 A 、227是小数,不是无理数;B 是无理数;C 是整数,不是无理数;D 、0.1010010001是有限小数,不是无理数, 故选:B . 【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.9.A解析:A 【分析】根据平方的非负性、绝对值的非负性以及实数的分类进行判断即可得解. 【详解】 解:A.∵20x ≥∴21122x +≥ ∴212x +一定是正数;B. ∵()20x y +≥ ∴()2x y +一定是非负数; C.∵20x ≥,20y ≥ ∴220≥+x y ∴22xy +一定是非负数;D. ∵50x +≥ ∴5x +一定是非负数. 故选:A 【点睛】本题考查了平方的非负性、绝对值的非负性以及实数的分类,熟练掌握相关知识点是解决问题的关键.10.B解析:B 【分析】根据相反数的定义,找到只有符号不同的两个数即可. 【详解】解:A 3,3B 、﹣||,﹣||)两数互为相反数,故本选项正确;C 22D 、﹣2和12两数不互为相反数,故本选项错误. 故选:B . 【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.二、填空题 11.±27 【分析】根据a 的平方等于9,先求出a ,再计算a3即可. 【详解】∵(±3)2=9,∴平方等于9的数为±3, 又∵33=27,(-3)3=-27. 故答案为±27. 【点睛】 本题考查了解析:±27 【分析】根据a 的平方等于9,先求出a ,再计算a 3即可. 【详解】 ∵(±3)2=9,∴平方等于9的数为±3, 又∵33=27,(-3)3=-27. 故答案为±27. 【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则.12.; 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是, 所以第个数是,第n 个数是,故答案为-82,. 点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+ 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n-,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)nn -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.13.如等,答案不唯一. 【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一. 【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.14.±9 2- 【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案; 【详解】 解:∵ ,∴3是27的立方根; ∵ ,∴81的平方根是 ; ∵ , ∴; 故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案; 【详解】 解:∵3327= , ∴3是27的立方根; ∵2(9)81±= , ∴81的平方根是9± ;2< ,22=故答案为:27,9±,; 【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.15.-0.0513 【分析】根据立方根的意义,中,m 的小数点每移动3位,n 的小数点相应地移动1位. 【详解】 因为 所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】n =中,m 的小数点每移动3位,n 的小数点相应地移动1位.【详解】5.130≈≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.16.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.17.9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: ,解得:,则这个正数是.故答案为:9.【解析:9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 18.9【分析】首先根据的值确定a 、b 的值,然后可得a+b 的值.【详解】∵<,∴4<<5,∵a<<b ,∴a=4,b =5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的解析:9【分析】a 、b 的值,然后可得a +b 的值.【详解】<∴45,∵a b ,∴a =4,b =5,∴a +b =9,故答案为:9.【点睛】 本题主要考查了估算无理数的大小,关键是正确确定a 、b 的值.19.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.20.-4【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知,再代入求解即可.【详解】解:(1)∵正实数的平方根是和,∴,∵,∴,∴;(2)∵正解析:【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知22,()m x m b x +==,再代入求解即可.【详解】解:(1)∵正实数x 的平方根是m 和m b +,∴0m b m ++=,∵8b =,∴28m =-,∴4m =-;(2)∵正实数x 的平方根是m 和m b +,∴22,()m x m b x +==,∴224x x +=,∴22x =,∵x 是正实数,∴x .故答案为:-4.【点睛】本题考查的知识点是平方根,掌握正实数平方根的性质是解此题的关键. 三、解答题21.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.22.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。
人教版七年级初一数学下学期第六章 实数单元 期末复习测试基础卷试卷

②∵59319 的个位数是 9,又 93 729 ,∴能确定 59319 的立方根的个位数是 9.
③如果划去 59319 后面的三位 319 得到数 59,
而 3 27 3 59 3 64 ,则 3 3 59 4 ,可得 30 3 59319 40 ,
由此能确定 59319 的立方根的十位数是 3 因此 59319 的立方根是 39. (1)现在换一个数 195112,按这种方法求立方根,请完成下列填空. ①它的立方根是_______位数. ②它的立方根的个位数是_______. ③它的立方根的十位数是__________. ④195112 的立方根是________. (2)请直.接.填.写.结果:
人教版七年级初一数学下学期第六章 实数单元 期末复习测试基础卷试卷
一、选择题
1.已知 x1 , x2 ,…, x2019 均为正数,且满足
M x1 x2 x2018 x2 x3 x2019 ,
N x1 x2 x2019 x2 x3 x2018 ,则 M , N 的大小关系是( )
18.已知 a、b 为两个连续的整数,且 a< 19 <b,则 a+b=_____. 19.如图,数轴上的点 A 能与实数 5, 3, 1 , 2 对应的是_____________
2
20.如果 a 36 , b 是 7 的整数部分,那么 ab _______. 三、解答题
21.读一读,式子“1+2+3+4+5+…+100”表示从 1 开始的 100 个连续自然数的 和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5
100
+…+100”表示为 n ,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从 n 1
人教版七年级下册数学试卷第六章平面直角坐标系基础训练题

第六章 平面直角坐标系基础训练题一、填空题1、原点O 的坐标是 ,x 轴上的点的坐标的特点是 ,y 轴上的点的坐标的特点是 ;点M (a ,0)在 轴上。
2、若点B(a ,b)在第三象限,则点C(-a+1,3b -5) 在第____________象限。
3、如果点M (x+3,2x -4)在第四象限内,那么x 的取值范围是______________。
4、已知点P 在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P 。
点K 在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点 。
5 、点A 在x 轴上,位于原点左侧,距离坐标原点7个单位长度,则此点的坐标为 ;6、在Y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为___________________。
7、已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x 。
8、点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是 。
9、线段CD 是由线段AB 平移得到的。
点A (–1,4)的对应点为C (4,7),则点B (–4,–1)的对应点D 的坐标为______________。
10、在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 。
11、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________ 。
12、在平面直角坐标系内,有一条直线PQ 平行于y 轴,已知直线PQ 上有两个点,坐标分别为(-a ,-2)和(3,6),则=a 。
13、在坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于 个单位长度。
线段PQ 的中点的坐标是________________。
14、已知0=mn ,则点(m ,n )在 。
二、选择题15、下列说法正确的是( )A 、平面内,两条互相垂直的直线构成数轴;B 、坐标为(3, 4)与(4,3)表示同一个点。
七年级下册数学第六章试卷及答案人教版

13. 已知+,那么 .14.在中,________是无理数.15.的立方根的平方是________.16.若的平方根为,则.17._____和_______统称为实数.18.若、互为相反数,、互为负倒数,则=_______.三、解答题(共46分)19.(6分)比较下列各组数的大小:(1)与;(2)与.20.(6分)比较下列各组数的大小: (1)与;(2)与.21.(6分)写出符合下列条件的数: (1)绝对值小于的所有整数之和;(2)绝对值小于的所有整数.22.(8分)求下列各数的平方根和算术平方根: 23.(6分)求下列各数的立方根:24.(6分)已知,求的值.25.(8分)先阅读下面的解题过程,然后再解答:形如的化简,只要我们找到两个数,使,,即,,那么便有:.例如:化简:.解:首先把化为,这里,,由于,,即,,所以.根据上述例题的方法化简:.5-a 3+b a b c d 323-253-85.1615289169,.64,729.02718125,,-n m 2±m b a =+n ab =m b a =+22)()(n b a =⋅b a b a n m ±=±=±2)(2)(b a >347+347+1227+7=m 12=n 7)3()4(22=+1234=⨯347+1227+32)34(2+=+42213-参考答案1.D2.A 解析:选项B 中,错误;选项C 中,错误;选项D 中,错误;只有A 是正确的.3.D 解析:因为,9的平方根是,所以.又64的立方根是4,所以,所以.4.A解析:是指的算术平方根,故选 A.5.C 解析:无理数是指无限不循环小数,也就是说无理数都是无限小数.6.A 解析:数轴上的点与实数具有一一对应的关系.7.D8.C 解析:因为所以,故A 不成立;因为所以,故B 不成立;因为故C 成立;因为所以D 不成立.9.A 解析:因为所以在实数,,,,中,有理数有,,,,只有是无理数.10.D 解析:因为,所以最大的是11.解析:;,所以的算术平方根是.12. 解析:即13.8 解析:由+,得,所以.14. 解析:因为所以在中,是无理数.15.解析:因为的立方根是,所以的立方根的平方是.16.81 解析:因为,所以,即.17.有理数 无理数 解析:由实数的定义:有理数和无理数统称为实数,可得.18. 解析:因为、互为相反数,、互为负倒数,所以,所以,故.19.解:(1)因为251625162-=⎪⎪⎭⎫ ⎝⎛--2)9(-2x 2x ,所以,所以,所以因为121-52545->>>312315->-.31315>-5-a 3+b a b c d所以.(2) 因为所以.20.解:(1)因为,且,所以.(2).因为所以,所以.21.解:(1)因为所以.所以绝对值小于的所有整数为所以绝对值小于的所有整数之和为(2)因为所以绝对值小于的所有整数为.22.解:因为所以平方根为因为所以的算术平方根为.因为所以平方根为因为所以的算术平方根为.因为所以平方根为 因为,所以的算术平方根为 因为所以平方根为 因为,所以的算术平方根为23.解:因为,所以的立方根是. 因为所以的立方根是.因为,所以的立方根是.因为,所以的立方根是.24.解:因为,所以,即,所以.323-8547858547585412253-+=-+=-=-<-2538528916917132=⎪⎭⎫ ⎝⎛±289169;1713±28916917132=⎪⎭⎫⎝⎛289169.1713,16811615=1681492=⎪⎭⎫⎝⎛±1615;49±1681492=⎪⎭⎫⎝⎛1615.498125253=⎪⎭⎫ ⎝⎛812525,271313-=⎪⎭⎫⎝⎛-271-31-故,从而,所以,所以.25.解:可知,由于,所以.一、选择题(共10小题,每题3分,共30分)1.9的平方根是( )A. 3B. ﹣3C. ±3D. ±62.下列各数:3.14159,,0.131131113…(每两个相邻3之间1的个数依次增加1),-π,,中,无理数的个数有()A. 1个B. 2个C. 3个D. 4个3.的相反数是()A. B. - C. 3 D. -34.下列说法正确的是 ( )A. 立方根是它本身的数只能是0和1B. 如果一个数有立方根,那么这个数也一定有平方根C. 16的平方根是4D. -2是4的一个平方根 .5.一个正数的算术平方根是8,则这个数的相反数的立方根是( )A. 4B. -4C.D.6.四个实数﹣2,0,﹣,﹣1中,最大的实数是( )A. ﹣2B. 0C. -D. ﹣17.估计的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间8.和数轴上的点成一一对应关系的数是( )A. 自然数B. 有理数C. 无理数D. 实数9.下列运算正确的是()B. C. D.10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A. x+1B. x2+1二、填空题(共10小题,每题3分,共30分)11.写出一个无理数,使它在和之间__________.12.的立方根是__________.13.实数的整数部分是_______14.若一个数的立方根是它本身,则这个数是____________.15.将-,-4,-,,0, 1 按照从小到大的顺序进行排列为______.16.定义运算“@”的运算法则为:则(2@6)@8=______.17.若8是m的一个平方根,则m的另一个平方根为__________.18.已知2x+1的平方根是±5,则5x+4的立方根是__________.[来源:Z+xx+] 19.若=0.716,=1.542=________.20.20.计算 .三、解答题(共60分)21.(20分)计算:(1)(-1)25︱(2)52)5(4222⨯-+--(3)+(4)23312764⎪⎭⎫⎝⎛--÷22.(10分)求x的值:(1)(x+2)2=25 (2)(x-1)3=27.3=±33-=-3=-239-=4532加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题。
1.比较下列各组数的大小:
(1)3121-与- (2)11253与
2.把下列各数填入相应的集合内。
31-,14.3 2
0 9 163,π-,,,,0.31,0.8989989998…(相邻两个8之间9的个数逐次加1) 有理数集合:{ …};
无理数集合:{ …};
正实数集合:{ …};
负实数集合:{ …}。
3.已知a 、b 互为相反数,c 、d 互为倒数,e 的绝对值等于1,那么
e -e b a e
cd )++(的值。
4.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,但是由于1<2<2,所以2的整数部分为1,将2减去其整数部分1,所得的差就是其小数部分2-1,根据以上的内容,解答下面的问题:
(1)1+2的整数部分是 ;小数部分是 ;
(2)若设2+3整数部分是x ,小数部分是y ,求x-y 3的值。
5.一个圆与一个正方形的面积都是2πcm ²,它们中哪一个的周长比较大?
6.要生产一种容积为500升的球形容器,这种球形容器的半径是多少(结果保留π)?(球的
体积公式是V=334R π,其中R 是球的半径。
)。