智能决策支持系统

合集下载

智能化决策支持系统方案

智能化决策支持系统方案

智能化决策支持系统方案一、引言决策是管理者日常工作中的核心任务之一,然而复杂的业务环境和庞大的数据量使得决策变得愈发困难和繁琐。

为了提高决策的准确性和效率,智能化决策支持系统应运而生。

本文将针对智能化决策支持系统的方案进行探讨。

二、智能化决策支持系统的概念和功能智能化决策支持系统是一种基于计算机技术和人工智能算法的决策辅助工具,旨在通过对大数据的分析和处理,结合决策者的经验和决策规则,提供决策过程中的信息支持和决策建议,帮助管理者做出更加科学、准确的决策。

智能化决策支持系统拥有以下主要功能:1. 数据采集与整合:通过对内、外部数据的采集和整合,形成全面的信息基础,为决策提供可靠的数据支持。

2. 数据分析与挖掘:通过数据分析和挖掘技术,从庞大的数据中发现关联和规律,为决策提供决策者未曾意识到的有用信息。

3. 决策模型构建:基于不同领域的决策模型,通过对历史数据的学习和分析,构建适用于具体问题的决策模型。

4. 决策模拟与评估:通过模拟不同决策方案的效果,评估其风险和优劣,辅助决策者进行决策选择。

5. 决策结果监控与反馈:对决策结果进行实时监控和反馈,及时调整决策方案,保证决策的有效执行。

三、智能化决策支持系统的应用案例以某电子商务平台的促销决策为例,阐述智能化决策支持系统的应用。

1. 数据采集与整合通过对平台内的用户行为数据、商品销售数据等进行采集,获取各类数据指标。

同时整合平台外的市场数据、社交网络数据等,形成全面的数据基础。

2. 数据分析与挖掘利用数据挖掘技术,分析用户的购买偏好、浏览趋势等,挖掘用户潜在需求。

同时通过对竞争平台的数据分析,了解市场动态和竞争态势。

3. 决策模型构建构建促销决策模型,基于历史数据和市场情报,建立商品定价模型、推荐算法、促销方案等。

4. 决策模拟与评估通过对不同促销方案的模拟和评估,预测不同方案的销售效果,评估其风险和收益。

5. 决策结果监控与反馈对决策结果进行实时监控,分析促销活动的效果和用户反馈,及时调整促销策略,以达到最佳效果。

智能决策支持系统

智能决策支持系统

智能决策支持系统一、智能决策支持系统的定义决策支持系统〔Decision Support System,简称DSS〕,是以管理科学、运筹学、控制论、和行为科学为根底,以计算机技术、仿真技术和信息技术为手段,针对半构造化的决策问题,支持决策活动的具有智能作用的人机系统。

该系统能够为决策者提供所需的数据、信息和背景资料,帮助明确决策目标和进展问题的识别,建立或修改决策模型,提供各种备选方案,并且对各种方案进展评价和优选,通过人机交互功能进展分析、比较和判断,为正确的决策提供必要的支持。

它通过与决策者的一系列人机对话过程,为决策者提供各种可靠方案,检验决策者的要求和设想,从而到达支持决策的目的。

决策支持系统一般由交互语言系统、问题系统以及数据库、模型库、方法库、知识库管理系统组成。

在*些具体的决策支持系统中,也可以没有单独的知识库及其管理系统,但模型库和方法库通常则是必须的。

由于应用领域和研究方法不同,导致决策支持系统的构造有多种形式。

传统DSS 采用各种定量模型,在定量分析和处理中发挥了巨大作用, 它也对半构造化和非构造化决策问题提供支持, 但由于它通过模型来操纵数据,实际上支持的仅仅是决策过程中构造化和具有明确过程性的局部. 随着决策环境日趋复杂,DSS的局限性也日趋突出, 具体表现在:系统在决策支持中的作用是被动的, 不能根据决策环境的变化提供主动支持, 对决策中普遍存在的非构造化问题无法提供支持,以定量数学模型为根底,对决策中常见的定性问题、模糊问题和不确定性问题缺乏相应的支持手段。

[1]DSS应具备以下特征[2]:●系统的主要功能是为管理人员提供决策支持,其目的是帮助管理人员进展决策而不是代替他们,是为了提高决策的效能而不是组织的管理效率;●传统数据管理技术与有关的模型技术、分析技术相结合;●系统应该有很强的灵活性、适应性、便于用户使用。

智能决策支持系统〔IDSS〕是决策支持系统与人工智能技术相结合的系统[3],他包括决策支持系统所拥有的组件,包括数据库系统、模型库系统和人机交互系统,同时集成了最新开展的人工智能技术,如专家系统、多代理以及神经网络和遗传算法等。

数据驱动的智能决策支持系统研究

数据驱动的智能决策支持系统研究

数据驱动的智能决策支持系统研究随着信息技术的快速发展和大数据时代的到来,数据驱动的智能决策支持系统成为各行各业不可或缺的重要工具。

这种系统依托于大数据分析的能力,能够对复杂的问题进行深入的挖掘和分析,从而帮助企业和组织做出更明智的决策。

一、数据驱动的智能决策支持系统的定义和特点数据驱动的智能决策支持系统是一种基于数据分析和挖掘的决策支持系统。

它通过采集和整理大量的数据,运用数据分析和挖掘技术,从中发现规律、发现问题,为决策者提供准确、可靠的数据分析结果和决策建议。

与传统的决策支持系统相比,数据驱动的智能决策支持系统有以下几个特点:1. 大数据分析能力:数据驱动的智能决策支持系统可以处理大规模、多种类、高维度的数据,能够深入挖掘数据背后的价值和规律,为决策提供更全面、更准确的支持。

2. 实时性和及时性:数据驱动的智能决策支持系统具备实时、及时的数据分析和决策支持能力,可以对最新的数据进行分析和挖掘,并及时向决策者提供决策支持。

3. 智能化的决策支持:数据驱动的智能决策支持系统不仅具备强大的数据分析能力,还能通过运用人工智能和机器学习等技术,对复杂的问题进行智能化的决策支持,从而帮助决策者做出更加理性、准确的决策。

二、数据驱动的智能决策支持系统的应用领域数据驱动的智能决策支持系统广泛应用于各行各业,帮助企业和组织提高工作效率、优化决策结果。

以下是几个典型的应用领域:1. 金融行业:数据驱动的智能决策支持系统在金融行业中应用广泛,可以用于风险评估、投资决策、信用评分等方面。

通过对大量的金融数据进行分析和挖掘,帮助金融机构预测市场趋势,降低风险,提高投资回报率。

2. 零售行业:数据驱动的智能决策支持系统在零售行业中可以应用于销售预测、库存管理、市场定位等方面。

通过对消费者行为数据的分析和挖掘,帮助零售商了解客户需求,优化产品组合,提高销售和客户满意度。

3. 医疗行业:在医疗行业中,数据驱动的智能决策支持系统可以应用于疾病诊断、药物研发、医疗资源分配等方面。

智能决策支持系统的开发与应用

智能决策支持系统的开发与应用

智能决策支持系统的开发与应用随着社会经济的发展,数据的应用越来越广泛,各个行业纷纷提出了自己的数据需求,同时也给企业决策提出了更高的要求。

传统的决策方式,往往需要大量的人力、物力投入和长时间的分析,效率低下且难以保证准确性。

而智能决策支持系统(Intelligent Decision Support Systems,简称IDSS)则能为企业提供更快捷、更精准、更全面的决策服务。

一、智能决策支持系统的定义及特征智能决策支持系统是一种使用人工智能技术和数据处理技术来解决决策问题的软件系统。

IDSS系统包括数据管理、数据预处理、建模、模型参数的选择和调整等一系列过程,其主要特点包括:1.实时、准确性高:IDSS系统通过大量数据的采集、处理,保证了决策结果的实时性和准确性,有助于企业增强竞争优势。

2.智能化、优化:IDSS系统将人工智能等技术与专家知识相结合,以最小化决策代价为目标,从而实现了决策流程的优化和智能化。

3.可视化、交互性:IDSS系统采用了可视化技术,提高了数据的易读性和可操作性,使得用户在决策过程中更容易理解和掌握误差的来源及其影响。

4. 高效、可扩展:IDSS系统具有较强的可扩展性,可以集成不同的算法,支持不同的业务场景,实现了快速决策的目标,帮助企业在瞬息万变的市场中保持优势。

二、智能决策支持系统应用场景IDSS系统适用于各种领域的决策分析,如营销、金融、医疗等。

下面就分别从这些领域中的实际案例来具体介绍IDSS的应用场景。

1.在营销领域:IDSS可以帮助企业充分利用自己的客户数据,从而实现精准推送、个性化服务的目标。

以电商平台为例,IDSS系统可通过用户行为、历史订单等数据进行分析和预测,提供推荐商品、营销活动等服务,从而提升用户购买意愿,促进销售。

2.在金融领域:IDSS系统可用于风险管理、客户细分、反欺诈等方面。

例如,IDSS系统可通过银行同业数据和社交网络数据,实现客户画像,提高贷款准确性和贷后监控效率。

智能决策支持系统

智能决策支持系统

智能决策支持系统智能决策支持系统(Intelligent Decision Support System,简称IDSS)是一种基于人工智能技术的信息系统,旨在协助决策者进行复杂决策过程中的问题分析和决策选项评估,从而提供高质量的决策策略和方案。

它结合了数据分析、模型建立、决策规则设定等多种技术手段,能够对大量的数据和信息进行处理和分析,为决策者提供全面、准确的决策支持。

一、智能决策支持系统的概述及其特点智能决策支持系统是一种以人工智能技术为基础的软件系统,通过引入智能技术,能够对大量的数据进行分析和处理,提供决策者所需的信息和决策建议。

其主要特点包括:1. 数据处理能力:智能决策支持系统能够对大量的数据进行整理、存储和分析,从而为决策者提供全面的数据支持。

2. 信息可视化:系统以图表、报表等形式展示数据分析结果,使决策者能够直观地了解数据的情况和趋势。

3. 决策建议:系统根据分析结果和设定的规则,为决策者提供具体的决策建议和方案。

4. 智能学习能力:系统能够通过学习和适应不断改善自身的决策能力,提供更加精准的决策支持。

二、智能决策支持系统的组成和功能智能决策支持系统由多个组件和功能模块组成,包括数据管理模块、模型建立模块、决策规则设定模块和决策支持模块等。

1. 数据管理模块:负责对输入数据进行整理、存储和管理,确保数据的准确性和完整性。

2. 模型建立模块:通过建立数学模型和计算算法,对数据进行分析和处理,为后续的决策制定提供基础。

3. 决策规则设定模块:决策者通过设定决策规则,对数据和分析结果进行评估,制定相应的决策策略。

4. 决策支持模块:根据设定的决策规则和分析结果,为决策者提供决策建议和方案,辅助其进行决策。

三、智能决策支持系统的应用领域智能决策支持系统在各个领域都有广泛的应用,尤其在复杂决策问题上具有重要意义。

1. 企业管理:智能决策支持系统可应用于企业的战略决策、生产调度、供应链管理等多个方面,提供决策支持和优化方案。

智能化决策支持系统人工智能技术为管理者提供智能化决策建议

智能化决策支持系统人工智能技术为管理者提供智能化决策建议

智能化决策支持系统人工智能技术为管理者提供智能化决策建议随着科技的发展,人工智能技术在各个领域得到了广泛的应用。

其中,智能化决策支持系统作为一项重要的应用领域,为管理者提供了智能化的决策建议。

本文将介绍智能化决策支持系统的基本概念和原理,并探讨其在管理决策过程中的应用。

一、智能化决策支持系统的概念与原理智能化决策支持系统是利用人工智能技术,结合决策分析理论与方法,辅助管理者进行决策过程的一种系统。

其基本原理是通过收集和分析大量的数据、信息和知识,建立决策模型,运用人工智能技术进行数据挖掘和知识发现,从而提供决策建议和策略辅助。

二、智能化决策支持系统在管理决策中的应用1. 数据分析与挖掘智能化决策支持系统通过收集和分析庞大的数据,进行数据挖掘和分析,从中发现隐藏在数据中的有价值的信息和知识。

这些信息和知识可以帮助管理者更好地了解市场、客户需求、竞争对手等因素,为决策提供更加准确的基础。

2. 决策模型构建智能化决策支持系统通过建立决策模型,模拟和分析不同的决策策略和场景,以求得最优的决策结果。

管理者在制定决策时,可以通过系统提供的多种模型选择最适合自己的决策方案,减少决策风险和成本。

3. 决策建议与评估智能化决策支持系统能够根据已有的数据和知识,结合管理者的实际需求,提供个性化的决策建议。

系统根据预设的目标和限制条件,综合考虑各种因素,为管理者提供全面的决策信息和评估结果,帮助其做出明智的决策。

4. 决策过程优化智能化决策支持系统可以对决策过程进行优化和改进。

通过自动化和智能化的技术手段,系统能够提高决策的效率和精度,降低决策的风险和成本。

管理者可以借助系统提供的功能,提升自己在决策过程中的效率和水平。

三、智能化决策支持系统所面临的挑战尽管智能化决策支持系统在提高决策效率和质量方面具有显著的优势,但其仍然面临一些挑战。

首先,数据的质量和完整性对系统的决策结果有着重要影响。

其次,决策模型的建立需要动态更新和调整,以适应不断变化的环境和需求。

智能决策支持系统在企业管理中的应用与优化

智能决策支持系统在企业管理中的应用与优化

智能决策支持系统在企业管理中的应用与优化在当今竞争激烈的商业环境中,企业面临着越来越复杂的决策问题。

为了在市场中脱颖而出,企业需要依靠高效、准确的决策来指导运营和发展。

智能决策支持系统(Intelligent Decision Support System,简称IDSS)作为一种先进的信息技术工具,为企业管理提供了强大的支持。

它能够整合数据、分析信息,并提供有价值的决策建议,帮助企业管理者做出更明智的选择。

一、智能决策支持系统的概述智能决策支持系统是在传统决策支持系统的基础上,结合了人工智能、数据挖掘、机器学习等先进技术而发展起来的。

它通过对大量的数据进行收集、整理和分析,提取有价值的信息和知识,为企业的决策提供支持。

智能决策支持系统通常由数据仓库、数据挖掘工具、模型库、知识库、人机交互界面等部分组成。

数据仓库用于存储企业内部和外部的各种数据;数据挖掘工具用于从数据中发现潜在的模式和规律;模型库包含了各种决策模型,如预测模型、优化模型等;知识库则存储了专家的经验和知识;人机交互界面则方便用户与系统进行交互,输入问题和获取结果。

二、智能决策支持系统在企业管理中的应用1、市场营销在市场营销领域,智能决策支持系统可以帮助企业分析市场趋势、客户需求和竞争对手的情况。

通过对销售数据的分析,系统可以预测产品的需求,为企业的生产和库存管理提供决策依据。

同时,系统还可以对客户进行细分,制定个性化的营销策略,提高客户满意度和忠诚度。

例如,一家电商企业可以利用智能决策支持系统分析客户的购买历史、浏览行为和评价等数据,了解客户的喜好和需求,从而向客户推荐更符合其兴趣的产品。

此外,系统还可以根据市场的变化和竞争对手的动态,及时调整价格策略和促销活动,提高企业的市场竞争力。

2、生产管理在生产管理方面,智能决策支持系统可以优化生产流程、提高生产效率和降低成本。

系统可以通过对生产数据的分析,预测设备的故障,提前安排维修和保养,减少生产中断的时间。

智能决策支持系统

智能决策支持系统

智能决策支持系统一、智能决策支持系统的定义决策支持系统(Decision Support System,简称DSS),是以管理科学、运筹学、控制论、和行为科学为基础,以计算机技术、仿真技术和信息技术为手段,针对半结构化的决策问题,支持决策活动的具有智能作用的人机系统。

该系统能够为决策者提供所需的数据、信息和背景资料,帮助明确决策目标和进行问题的识别,建立或修改决策模型,提供各种备选方案,并且对各种方案进行评价和优选,通过人机交互功能进行分析、比较和判断,为正确的决策提供必要的支持。

它通过与决策者的一系列人机对话过程,为决策者提供各种可靠方案,检验决策者的要求和设想,从而达到支持决策的目的。

决策支持系统一般由交互语言系统、问题系统以及数据库、模型库、方法库、知识库管理系统组成。

在某些具体的决策支持系统中,也可以没有单独的知识库及其管理系统,但模型库和方法库通常则是必须的。

由于应用领域和研究方法不同,导致决策支持系统的结构有多种形式。

传统DSS 采用各种定量模型,在定量分析和处理中发挥了巨大作用, 它也对半结构化和非结构化决策问题提供支持, 但由于它通过模型来操纵数据,实际上支持的仅仅是决策过程中结构化和具有明确过程性的部分. 随着决策环境日趋复杂,DSS的局限性也日趋突出, 具体表现在:系统在决策支持中的作用是被动的, 不能根据决策环境的变化提供主动支持, 对决策中普遍存在的非结构化问题无法提供支持,以定量数学模型为基础,对决策中常见的定性问题、模糊问题和不确定性问题缺乏相应的支持手段。

[1]DSS应具备以下特征[2]:●系统的主要功能是为管理人员提供决策支持,其目的是帮助管理人员进行决策而不是代替他们,是为了提高决策的效能而不是组织的管理效率;●传统数据管理技术与有关的模型技术、分析技术相结合;●系统应该有很强的灵活性、适应性、便于用户使用。

智能决策支持系统(IDSS)是决策支持系统与人工智能技术相结合的系统[3],他包括决策支持系统所拥有的组件,包括数据库系统、模型库系统和人机交互系统,同时集成了最新发展的人工智能技术,如专家系统、多代理以及神经网络和遗传算法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能决策支持系统一、智能决策支持系统的定义决策支持系统(Decision Support System,简称DSS),就是以管理科学、运筹学、控制论、与行为科学为基础,以计算机技术、仿真技术与信息技术为手段,针对半结构化的决策问题,支持决策活动的具有智能作用的人机系统。

该系统能够为决策者提供所需的数据、信息与背景资料,帮助明确决策目标与进行问题的识别,建立或修改决策模型,提供各种备选方案,并且对各种方案进行评价与优选,通过人机交互功能进行分析、比较与判断,为正确的决策提供必要的支持。

它通过与决策者的一系列人机对话过程,为决策者提供各种可靠方案,检验决策者的要求与设想,从而达到支持决策的目的。

决策支持系统一般由交互语言系统、问题系统以及数据库、模型库、方法库、知识库管理系统组成。

在某些具体的决策支持系统中,也可以没有单独的知识库及其管理系统,但模型库与方法库通常则就是必须的。

由于应用领域与研究方法不同,导致决策支持系统的结构有多种形式。

传统DSS 采用各种定量模型,在定量分析与处理中发挥了巨大作用, 它也对半结构化与非结构化决策问题提供支持, 但由于它通过模型来操纵数据,实际上支持的仅仅就是决策过程中结构化与具有明确过程性的部分、随着决策环境日趋复杂,DSS的局限性也日趋突出, 具体表现在:系统在决策支持中的作用就是被动的, 不能根据决策环境的变化提供主动支持, 对决策中普遍存在的非结构化问题无法提供支持,以定量数学模型为基础,对决策中常见的定性问题、模糊问题与不确定性问题缺乏相应的支持手段。

[1]DSS应具备以下特征[2]:●系统的主要功能就是为管理人员提供决策支持,其目的就是帮助管理人员进行决策而不就是代替她们,就是为了提高决策的效能而不就是组织的管理效率;●传统数据管理技术与有关的模型技术、分析技术相结合;●系统应该有很强的灵活性、适应性、便于用户使用。

智能决策支持系统(IDSS)就是决策支持系统与人工智能技术相结合的系统[3],她包括决策支持系统所拥有的组件,包括数据库系统、模型库系统与人机交互系统,同时集成了最新发展的人工智能技术,如专家系统、多代理以及神经网络与遗传算法等。

它就是以信息技术为手段,应用管理科学、计算机科学及有关学科的理论与方法,针对半结构化与非结构化的决策问题,通过提供背景材料、协助明确问题、修改完善模型、列举可能方案、进行分析比较等方式,为管理者做出正确决策提供帮助的智能型人机交互式信息系统。

智能决策支持系统的广义结构如下图所示。

二、智能决策支持系统与能量管理的区别可以从以下几个方面来说明智能决策支持系统与能量管理系统的区别[4]:(1)数据源:决策支持系统的数据源包括稳态信息与故障信息,而能量管理的数据源只包含稳态信息。

(2)对故障信息的利用:决策支持系统利用故障信息进行故障诊断,而能量管理系统则没有。

(3)对系统运行的综合分析:决策支持系统提供考虑安全性与经济性的综合评估报告,而能量管理系统未提供。

(4)分析工具:决策支持系统提供稳态信息与故障信息的分析工具,而能量管理系统只提供稳态信息的分析工具。

三、智能决策支持系统的几种结构(1)基于多代理的智能决策支持系统以下就是应用于智能电网的多代理决策支持系统[5],电网决策支持系统主要由SCADA及故障信息管理层、网络分析分析层与指挥系统协调层3部分组层,器结构如下图所示实时监测数据保护等相关信息SCADA及故障信息数据管理层:实时收集电力系统的数据,监控系统的运行状态。

网络分析层:由实时稳态分析、智能电网调度操作票、电网故障诊断、电网故障恢复、电网故障操作票组成。

指挥系统协调层:主要由指挥系统构成,主要功能就是协调各种网络分析层软件的调用逻辑及执行顺序,以及在有复杂的电网状态变化时,协调调用不同的应用软件,使其以合作的方式完成复杂的任务。

一般来说,智能调度决策支持系统包括如下能够独立完成一定功能的智能体单元:运行状态评估智能体:实时的监视系统的运行状况,对目前以及未来的系统状况进行安全评估,依据预测的可能系统状况,协调智能层的其她智能体进行预防性策略跟踪,使系统保持在正常经济、安全的状态。

经济运行决策智能体:在正常状况下,根据系统约束条件,在运行规则的指导下,运用相应的算法、模型与知识,综合运用全局系统信息,进行不同优化算法、不同优化模型、不同优化目标之间的优化协调,使得优化决策具有全局可行性,避免优化孤岛的出现。

故障诊断决策智能体:在紧急状况下,自动依据系统运行状况,诊断故障地点与类型等,制定紧急控制,并告知或帮助调度人员进行紧急控制策略。

故障恢复决策智能体:在故障状况下,依据系统状况,结合先验知识,采用不同的模型与算法进行系统恢复决策。

人机交互智能体:在任何情况下,调度人员或电力专家均可以通过它与决策支持系统进行友好、协调的交互,以便于完成特定的任务或进行系统的维护管理等。

日常管理智能体:除了完成调度人员进行的监视、维护、处理异常等日常工作外,还需要进行编写调度日志、操作票、事故报告等一系列工作。

模拟培训智能体:进行决策支持系统的培训、模拟、决策跟踪等。

系统智能体结构如下图所示以下就是应用于沥青混凝土路面施工机群的基于多代理的智能决策支持系统[6],最高层(顶层)为中央智能决策调度支持系统,它负责整个系统的调度决策,实时处理下级决策调度能Agent汇报的信息,并作出决策。

中间层为功能决策智能Agent层,包括拌与智能决策调度支持系统、运输智能决策调度支持系统、摊铺智能决策调度支持系统、压路智能决策调度支持系统等,它们负责各自下层的功能Agent,功能Agent层指在路面施工中完成某种施工任务的施工机械或设备,它们的任务就是负责调度其下层的功能Agent,来完成系统设定的任务,维持生产节拍、保证质量参数、接受中央的指令并把涉及到改变整个系统状态的决策结果通知中央智能决策调度支持系统。

下图就是系统的结构图下图为决策调度系统原理图。

可以瞧出,IDSS中五个系统(知识库系统、模型库系统、数据库系统、图形库系统及总控系统)间的联系。

总控系统控制着其它四个系统的连接与调用,同时负责与外界(信息收发系统、人机接口部分)的信息交换。

知识库系统从数据库中获得事实进行推理,从而决定从模型库中调用何种模型进行计算并确定模型中的一些参数,选定的模型从数据库中获得初始数据进行运算,并将运算结果送回数据库。

图形库系统可以从数据库中取得需要的数据绘制各种直观的图形。

在总控系统之前就是人机接口部分、信息收发系统,人机接口部分就是用户与系统的桥梁,用来做信息传输、人工决策干预、信息查询与结果输出。

信息收发系统负责接收各子系统上传的信息与发布调度决策系统的调度指令。

(2)基于专家系统的智能决策支持系统[3]专家系统(ES)与决策支持系统(DSS)结合的智能决策支持系统充分发挥了专家系统以知识推理形式解决定性分析问题的特点,又发挥了决策支持系统以模型计算为核心解决定量分析问题的特点,充分做到定性分析与定量分析的有机结合,使得解决问题的能力与范围得到一个大的发展。

专家系统与决策支持系统的具体集成结构如下图所示。

DSS ESIDSS与ES结合主要体现在以下3个方面:(1)DSS与ES的总体结合。

由集成系统把DSS与ES有机结合起来。

(2)知识库与模型库的结合。

模型库中的数学模型与数据处理模型作为知识的一种形式,即过程性知识,加入到知识推理中。

也可以把知识库与推理机作为智能模型加入到模型库中。

(3)静态数据库与动态数据库的结合。

静态数据库为动态数据库提供初始数据,ES推理结束后,动态数据库中的结果再送回到DSS中的静态数据库中。

四、决策支持系统的结构组成[7]决策支持系统就是智能决策支持系统的基础,智能决策支持系统就是在决策支持系统的框架上加入智能技术如多代理技术与专家系统等形成的,IDSS包含了DSS的所有组件,因此了解DSS的组成结构就是很有必要的。

1、模型库系统模型库系统包括模型库与模型库管理系统。

模型库中的模型有两类,一类就是标准模型,它们就是按照某些常用的程序设计语言编程,存于模型库中;另一类就是由用户应用建模语言建立的模型。

决策支持系统需要通过人机结合与模型库系统实现模型与决策者之间的交流,使模型能随环境变化与用户需求得到及时更新,不仅能够解决结构化问题,而且具有对半结构化与非结构化问题的解释能力。

模型库系统包括三个层次:应用级、生成级与工具级。

应用级就是决策者专用的或共享的模型子系统。

生成级由模型库管理系统、用户接口系统与数据库管理系统、基础库等部分组成,它由DSS的设计人员操作。

设计人员通过利用DSS的各种工具来建立与维护各个应用子系统,满足用户需求。

工具级就是一些专用或通用的软件,如构造模型的软件、图形工具、文字处理工具与模型化语言等。

通常说的模型库,一般就是介于应用级与生成级之间的系统。

DSS模型库系统由以下部件组成,如下图所示1、1、模型模型就是对于现实世界的事物、现象、过程或系统的本质属性进行抽象与简化的描述,即模型反应了客观事物最本质的特征与量的规律,描述了现实世界中有显著影响的因素与相互关系。

从现状来瞧,模型的表示技术主要有实体关系表示、结构化模型表示、框架表示、一阶谓词逻辑、面向对象表示与XML表示等。

模型的调度技术主要有类比推理、一阶谓词逻辑、遗传算法、遗传算法、机器学习、基于图形的模型合成、模型描述语言、Agent技术等。

其中模型的面向对象表示与XML表示技术以及模型的Agent调度技术具有较大的发展前景。

模型的表示形式:1)模型的程序表示模型的程序表示方法适用于描述结构化的计算模型。

传统的模型程序表示就是指模型以包括输入、输出格式与算法在内的完整程序形式表示。

这种表示形式将解程序与模型联系在一起,使模型难以修改。

但就是在模型库意义下的程序表示方法就是将模型与解程序相分离,并将程序表示的模型分成基本模块,不同模型中的共同部分可以调用相同的模块,以减少冗余。

另一种程序表示方法就是以语句的形式表示,用通用的高级语言设计出一套建模语言,即模型定义语言。

模型中的不同方程、约束条件与目标函数都对应于MDL中相应的语句。

2)模型的数据表示模型的数据表示就是把模型瞧作就是从输入集到输出集的映射,通过模型的参数集合确定这种映射关系。

模型可描述为由一组参数集合与表示模型结构特征集合的框架。

输入数据集在关系框架下进行若干关系运算,得出输出数据集。

3)模型的逻辑表示模型表示了它的输入输出之间的运算关系与数据关系,同时还确定了输入输出之间的逻辑关系。

逻辑关系可以描述定量模型的输入输出关系,也可以描述更广泛的模型的对应关系。

4)基于面向对象的模型表示方法有学者在1993年提出了面向对象的模型表示法,将由SML定义的模型与方法封装成模型类,通过操作的多态性实现模型与数据集的集成。

相关文档
最新文档