长江大学《大学物理》习题课1

合集下载

长江大学物理习题集下学期答案

长江大学物理习题集下学期答案

答案练习1 库伦定律 电场强度 一、选择题 C B A C D二、填空题 1. λ1d/(λ1+λ2).2. 2qy j /[4πε0 (a 2+y 2)3/2] , ±a/21/2.3. M/(E sin θ).三、计算题1. 取环带微元 d q =σd S=σ2π(R sin θ)R d θ =2πσR 2sin θd θd E =d qx/[4πε0(r 2+x 2)3/2]=()3024cos d sin 2RR R πεθθθπσ =σsin θcos θd θ/(2ε0)()()0/204/2d cos sin εσεθθθσπ==⎰E方向x 轴正向.2.取园弧微元d q=λd l =[Q/(πR )]R d θ=Q d θ/π d E =d q/(4πε0r 2)=Q d θ/(4π2ε0R 2)d E x =d E cos(θ+π) =-d E cos θ d E y =d E sin(θ+π) =-d E sin θE x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x=Q/(2π2ε0R 2)E y =⎰d E y ()⎰-2/32/2024d sin ππεπθθR Q =0方向沿x 轴正向.练习2 电场强度(续)一、选择题 D C D B A 二、填空题1. 2p/(4πε0x 3), -p/(4πε0y 3).2. λ/(πε0a ), 03. 5.14⨯105.三、计算题1. 取无限长窄条电荷元d x ,电荷线密度λ'=λd x/a它在P 点产生的电场强度为 d E=λ'/(2πε0r )=λd x/(2πε0a 22xb +)d E x =d E cos α=-λx d x/[2πε0a (b 2+x 2)]d E y =d E sin α=λb d x/[2πε0a (b 2+x2)]E x =()⎰⎰-+=2/2/2202a a x xb a xdxdE πελ=()04ln 2/2/022=+-a a a x b πελ E y =()⎰⎰-+=2/2/2202a a y xb a bdxdE πελbaa bx b a b a a 2arctan arctan 1202/2/0πελπελ=⋅=-2. 取窄条面元d S=a d x ,该处电场强度为 E=λ/(2πε0r ) 过面元的电通量为 d Φe =E ⋅d S=[λ/(2πε0r )]a d x cos θ =λac d x/[2πε0(c 2+x 2)]Φe =⎰d Φ()⎰-+=2/2/2202b b x c acdxπελ2/2/0arctan 12b b c x c ac -⋅=πελ =λa arctan[b /(2c )]/(πε0)练习3 高斯定理 一、选择题 D A D C B二、填空题1. σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右. 2 -Q/ε0, -2Q r 0/(9πε0R 2),-Q r 0/(2πε0R 2).3 (q 1+ q 4)/ε0, q 1、q 2、q 3、q 4, 矢量和三、计算题 1 因电荷分布以中心面面对称,故电场强度方向垂直于平板,距离中心相等处场强大小相等.取如图所示的柱形高斯面:两底面∆S 以平板中心面对称,侧面与平板垂直.=⋅⎰S E d SQ /ε0左边=⎰⋅左底S E d +⎰⋅右底S E d +⎰⋅侧面S E d =2∆SE (1) 板内|x |<aQ=()[]⎰-∆xx Sdx a x 2cos 0πρ=()()[]xx a x S a -∆2sin 20ππρ=4ρ0(a /π)∆S sin[πx /(2a )] 得E={2ρ0a sin[πx /(2a )]}/(πε0) (2)板外|x |>aQ=()[]⎰-∆aa Sdx a x 2cos 0πρ=()()[]aa a x S a -∆2sin 20ππρ=4ρ0(a /π)∆S得 E=2ρ0a /(πε0)当x >0方向向右, 当x <0方向向左.2. 球形空腔无限长圆柱带电体可认为是均匀带正电(体电荷密度为ρ)无限长圆柱体与均匀带负电(体电荷密度为-ρ)球体组成.分别用高斯定理求无限长均匀带电圆柱体激发的电场E 1与均匀带电球体激发的电场E 2.为求E 1,在柱体内作同轴的圆柱形高斯面,有=⋅⎰S E d S02102ερπεπl r Q rlE ==E 1=ρr 1/(2ε0)方向垂直于轴指向外;为求E 2,在球体内外作同心的球形高斯面,有=⋅⎰S E d S0224επQ E r = 球内r<a Q=-ρ4πr 23/3 E 2=-πr 2/(3ε0) 球外r>a Q=-ρ4πa 3/3E 2=-πa 3/(3ε0r 22)负号表示方向指向球心.对于O 点 E 1=ρd/(2ε0), E 2=-πr 2/(3ε0)=0(因r 2=0)得 E O =ρa/(2ε0) 方向向右; 对于P 点E 1=ρd/(2ε0), E 2=-πa 3/(12ε0d 2) 得E P =ρd/(2ε0)-πa 3/(12ε0d 2) 方向向左.练习4 静电场的环路定理 电势一、选择题 A C B D D二、填空题 1.)222(812310q q q R++πε.2 Ed cos α.3 .-q/(6πε0R )三、计算题1.解:设球层电荷密度为ρ.ρ=Q/(4πR 23/3-4πR 13/3)=3Q/[4π(R23-R 13)]球内,球层中,球外电场为 E 1=0, E 2=ρ(r 3-R 13)/(3ε0r 2) , E 3=ρ(R 23-R 13)/(3ε0r 2) 故⎰⎰⎰∞+=⋅=rR R R r211d d d 21r E r E r E ϕ⎰∞+2d 3R r E=0+{ρ(R 22-R 12)/(6ε0)+[ρR 13/(3ε0)(1/R 2-1/R 1)]}+ ρ(R 23-R 13)/(3ε0R 2) =ρ(R 22-R 12)/(2ε0)=3Q (R 22-R 12)/[8πε0(R 23-R 13)] 2.(1)⎰⋅=-212d 2r r r r U U 1l E =⎰2102r r dr rπελ=(λ/2πε0)ln(r 2/r 1)(2)无限长带电直线不能选取无限远为势能零点,因为此时带电直线已不是无限长了,公式E=λ/(2πε0r )不再适用.练习5 静电场中的导体 一、选择题 A A C D B二、填空题1. 2U 0/3+2Qd/(9ε0S ).2. 会, 矢量.3. 是, 是, 垂直, 等于.三、计算题 1. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2 E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x轴上点(y =0)E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3y轴上点(x =0)E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32. B 球接地,有 U B =U ∞=0, U A =U ABU A =(-Q+Q B )/(4πε0R 3)U AB=[Q B/(4πε0)](1/R2-1/R1) 得Q B=QR1R2/(R1R2+R2R3-R1R3)U A=[Q/(4πε0R3)][-1+R1R2/(R1R2+R2R3-R1R3)]=-Q(R2-R1)/[4πε0(R1R2+R2R3-R1R3)]练习6 静电场中的电介质一、选择题 D D B A C二、填空题1.非极性, 极性.2.取向, 取向; 位移, 位移.3.-Q/(2S), -Q/(S)三、计算题1. 在A板体内取一点A, B板体内取一点B,它们的电场强度是四个表面的电荷产生的,应为零,有E A=σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A=σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而S(σ1+σ2)=Q1 S(σ3+σ4)=Q2有σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0σ1+σ2=Q1/Sσ3+σ4=Q2/S解得σ1=σ4=(Q1+Q2)/(2S)=2.66⨯10-8C/ m2σ2=-σ3=(Q1-Q2)/(2S)=0.89⨯10-8C/m2两板间的场强E=σ2/ε0=(Q1-Q2)/(2ε0S)V=U A -U B ⎰⋅=BA l E d =Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题 1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBl E d ≠与静电场的环路定理=⋅⎰l E d l 0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习7 静电场习题课 一、选择题 D B A C A二、填空题1. 9.42×103N/C, 5×10-9C .2. 25.3 R 1/R 2, 4πε0(R 1+R 2), R 2/R 1.三、计算题1. (1)拉开前 C 0=ε0S/dW 0=Q 2/(2C 0)= Q 2d /(2ε0S ) 拉开后 C=ε0S/(2d )W=Q 2/(2C )=Q 2d /(ε0S ) ∆W=W -W 0= Q 2d /(2ε0S ) (2)外力所作功A=-A e =-(W 0-W )= W -W 0=Q 2d /(2ε0S )外力作功转换成电场的能量 {用定义式解:A=⎰⋅l F d =Fd =QE 'd=Q [(Q/S )/(2ε0)]d = Q 2d /(2ε0S ) }2. 洞很细,可认为电荷与电场仍为球对称,由高斯定理可得球体内的电场为E =(ρ4πr 3/3)/(4πε0r 2)(r /r ) =ρr /(3ε0)=Q r /(4πε0R 3)F =-q E =-qQ r /(4πε0R 3) F 为恢复力, 点电荷作谐振动-qQr /(4πε0R 3)=m d 2r/d t 2 ω=[ qQ /(4πε0mR 3)]1/2因t =0时, r 0=a, v 0=0,得谐振动A=a ,ϕ0=0故点电荷的运动方程为()t mR qQ a r 304cos πε=练习8 磁感应强度 毕奥—萨伐尔定律一、选择题 A A B C D二、填空题1. 所围面积,电流,法线(n ).2. μ0I/(4R 1)+ μ0I/(4R 2),垂直向外; (μ0I/4)(1/R 12+1/R 22)1/2,π+arctan(R 1/R 2). 3. 0.三、计算题 1.取宽为d x 的无限长电流元 d I=I d x/(2a ) d B=μ0d I/(2πr ) =μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r )=μ0I d x/(4πr 2)=μ0I d x/[4π(x 2+a 2)]d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==a ax x ax xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)a a-=02. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ=(2IN/π)d θ d B=μ0d Ir 2/[2(r 2+x 2)3/2] r=R sin θ x=R cos θ d B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B =μ0NI/(4R )练习9 毕—萨定律(续) 一、选择题 D B C A D二、填空题 1. 0.16T.2. μ0Qv /(8πl 2), z 轴负向. 3. μ0nI πR 2. 三、计算题1.取窄条面元d S =b d r ,面元上磁场的大小为B =μ0I /(2πr ), 面元法线与磁场方向相反.有Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabIbdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 在圆盘上取细圆环电荷元d Q =σ2πr d r ,[σ=Q /(πR 2) ],等效电流元为 d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r (1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx r x r x r232222220d 4σωμ-()()⎰++Rx r x r x 02322222d 4σωμ =⎪⎪⎭⎫⎝⎛+++RR x r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ(2)求磁距. 电流元的磁矩d P m=d IS=σωr d rπr2=πσωr2d r⎰=R mdr rP3πσω=πσωR4/4=ωQR2/4练习10 安培环路定理一、选择题 B C C D A二、填空题1.环路L所包围的电流, 环路L上的磁感应强度,内外.2.μ0I, 0,2μ0I.3.-μ0IS1/(S1+S2),三、计算题1. 此电流可认为是由半径为R的无限长圆柱电流I1和一个同电流密度的反方向的半径为R'的无限长圆柱电流I2组成.I1=JπR2 I2=-JπR '2 J=I/[π(R2-R '2)]它们在空腔内产生的磁感强度分别为B1=μ0r1J/2 B2=μ0r2J/2方向如图.有B x=B2sinθ2-B1sinθ1=(μ0J/2)(r2sinθ2-r1sinθ1)=0B y =B2cosθ2+B1cosθ1=(μ0J/2)(r2cosθ2+r1cosθ1)=(μ0J/2)d所以 B = B y= μ0dI/[2π(R2-R '2)]方向沿y轴正向2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为B1=μ0J/2 在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为B2=μ0J/2在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=μ0J(2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1-B2=0练习11 安培力洛仑兹力一、选择题 D B C A B二、填空题1 IBR .2 10-2, π/23 0.157N·m ; 7.85×10-2J . 三、计算题1. (1) P m=IS=Ia2方向垂直线圈平面.线圈平面保持竖直,即P m与B垂直.有M m=P m×BM m=P m B sin(π/2)=Ia2B=9.4×10-4m⋅N(2) 平衡即磁力矩与重力矩等值反向M m=P m B sin(π/2-θ)=Ia2B cosθM G= M G1 + M G2 + M G3=mg(a/2)sinθ+mga sinθ+ mg(a/2)sinθ=2(ρSa)ga sinθ=2ρSa2g sinθIa2B cosθ=2ρSa2g sinθtanθ=IB/(2ρSg)=0.2694θ=15︒2.在圆环上取微元 I 2d l = I 2R d θ 该处磁场为 B =μ0I 1/(2πR cos θ) I 2d l 与B 垂直,有 d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ)d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=222102πππθμd I I F x =μ0I 1I 2/2 因对称F y =0.故 F =μ0I 1I 2/2 方向向右.练习12 物质的磁性 一、选择题 D B D A C二、填空题1. 7.96×105A/m,2.42×102A/m. 2. 见图3.矫顽力H c 大, 永久磁铁.三、计算题1. 设场点距中心面为x ,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l l H d =ΣI 0 2∆LH=ΣI 0 (1) 介质内,0<x <b/2.ΣI 0=2x ∆lJ =2x ∆l γE ,有 H =x γE B =μ0μr 1H=μ0μr 1x γE (2) 介质外,|x |>b/2.ΣI 0=b ∆lJ =b ∆l γE ,有 H =b γE/2 B =μ0μr 2H=μ0μr 2b γE/22. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅l l H d =ΣI 0 在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr)介质内的磁化强度 M =χm H =χm I /(2πr ) 介质内表面的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向)介质外表面的磁化电流 J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习13 静磁场习题课 一、选择题 D C A A A 二、填空题1. 6.67×10-6T ; 7.20×10-21A ·m 2.2. Rih πμ20.3. -πR 2c (Wb).三、计算题1.(1)螺绕环内的磁场具有轴对称性,故在环内作与环同轴的安培环路.有 ⎰⋅l l B d =2πrB=μ0∑I i =μ0NI B=μ0NI/(2πr ) (2)取面积微元h d r 平行与环中心轴,有 d Φm =|B ⋅d S |=[μ0NI/(2πr )]h d r =μ0NIh d r /(2πr )Φm =⎰=22120021ln 22D D D D NIh dr r NIh πμπμ 2. 因电流为径向,得径向电阻为⎰=2112ln 22R RR R d rd dr πρπρ I=ε/[ρln(R 2/R 1)/(2πd )]=2πd ε/[ρln(R 2/R 1)]取微元电流 d I d l=J d S d r =[I/(2πrd )]r d θd d r=d εd θd r /[ρln(R 2/R 1)] 受磁力为 d F=|d I d l ×B |=Bd εd θd r /[ρln(R 2/R 1)]d M=|r ×d F |=Bd εd θr d r /[ρln(R 2/R 1)] 练习练习14 电磁感应定律 动生电动势一、选择题 D B D A C二、填空题 1.t I r r ωωπμcos 202210,22102Rr I r πμ .2. > , < , = .3. B ωR 2/2; 沿曲线由中心向外.三、计算题 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ εi =-d Φm /d t=()dt dIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =-5.18×10-8V负号表示逆时针2. (1) 导线ab 的动生电动势为εi = ⎰lv×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/R F 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t lB e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习15 感生电动势 自感 一、选择题 A D C B B二、填空题 1.er 1(d B /d t )/(2m ),向右;eR 2(d B /d t )/(2r 2m ),向下. 2. μ0n 2l πa 2, μ0nI 0πa 2ωcos ωt . 3.ε=πR 2k/4,从c 流至b .三、计算题1.(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ),该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/Rεi =⎰⋅N M l E i d =⎰NM i x E θcos d=()⎰-⋅RR r R r x t B R 22d d d =⎰-+⋅RRR x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4 因εi =>0,故N 点的电势高.(2) 用法拉第电磁感应定律εi =-d Φ/d t 解:沿半径作辅助线OM ,ON 组成三角形回路MONMεi =⎰⋅N M l E i d =⎰⋅-MN l E i d=-⎢⎣⎡⋅⎰M N l E i d +⎰⋅O M l E i d +⎥⎦⎤⋅⎰N O l E i d =-(-d ΦmMONM /d t ) =d ΦmMONM /d t 而 ΦmMONM =⎰⋅S d S B =πR 2B/4 故 εi =πR 2(d B/d t )/4 N 点的电势高.2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω/d t=μ0ω 0Q a2 /(2 L t0)I i=εi /R=μ0ω 0Q a2 /(2 LR t0) 方向与旋转方向一致.练习16 互感(续)磁场的能量一、选择题 D C B C A二、填空题1. 0.2. ΦAB=ΦBA.3. μ0I2L/(16π.)三、计算题1. 取如图所示的坐标,设回路有电流为I,则两导线间磁场方向向里,大小为0≤r≤a B1=μ0Ir/(2πa2)+μ0I/[2π(d-r)]a≤r≤d-a B2=μ0I/(2πr)+μ0I/[2π(d-r)]d-a≤r≤d B3=μ0I/(2πr)+μ0I(d-r)/(2πa2)取窄条微元d S=l d r,由Φm=⎰⋅SSB d 得Φml =⎰aarIrl22dπμ+()⎰-ardrIl2dπμ+⎰-a darrIlπμ2d0+()⎰--adardrIlπμ2d+⎰-a darrIlπμ2d0+()⎰-a daarl r-dI22dπμ=μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d-a)] +[μ0Il/(2π)]ln[(d-a)/a]+[μ0Il/(2π)]ln[(d-a)/a]+[μ0Il/(2π)]ln[d/(d-a)]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a) 由L l=Φl /I,L0= L l/l=Φl /(Il).得单位长度导线自感L0==μ0l/(2π)+(μ0l/π)ln(d/a)2. 设环形螺旋管电流为I, 则管内磁场大小为B=μ0NI/(2πρ) r≤ρ≤R 方向垂直于截面; 管外磁场为零.取窄条微元d S=h dρ,由Φm=⎰⋅S SB d得Φm =⎰RrNIhπρρμ2d0=μ0NIh ln(R/r)/(2π)M=Φm/I==μ0Nh ln(R/r)/(2π)练习17 麦克斯韦方程组一、选择题 C A D B C二、填空题1. 1.2. ②, ③, ①.3. 1.33×102 W/m2 ,2.51×10-6J/m3.三、计算题1. 设极板电荷为Q, 因I=d Q/d t, Q=CU,有(1) I=d(CU)/d t=C d U/d td U/d t=I/C= I0e-kt/CU= I0(1-e-kt)/(kC)(2)I d=dΦd/d t=d(DS)/d t=d(εES)/d t =d[ε(U/d)S]/d t=(εS/d)d U/d t =C d U/d t=I=I0e-kt(3)在极板间以电容器轴线为心,以r为半径作环面垂直于轴的环路,方向与I d成右手螺旋.有⎰⋅llH d=2πrH=∑I d当r<R时∑I d=[I d/(πR2)]πr2 H=I d r/(2πR2)B=μH=μI d r/(2πR2)=μI0e-kt r/(2πR2)当r>R时∑I d=I d H=Ir/(2πr)B=μI0e-k t/(2πr)方向与回路方向相同.O 点,r =0: B =0A 点,r =R 1<R :B =μI 0e -kt R 1/(2πR 2) 方向向里C 点,r =R 2>R : B =μI 0e -k t /(2πR 2) 方向向外.2.(1)坡印廷矢量平均值S =I =P /(2πr 2) r =10km S =P /(2πr 2)=1.59×10-5W/m 2(2) 电场强度和磁场强度振幅.εE =μHS =|S |=|E ×H |=2E με=εμH 2 E=εμS H=μεS E m =E 2=002εμS =1.09⨯10-1V /m H m =H 2=002μεS =2.91×10-4A/m练习18 电磁感应习题课一、选择题 A B B C D二、填空题1 0, 2μ0I 2/(9π2a 2).2 700Wb/s.3 vBl sin α, A 点.三、计算题1. 任意时刻金属杆角速度为ω,取微元长度d rd εi =v ×B ⋅d l=ωrBdr εi =⎰d εi =r r B ad 0⎰ω=ω Ba 2/2I =εi /R =ω Ba 2/(2R ) 方向由O 向A .微元d r 受安培力为|d F |=|I d l ×B |= IB d r d M =|d M |=|r ×d F |= IBr d r M=⎰d M =r r IB ad 0⎰=I Ba 2/2=ωB 2a 4/(4R )方向与ω相反.依转动定律,有-ω B 2a 4/(4R )=J α=(ma 2/3)d ω /d td t=-[4Rm/(3ω B 2a 2)]d ω =-[4Rm/(3 B 2a 2)]d ω/ωt =()[]()ωωωωd 34022⎰a B mR=-[4Rm/(3 B 2a 2)]ln(ω/ω0)t mRa B e43022-=ωω2. 因b >>a ,可认为小金属环上的磁场是均匀.Φm =⎰⋅S d S B =BS cos θ=[μ0I/(2b )]πa 2cos θ=μ0I πa 2cos θ/(2b )(1) I 恒定,θ=ω1t : εi =-d Φm /d t =(-d Φm /d θ)(d θ/d t )=μ0I πa 2ω1sin(ω1t )/(2b )(2) I =I 0sin ω2t ,θ=0:εi =-d Φm /d t =(-d Φm /d I )(d I/d t )=-μ0πa 2I 0ω2cos ω2t/(2b ) (3) I =I 0sin ω2t ,θ= ω1t :εi =-d Φm /d t=-[(∂Φm /∂θ)(∂θ/∂t )+(∂Φm /∂I )(∂I/∂t)]=[μ0I 0πa 2/(2b )][ω1sin(ω1t )sin(ω2t )-ω2cos ω2t ]练习19 义相对论的基本原理及其时空观一、选择题 C D B A A二、填空题 1. c , c . 2. c c 97.017/16=. 3. ()c l a 201-三、计算题1 (1)设K '相对于K 的运动速度为v ,运动方向为x 正向.因x 1=x 2,有∆t '=(∆t -v ∆x /c 2)/(1-v 2/c 2)1/2=∆t /(1-v 2/c 2)1/2v=[1-(∆t )2/(∆t ')2]1/2c =3c /5=1.8×108m/s(2)∆x'=(∆x-v∆t)/(1-v2/c2)1/2=-v∆t/(1 -v2/c2)1/2=-v∆t'=3c(m)=9×108m2. 设地球和飞船分别为K和K'系,有(1)飞船上观察者测飞船长度为固有长度,又因光速不变,有∆x'=90m∆t'=∆x'/c=3×10-7s(2)地球上观察者∆x=(∆x'+v∆t')/(1-v2/c2)1/2=27 0m∆t=(∆t'+v∆x'/c2)/(1-v2/c2)1/2=9×10-7s{或∆t=(∆t'+v∆x'/c2)/(1-v2/c2)1/2=(∆x'/c+v∆x'/c2)/(1-v2/c2)1/2=[(∆x'+v∆t')/(1-v2/c2)1/2]/c=∆x/c=9×10-7s }练习20 相对论力学基础一、选择题 A C A B C二、填空题1.1.49MeV.2.2/3c, 2/3c.3.5.81×10-13, 8.04×10-2.三、计算题1. E k=mc2-m0c2m=m0+E k/c2回旋周期T=2πm/(qB)=2π( m0+E k/c2)/(qB) E k=104MeV=1.6×10-9Jm0=1.67×10-27kg q=1.6⨯10-19C T=2π( m0+E k/c2)/(qB)=7.65×10-7s212.E =m 0c 2/221c v -=E 0/221c v -γ= 1/221c v -=E /E 0v=c ()201E E -=2.998×108m/s运动的距离∆l =v ∆t =v τ0γ= c ()201E E -τ0 E /E 0 =c τ0()1/20-E E =1.799×104m练习21 热辐射 光电效应一、选择题 A D C D B二、填空题1. 0.64 .2. 2.4×103K.3. 在一定温度下,单位时间内从绝对黑体表面单位面积上所辐射的各波长的总能量.三、计算题1. (1)T=b/λm =5.794×103K . (2)P =M (T )S =σT 44πR S 2=3.67×1026W(3)P'=P/S'=σT 44πR S 2/(4πL 2)=1.30×103W/m 22. λm = b/T =9.66×10-4mνm =c /λm =c /(b/T )=cT/b =3.11×1011Hz P =M (T )S =σT 44πR E 2=2.34×109W练习22 康普顿效应 氢原子的玻尔理论一、选择题 D B A C A二、填空题1. hc/λ;h/λ;h/(λc ).2. 1.45V ;7.14×105m/s .3. π;0.三、计算题1.hν=hc/λ=mv2/2+A=eU c+AU c=(hc/λ-A)/e=(hc/(λe)-A/emv=[2m( hc/λ-A)]1/2R=mv/(qB)=[2m( hc/λ-A)]1/2/(eB)2.(1) ∆λ=h(1-cosϕ)/(m0c) λ=λ0+∆λ=λ0+h(1-cosϕ)/(m0c)=1.024×10-10m(2)hν0+m0c2=hν+mc2=hν+m0c2+E khν0= hν+E kE k=hν0- hν= hc/λ0- hc/λ=hc(λ-λ0)/(λ0λ)=hc∆λ/[λ0(λ0+∆λ)]=4.71×10-17J=294eV练习23 德布罗意波不确定关系一、选择题 D C D A B二、填空题1. 1.46Å; 6.63×10-31m.2.3/3.3. 6.63×10-24. (或1.06×10-24,3.32×10-24,0.53×10-24)三、计算题1. (1)由带电粒子在均匀磁场中作圆运动运动的知识知,R=mv/(qB).于是有pα=mαvα=qBR=2eBRλα=h/pα=h/(2eBR)=9.98×10-12m =9.98×10-3nm(2) 设小球与α粒子速率相同v=vα=2eBR/mαλ= h/p= h/(mv)= h/[m(2eBR/mα)] =[h/(2eBR)](mα/m)=(mα/m)λα=6.62×10-34m2. (1)考虑相对论效应E k=eU=mc2-m0c2=E-E0p2c2=E2-E02=(E+E0)(E-E0)=(E k+2E0)E k22=(eU +2 m0c2) eUp=[(eU +2 m0c2) eU]1/2/cλ=h/p=hc/[(eU +2 m0c2)eU]1/2=8.74×10-13m(2)不考虑相对论效应E k=eU=mv2/2=p2/(2m)p=(2meU)1/2λ=h/p=h/(2meU)1/2= h/(2m0eU)1/2=1.23×10-12m(λ-λ0)/λ0=40.7%﹪﹪练习24 薛定谔方程氢原子的量子力学描述一、选择题 A C A D B二、填空题1.ν3=ν1+ν2;1/λ3=1/λ1+1/λ2.2. 粒子t时刻出现在r处的概率密度;单值,有限,连续;⎰=ψ1ddd2zyx.3. a/6, a/2, 5a/6.三、计算题1所发射光子的能量ε=hν=hc/λ=2.56eV激发能为∆E=10.19eV能级的能量为E k,有∆E=E k- E1E k=E1+∆E=-13.6+10.19=-3.41eV 初态能量E n=E k+ε=-0.85eV初态主量子数n=(E1/E n)1/2=42. 由归一化⎰∞∞-=VΨd2⎰l x c022(l-x)d x=1得c=530l0~l/3区间发现粒子的概率P=⎰l xΨ2d=⎰l30x2(l-x)2d x/l5=17/81=21%练习25 近代物理习题课一、选择题 D D D C B二、填空题231 13.6eV, 5.2 >, >, <.3. 459W/s三、计算题1. (1)ε=hν=hc/λ=2.86eV(2) 巴耳末系k=2,E2=E1/22=-13.6/4=-3.4eVE n=E1/n2=E2+ε=-0.54eVn=(E1/E n)1/2=5(3) 可发射四个线系, 共10条谱线;波长最短的谱线是从n=5的能态跃迁到n=1的能态而发射的光譜线2 ∆p∆x≧ћ/2 ∆p≧ћ/(2∆x)取p≈∆p≧ћ/(2∆x)=7.3⨯10-21kgm/sE k= p2/(2m)≈[ћ/(2∆x)]2/(2m)=ћ2/[8 m (∆x)2]=2.5⨯102425。

长江大学大一公共课大学物理试卷及答案 (2)

长江大学大一公共课大学物理试卷及答案 (2)

长江大学20XX级大学物理(上) (答案全部做在答题纸上,做在试题纸上无效)一填空(44)1.一质点作半径为9m的匀变速圆周运动,3秒内由静止绕行S=4.5m,则其加速度a= (1) m/s(矢量式),及其量值a= (2) m/s.2.质量为m的小车以速度v0作匀速直线运动,刹车后受到的阻力与速度成正比而反向,即F=-kv(k为正的常数),则t时刻小车的速度和加速度分别为v(t)= (3) 和a(t)= (4) .3.设地球半径为R,自转周期为T,地球表面重力加速度为g,则第二宇宙速度v2 = (5) ,位于赤道上空的同步卫星的高度h= (6) .4.长度为L质量为m的匀质细杆,直立在地面上,使其自然倒下,触地端保持不移动,则碰地前瞬间,杆的角速度ω= (7) 和质心线速度值v c= (8) .5.弹簧振子的固有周期为T,其振动曲线如图(1),则振动方程为 (9) ,若将弹簧长A度剪去一半, 则该振子的固有周期T1= (10) .6.一平面简谐波以波速u=10m/s沿x正方向传播,t=0时的波形如图(2),则原点0的振动方程为(11) ,该波的波函数为 (12) .7.设气体分子速率分布函数为f(v),则分子速率处于v1 → v2区间内的概率∞为 (13) ,而∫f(v)dv= (14) .8.在27O C时1atm的氮气,其分子的平均速率为 (15) ,平均转动动能为 (16) ,系统的分子数密度为 (17) .9.一摩尔氧气由体积V1按P=KV2(K为正的常数)的规律膨胀到V2,则气体所做的功为 (18) .10.电荷线密度为λ的长直线电荷,如图(3),则A点处的场强值为 (19) ,若将点电荷+q0从A点沿路径ACB移到B点,电场力做功为 (20) .11.半径R的金属球带电量为Q,则该球的电势V= (21) 和电容C= (22) .二(12)一摩尔氧气的循环曲线如图(4),bc为绝热线,试求: (1)ab,ca过程中系统吸收的热量Q A和Q B(用P1,P2,V1表示);(2)循环效率η(算出数值).三(12)波源的振动曲线如图(5),波速u=4m/s的平面简谐波沿x正方向传播,求: (1)波源的振动方程;(2)该波的波函数;(3)画出t=1.5秒时的波形图.四(12)长为L,质量M的均匀细杆,可绕水平轴O自由转动,现让其从水平位置由静止释放,在竖直位置与地面上质量为m的小球作完全非弹性碰撞,如图(6),求: (1)细杆碰撞前瞬间的角速度ω0;(2)碰撞后的角速度ω.yV1 V2=2V1图(4) 图(5) 图(6)五(8)长为L电荷线密度为λ的均匀带电线段,如图(7),求其延长线上一点P的场强和电势.图(7)六(12)圆柱形电容器内外薄圆筒A B的半径分别为R A和R B,长为h,单位长度带电量为λ.求(1)两筒间的场强发布E(r)和电势差V AB;(2)该电容器的电容C和电场能量W.物理常数: R=8.31J/K.mol, k=1.38*10-23J/K20XX级大学物理(上)试题答案一(44分)1(1)1n0+1t0(m/s2), (2)√2 (m/s2).2(3) v0e-kt/m,(4)-(kv0/m)e- kt/m. 3(5)√2g R,(6)3√R2T2g/4π2 –R. 4(7) √3g/L, (8)√3g L/4.5(9) x=A cos(2πt/T-π/3), (10) T/√2.6(11)y0=2cos(2πt+π/2)m, (12) y=2cos[2π(t-x/10)+π/2]m.v27(13)∫f(v)dv,(14) 1,8(15) 516.8m/s,(16) 4.14*10- 21J,(17) 2.44*1025m-3.v19(18) K(V13-V23)/3.10(19) λ , (20) q0λln[(a+b)/a]. 11(21) Q , (22) C=4πε0R.2πε0a 2πε0 4πε0R参考分数二(12)(1)Q ab=C V(T b-T a)=5(P2-P1)V1/2,Q ca=C P(T a-T C)=7P1(V1-V2)/2<0 (6) (2)η=1- Q2/Q1=1-7P1(V2-V1)/[5V1(P2-P1)]=1-7/[5(P2/P1-1)](2)(6)∵P b V bγ=P c V cγ,即P2/P1=(V2/V1)γ=21.4=2.64 (3)∴η=1-7/[5(2.64-1)]=14.6﹪(1)三(12)(1)y0(0)=5cosφ=0,v0>0,即sinφ<0∴φ=3π/2,而ω=2π/T=π, ∴y0(t)=5cos(πt+3π/2)(m(2) y(x,t)=5cos[π(t-x/4)+3π/2](m(3) y(x,t=1.5)=5cos[π(1.5-x/4)+3π/2=-5con(πx/4)(m(λ=u T=4*2=8m)四(12)(1) M g l/2=Iω02/2, I=Ml2/3, ∴ω0 =√3g/l (4,1,1)(6) (2) Iω0=(I+m l2)ω, ∴ω=Mω0/(M+3m)=[M/(M+3m)]√3g/l (4,2)(6)a+l五(8)(1)E P =∫dq/(4πε0x2)=∫λdx/(4a+l(2)V P =∫dq/(4πε0x)=∫λdx/(4πε0x)E P方向:若λ>0,则E P沿x正方向,若λP六(12)(1)由高斯定理可得:E=λ/(2πε0r),(R1< r <R2) (3) (6) R BV AB=∫[λdr/(2πε0r)]=[λ/(2πε0)]lnR B/R A (3)R A(2) C=Q/V AB=(2πε0h)/lnR B/R A (3)(6)W=Q2/2C=(λ2h/4πε0)lnR B/R A (3)。

长江师范学院《大学物理》2018-2019学年期末试卷(1)

长江师范学院《大学物理》2018-2019学年期末试卷(1)

装订线长江师范学院《大学物理》2018-2019学年第一学期期末试卷考试类型:(闭卷)考试考试时间:120分钟学号姓名年级专业成绩一、选择题(本大题共12小题,每空2分,共30分)1.连续性原理的物理本质是理想流体在流动中____________守恒,伯努利方程实际是______________原理在流体运动中的应用。

2.储有氧气的容器以速率v=100m·s-1运动,假设容器突然停止运动,全部定向运动的动能转变为气体分子热运动动能,容器中氧气的温度将上升_____________K。

3.一物体沿X轴作谐振动,振幅为20cm,周期为4s,t=0时物体的位移为10cm-,且向X轴负向运动,该物体的振动方程为X=m。

4.当处于温度为T的平衡态时,一个氧气分子的平均能量为___________。

5.一卡诺热机的低温热源温度为7℃,效率为20%,若要将其效率提高到50%,高温热源的温度需提高________℃6.两带电量相等的粒子以相同的速度垂直进入某匀强磁场,它们的质量比为1:2,则它们的运动半径比为__________________。

7.圆线圈半径为R,通过的电流为I,则圆心的磁感应强度大小为________________。

8.静电场的环路定理的表达式是___________________,它表明静电场是_____________场。

9.放置在水平桌面上的弹簧振子,其简谐振动的振幅mA2100.2-⨯=,周期sT5.0=,若起始状态振动物体在正方向端点,其做简谐振动的方程为;若起始状态振动物体在平衡位置,向负方向运动,其做简谐振动的方程为。

10.洛埃镜实验的重要意义在于揭示了______________________现象。

11.迎面而来的两辆汽车的车头灯相距为D,设人的瞳孔直径为d,光的波长为λ,则人在距离汽车_________处刚好可分辨出两个车灯。

1212AB 0p pVO12.一个点电荷q 位于一个边长为a 的立方体的中心,通过该立方体的电通量是。

答案长江大学物理习题集(上册)

答案长江大学物理习题集(上册)

一、运动学 1.基本物理量 (1).位置矢量(运动方程) r = r (t) = x (t)i + y (t)j + z (t)k, 速度v = dr/dt = (dx/dt)i+(dy/dt)j + (dz/dt)k, 加速度 a=dv/dt=(dvx/dt)i+(dvy/dt)j +(dvz/dt)k =d2r/dt2=(d2x/dt2)i+(d2y/dt2)j + (d2z/dt2)k, 切向加速度 at= dv/dt, 法向加速度 an= v2/ . (2).圆周运动及刚体定轴转动的角量描述 =(t), =d/dt, = d/dt =d2/dt2, 角量与线量的关系 △l=r△, v=r (v= ×r), at=r, an=r2。 2.相对运动 v20=v21+v10, a20=a21+a10. 二、质点动力学 1.牛顿三定律(略); 惯性系(略);非惯性系(略); 惯性力:平动加速参照系 F惯= ma (a为非惯性系相对惯性系的加速度). 匀速转动参照系的惯性离心力 F惯= m2r 2.动量 P=mv, 冲量 , 质点及质点系的动量定理 =P2-P1, 动量守恒定律: (1) F外=0, p=恒量, (2) (F外)某方向=0,p某方向=恒量, (3) F外f内,p≈恒量 (F外) 某方向( f内) 某方向,p某方向≈恒量 3.功 功率 P=F·v,
2. 阻力作功 A= 依动能定理,有
第一次x1=0,x2=1; 第二次x1=1,x2待求 k(x22-12)= k(12-02) 得 x=,所以第二次击铁钉的深度为 x=-1=0.414cm
Ⅳ 课堂例题 一. 选择题 1.一质点在几个外力同时作用下运动时,下述哪种说法正确? (A) 质点的动量改变时,质点的动能一定改变. (B) 质点的动能不变时,质点的动量也一定不变. (C) 外力的冲量是零,外力的功一定为零. (D) 外力的功为零,外力的冲量一定为零. 2.有一劲度系数为k的轻弹簧,原长为l0,将它吊在天花板上.当它 下端挂一托盘平衡时,其长度变为l1.然后在托盘中放一重物,弹簧长 度变为l2,则由l1伸长至l2的过程中,弹性力所作的功为 (A) . (B) . (C) . (D) . 3.某物体的运动规律为dv/dt=-kv2t,式中的k为大于零的常量. 当t=0时,初速为v0,则速度v与时间t的函数关系是 (A) (B) (C) (D) 4.一根细绳跨过一光滑的定滑轮,一端挂一质量为M的物体,另一 端被人用双手拉着,人的质量m=M/2.若人相对于绳以加速度a0向上 爬,则人相对于地面的加速度(以竖直向上为正)是 (A) (2 a0 + g)/3. (B) -(3g-a0). (C) -(2 a0 + g)/3. (D) a0. 5.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地 球中心的 (A) 角动量守恒,动能也守恒. (B) 角动量守恒,动能不守恒. (C) 角动量不守恒,动能守恒. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 6.如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质

长江大学大学物理历考试试卷

长江大学大学物理历考试试卷

长江大学大学物理历考试试卷文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)中心的磁感强度和线圈的磁矩分别是原来的图1图2 (A) 4倍和1/8.(B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2.3. 面积为S 和2 S 的两圆线圈1、2如图1放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用?21表示,线圈2的电流所产生的通过线圈1的磁通用?12表示,则?21和?12的大小关系为:(A) ?21 =2?12.(B) ?21 >?12. (C) ?21 =?12 (D) ?21 =21?12. 4. 在一个磁性很强的条形磁铁附近放一条可以自由弯曲的软导线,如图2所示.当电流从上向下流经软导线时,软导线将(A) 不动.(B) 被磁铁推至尽可能远. (C) 被磁铁吸引靠近它,但导线平行磁棒. (D) 缠绕在磁铁上,从上向下看,电流是顺时针方向流动的.(E) 缠绕在磁铁上,从上向下看,电流是逆时针方向流动的. 5. 磁感应强度为B 的均匀磁场被限制在圆柱形空间内,.B的大小以速率d B /d t >0变化,在磁场中有一等腰三角形ACD 导线线圈如图3放置,在导线CD 中产生的感应电动势的大小为ε1,在导线CAD 中产生的感应电动势的大小为为ε2, 则:(A) ε1=ε2 ,图3(B) ε1>0, ε2=0 , (C) ε1=0, ε2>0 , (D)ε2>ε16. 有下列几种说法:(1) 所有惯性系对物理基本规律都是等价的.(2) 在真空中,光的速度与光的频率、光源的运动状态无关. (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同. 若问其中哪些说法是正确的, 答案是(A) 只有(1)、(2)是正确的. (B) 只有(1)、(3)是正确的.(C) 只有(2)、(3)是正确的. (D) 三种说法都是正确的. 7. 光电效应和康普顿效应都包含有电子与光子的相互作用过程. 对此过程,在以下几种理解中,正确的是:(A)光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程.(B)两种效应都相当于电子与光子的弹性碰撞过程. (C)两种效应都属于电子吸收光子的过程.(D)两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律.8. 一电量为q 的点电荷位于圆心O 处 ,A 是圆内一点,B 、C 、D 为同一圆周上的三点,如图4所示. 现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大.图5(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大. (D) 从A 到各点,电场力作功相等.9. 对于线圈其自感系数的定义式为L =?m /I .当线圈的几何形状,大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流变小,则线圈的自感系数L(A) 变大,与电流成反比关系. (B) 变小.(C) 不变. (D) 变大,但与电流不成反比关系.10. 普朗克量子假说是为解释 (A) 光电效应实验规律而提出来的. (B) 黑体辐射的实验规律而提出来的. (C) 原子光谱的规律性而提出来的. (D) X 射线散射的实验规律而提出来的.二. 填空题(每空2分,共30分).1. 一根无限长直导线通有电流I ,在P 点处被弯成了一个半径为R 的圆(图5),且P 点处无交叉和接触,则圆心O 处的磁感强度大小为_______________________.2. 有很大的剩余磁化强度的软磁材料不能做成永磁体,这是因为软磁材料__________,如果做成永磁体________.3. 坡印廷矢量S的定义式为 _____________________ .P4.一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为__________________.5. 设电子静止质量为m e ,将一个电子从静止加速到速率为 c (c 为真空中光速),需作功________________________.6.若中子的德布罗意波长为2 ?,则它的动能为________________.7. 如图6所示,一个带电量为q 的点电荷位于一边长为l 的正方形abcd 的中心线上,q 距正方形l/2,则通过该正方形的电场强度通量大小为________________.8.(填是或不是)与导体表面相互 , 9. 两根长直导线通有电流I ,图7所示有三种环路,对于环路b , =⋅⎰bL l B d ;10 在磁感强度为B =a i +b j +c k (T)的均匀磁场中,有一个半径为R 的半球面形碗,碗口向上,即开口沿z 轴正方向.则通过此半球形碗的磁通量为11 反映电磁场基本性质和规律的麦克斯韦方程组的积分形式为:V ρ d d 0⎰⎰=⋅SVS D ① ()⎰⎰⋅∂∂-=⋅SlS B l E d d t ② ⎰=⋅S S B 0d ③ ()⎰⎰⋅∂+=⋅SlS D j l H d d t④试判断下列结论是包含或等效于哪一个麦克斯韦方程式的. 将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场: ;l c d 图6图7图8(2) 电荷总伴随有电场: .12. 一电子以的速率运动, 电子的经典力学动能与相对论动能之比是 .三.计算题(每小题10分,共40分)1.半径为R 的一球体内均匀分布着电荷体密度为?的正电荷,若保持电荷分布不变,在该球体内挖去半径r 的一个小球体,球心为O ′ , 两球心间距离O O = d , 如图8所示 , 度.2.静止长度为90m 的宇宙飞船以相对地球的速度飞离地球,一光脉冲从船尾传到船头.求:(1) 观察者测得该光脉冲走的时间和距离;(2) 察者测得该光脉冲走的时间;(3) 宇宙飞船中有一盆昙花,飞船上的观察者测得昙花从花开到花谢的时间为100s ,地球上的观察者测得昙花从花开到花谢的时间为多少3. 假设把氢原子看成是一个电子绕核作匀速圆周运动的带电系统,如图9所示.已知平面轨道的半径为r ,电子的电荷为e ,质量为m e .将此系统置于磁感强度为0B的均匀外磁场中,设0B的方向与轨道平面(xoz 平面)平行,求此系统所受的力矩M.图9图104. 半径为R 的无限长实心圆柱导体载有电流I ,电流沿轴向流动,并均匀分布在导体横截面上.一宽为R ,长为l 的矩形回路(与导体轴线同平面)以速度v向右运动,如图10所示.(1) 求 r>R 区域的磁感强度; (2) 求矩形回路左边与导体边线相距为R 时,回路中的感应电动势。

长江大学大学物理历年考试试卷修订稿

长江大学大学物理历年考试试卷修订稿

长江大学大学物理历年考试试卷集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]a 的正三角形顶点,每条导线中的电流都是I ,这三条导线在正三角形中心O 点产生的磁感强度为:(A) B = 0 (B) B =30I /(a ) (C) B =30I /(2a ) (D) B =30I /(3a )5.无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R )的磁感强度为B 1,圆柱体外(r >R )的磁感强度为B 2,则有:(A) B 1、B 2均与r 成正比 (B) B 1、B 2均与r 成反比 (C) B 1与r 成正比, B 2与r 成反比 (D) B 1与r 成反比, B 2与r 成正比6.如图5所示.匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:(A) ad 边转入纸内,bc 边转出纸外. (B) ad 边转出纸外,cd 边转入纸内. (C) ab 边转入纸内,cd 边转出纸外. (D) ab 边转出纸外,cd 边转入纸内. 7.图6中, M 、P 、O 为软磁材料制成的棒,三者在同一平面内,当K 闭合后(A) P 的左端出现N 极 (B) M 的左端出现N 极(C) O 的右端出现N 极 (D) P 的右端出现N 极8.如图7所示,导体棒AB 在均匀磁场中绕通过C 点的垂直于棒长且沿磁场方向的轴OO 转动(角速度与B 同方向), BC 的长度为棒长的1/3. 则:(A) A 点比B 点电势低 (B) A 点与B 点电势相等(C) A 点比B 点电势高 (D) 有电流从A 点流向B 点 9.已知钠的逸出功是2 .46 eV ,那么钠的红限波长是: (A) 540nm (B )505nm (C) 435nm (D) 355nm.图5图6图7U CU 0A BC 10.在加热黑体过程中,其最大单色辐出度对应的波长由0.8m 变到0.4m ,则其温度增大为原来的(A)16倍 (B)8倍 (C) 4倍 (D)2倍二. 填空题(每空2分,共30分).1. 如图8所示,在场强为E 的均匀电场中,A 、B两点间距离为d ,AB 连线方向与E 的夹角为30°, 从A 点经任意路径到B 点的场强线积分l E d ⎰⋅AB=2. 一平行板电容器,极板面积为S ,相距为d . 若B 板接地,且保持A 板的电势U A = U 0不变,如图9所示. 把一块面积相同的带电量为Q 的导体薄板C 平行地插入两板之间,则导体薄板C 的电势U C =3.一平行板电容器两极板间电压为U ,其间充满相对电容率为e r 的各向同性均匀电介质,电介质厚度为d . 则电介质中的电场能量密度w =4.如图10所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,aob =180.则圆心O 点处的磁感强度的大小B =5.圆柱体上载有电流I ,电流在其横截面上均匀分布,一回路L (顺时针绕向)通过圆柱内部,将圆柱体横截面分为两部分,其面积大小分别为S 1和S 2,如图11所示. 则=⋅⎰Ll B d6.在磁感强度为B =a i +b j +c k (T)的均匀磁场中,有一个半径为R 的半球面形碗,碗口开口沿x 轴正方向.则通过此半球形碗的磁通量为B图8图137. 边长为a 和2a 的两正方形线圈A 、B,如图12所示地同轴放置,通有相同的电流I , 线圈B 中的电流产生的磁场通过线圈A 的磁通量用A 表示, 线圈A 中的电流产生的磁场通过线圈B 的磁通量用B 表示,则二者大小关系式为8.矩形线圈长为a 宽为b ,置于均匀磁场B 中.线圈以角速度旋转,如图13所示,当t =0时线圈平面处于纸面,且AC 边向外,DE边向里.设回路正向ACDEA . 则任一时刻线圈内感应电动势为9.一截面为长方形的环式螺旋管共有N 匝线圈,其尺寸如图14所示.则其自感系数为10.在一通有电流I 的无限长直导线所在平面内, 有一半径为r 、电阻为R 的导线环,环中心距直导线为a ,如图15所示,且a >>r .当直导线的电流被切断后,沿导线环流过的电量约为11.一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流大小为__________12.在某地发生两件事,静止位于该地的甲测得时间间隔为10s ,若相对甲以3c /5(c 表示真空中光速)的速率作匀速直线运动的乙测得时间间隔为13.把一个静止质量为m 0的粒子,由静止加速到v =0.6c (c 为真空中的光速)需做功为14.某微观粒子运动时的能量是静止能量的k 倍,其运动速度的大小为 15.波长 =600nm 的光沿x 轴正向传播,若光的波长的不确定量Δ=104nm,光子的坐标的不确定量至少为 三.计算题(每小题10分,共40分)1415 a1.一均匀带电的球层, 其电荷体密度为 , 球层内表面半径为R 1 , 外表面半径为R 2 ,设无穷远处为电势零点, 求球层内外表面的电势.2. 一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为的各向同性均匀非铁磁绝缘材料,如右图所示.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布. 3. 如右图所示。

长江大学13-14年大学物理期末试卷及答案

长江大学13-14年大学物理期末试卷及答案

B 卷第 1 页共 4 页2013─2014学年第二学期 《 大学物理A 》(下)考试试卷( B 卷)注意:1、本试卷共4页, 答题纸2页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试;5、可用计算器,但不准借用;6、考试日期:2009.6.30.7、答题答在答题纸上有效, 答在试卷上无效. 一.选择题(每小题3分,共30分)1. 如图1所示,在真空中半径分别为2R 和4R 的两个同心球面,其上分别均匀地带有电量+4q 和-4q ,今将一电量为+Q 的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为:(A) R Qq 04πε. (B) RQq 02πε. (C) R Qq 08πε. (D) RQq 083πε.2.有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 4的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的:(A) 16倍和1/16. (B) 4倍和1/16. (C) 16倍和1/4. (D) 4倍和1/4.3. 有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1.(B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1.(C) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. (D) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.4.波长λ =10000 Å的光沿x 轴正向传播,若光的波长的不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子的x 坐标的不确定量至少为(A) 10 cm . (B) 100 cm . (C) 1000 cm . (D) 10000 cm . 5. 以下说法错误的是(A)电荷电量大,受的电场力可能小; (B)电荷电量小,受的电场力可能大;4q图1B 卷第 2 页共 4 页(C)电场为零的点,任何点电荷在此受的电场力为零; (D)电荷在某点受的电场力与该点电场方向一致。

长江大学《大学物理》大题

长江大学《大学物理》大题



R2
3 ( R2 R13 ) E3dr 3 0 R2
其中

Q
4 3 ( R2 R13 ) 3
2. 如图所示,一根半径为R2的无限长载流直导体,其中电 流沿轴向由里向外流出,并均匀分布在横截面上,电流密度 为j。现在导体上有一半径为R1(R1< R2)的圆柱形空腔, 其轴与直导体的轴重合。 试求柱层内任意点(R1rR2)的磁 感强度的大小和方向。(重要)
4 0 r 2
4 0 r 2
(2)求电势分布 U
R E dl r E2dr R E3dr
2 p 2

R2
rp
3 2 R 2 3R2 U rp2 1 6 0 rp
E2 dr 3 0
R 2 rp 2 1 3 1 2 R1 2 2 R2 rp
B 2r 0 I


B
0 j (r 2 R12 )
2r
S
r R1
I 0
B0
r R2
2 I j ds j R2 R12 ( R2 2 R12 )
2r
(方向:以r为半径的逆时钟回路方向,且与圆回路相切)
1.如图所示, 一个均匀带电的球层, 其电量为Q, 球层内表面半径为R1, 外表面半径为R2. 设无穷远处为电势零点, 求球层内任一点(R1rR2)的电势.(重要)
(1)求场强分布
因电荷球对称,电场球对称,作与带电体对称的球形高斯面,有
P R1 O R2
2 E dS 4rp E qin / 0
无限长载流直导体电流分布具有轴对称性,磁力线是以 轴线为对称轴的同心圆。 选取回路: 取沿半径 r 的磁感应线为环路,逆时钟方向 安培环路定理得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q
A
B
三、计算题
1、如图所示,一电荷面密度为 的“无限
大”平面,在距离平面 a 米远处的一点的场
强大小的一半是由平面上的一个半径为R 的
圆面积范围内的电荷所产生的,
试求该圆半径的大小
O
·E
Ra
2、两半径为R的平行 长直导线,中心间距
为d,且d R,
求 单位长度的电容.
2R

E
oP
一、选择题 1、真空中有一均匀带电球体和一均匀带电球面,如 果它们的半径和所带的电量都相等,则它们的静电 能之间的关系是
(A) 均匀带电球体产生电场的静电能等于均匀带 电球面产生电场的静电能.
(B) 均匀带电球体产生电场的静电能大于均匀带 电球面产生电场的静电能.
(C) 均匀带电球体产生电场的静电能小于均匀带 电球面产生电场的静电能.
(D) 球体内的静电能大于球面内的静电能,球体 外的静电能小于球面外的静电能.
2、如图所示,一半径为a 的“无限长”圆柱面上均
匀带电,其电荷线密度为,在它外面同轴地套一
半径为b的薄金属圆筒,圆筒原先不带电,但与地
连接,设地的电势为零,则在内圆柱面里面、距离
轴线为r的P点的场强大小和电势分别为:
(A) E=0,U=
Qq (A)
4 0R
Qq
(C) 8 0R
Qq
(B)
2 0R
3Qq (D)
8 0R
+q 3q
R
Q

2R
4、如图所示,厚度为d 的“无限大”均匀带电导 体板,电荷面密度为 ,则板两侧离板面距离均 为h的两点a、b之间的电势差为:
(A)零
h
(C)
0
(B) 2 0
(D) 2h 0
d 图所示,则通过该球面的电场强度通量为 0 ,
带电直线的延长线与球面交点 P 处的电场强度的
d
大小为40 (R2 d42,)方向水平向左
P
.
R
O
d
2、一空气平行板电容器,两板相距为d,与 一电池连接时两板之间相互作用力的大小为 F,在与电池保持连接的情况下,将两板距 离拉开到2d,则两板之间的相互作用力的大 小是 F/4 .
dd
O O
P
r
R
4、一均匀带电的球层,其电荷体密度为 ,
球层内表面半径为R1 ,外表面半径为R2 ,设 无穷远处为电势零点, 求球层内任一点(R1 < r < R2)的电势.
R1 r
O

R2
4、一均匀带电的球层,其电荷体密度为 ,
球层内表面半径为R1 ,外表面半径为R2 ,设 无穷远处为电势零点, 求球层内任一点(R1 < r < R2)的电势.
d
·a
h

h
5、关于试验电荷以下说法正确的是
(A) 试验电荷是电量极小的正电荷; (B) 试验电荷是体积极小的正电荷; (C) 试验电荷是体积和电量都极小的正电荷; (D) 试验电荷是电量足够小,以至于它不影响产 生原电场的电荷分布,从而不影响原电场;同时 是体积足够小,以至于它所在的位置真正代表一 点的正电荷(这里的足够小都相对问题而言)。
ln a 2 0 r
b
(B) E=0,U=
ln .
2 0 a
(C) E= ,U= 2 0r
ln b 2 0 r
(D) E= 2 0,r U=
ln b 2 0 a
a r·P
b
3、 如图所示,在真空中半径分别为R和2R的两个同 心球面,其上分别均匀地带有电量+q 和3q ,今将 一电量为+Q的带电粒子从内球面处由静止释放,则 该粒子到达外球面时的动能为:
x
x dx
d
3、半径为R的一球体内均匀分布着电荷体密度为 的
正电荷,若保持电荷分布不变,在该球体内挖去半径
r 的一个小球体,球心为O´,两球心间距离 OO d
如图所示,
求:(1) 在球形空腔内,球心O处的电场强度E0 ; (2) 在球体内P点处的电场强度E. 设O、O、P
三点在同一直径上,且 OP d
3、电量分别为q1 、q2 、q3的三个点电荷分 别位于同一圆周的三个点上,如下图所示, 设无穷远处为电势零点,圆半径为R,则 bຫໍສະໝຸດ 1点处的电势U =
(
8 0 R
2q1
2q3 q2.)
q2•
q1 • R
•q3
O
b
4、图所示为某电荷系形成的电场中的电力线 示意图,已知A点处有电量为Q的点电荷,则 从电力可判断B处存在一 负 (填正、负) 的点电荷;其电量 q < (填 , , )Q.
6、对高斯定理的理解有下面几种说法,其中正确的是
(A) 如高斯面上E处处为零,则该面内必无电荷; (B) 如高斯面内无电荷,则高斯面上E处处为零; (C) 如高斯面上E处处不为零,则高斯面内必有电荷; (D) 如高斯面内有净电荷,则通过高斯面的电通量 必不为零.
二、填空题
1、一均匀带电直线长为d,电荷线密度为+,以导 线中点O为球心,R为半径(R d/2)作一球面,如
相关文档
最新文档