中考勾股定理专题复习
中考数学专题复习之直角三角形与勾股定理

将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为
A.0.7米
B.1.5米
C.2.2米
图22-6
( C )
D.2.4米
基
础
知
识
巩
固
2.[2017·丰台二模]三国时期吴国赵爽创制了“勾股圆方图”(如图22-7)证明了勾股
图 22-2
D.5
基
础
知
识
巩
固
高
.[2018·昌平期末]小明学了利用勾股定理在数轴上找一个无理数的准确位置后,
又进一步进行练习:首先画出数轴,如图22-3,设原点为点O,在数轴上的2个单位长
度的位置找点A,然后过点A作AB⊥OA,且AB=3.以点O为圆心,OB为半径作弧,设
与数轴右侧交点为点P,则点P的位置在数轴上 ( C )
7.直角三角形中两条边长分别为3和4,则第三边长为 5 或 7 .
基
础
知
识
巩
固
高
频
考
向
探
究
考向一 勾股定理
例 1 下列各组数中的三个数作为三角形的边长,其中能构成直角三角形的是
( B )
A. 3, 4, 5
B.1, 2, 3
C.6,7,8
D.2,3,4
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
1.[2018·房山二模]如图22-6,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯
2
2
2
图22-10
基
础
中考复习勾股定理经典题目

中考复习--勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a2+b2=c2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a2+b2=c2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC中∠C=Rt∠ a2+b2=c23.为了计算方便,要熟记几组勾股数:①3、4、5;②6、8、10;③5、12、13;④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形;5.勾股数的推算公式①如果a,b,c是勾股数,那么na,nb,nc(n是正整数)也是勾股数。
典型例题分析例1 在直线l上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=____例2 (1)求作线段5(2)已知线段a,求作线段5a)例3 如图:(1)以Rt△ABC的三边长为边作三个等边三角形,则这三个等边△的面积,S1、S2、S3之间有何关系,说明理由。
(2)如图(2),以Rt△ABC的三边长为直径作三个半圆,则这三个半圆的面积S1,S2,S3之间有何关系?(3)如果将图(2)中斜边上的半圆沿斜边翻折180°,成为图(3),请验证:“两个阴影部分的面积之和正好等于直角三角形的面积”(此阴影部分在数学史上称为“希波克拉底月牙)例4. 如图3,图中所有的四边形都是正方形,所有的三角形都是直角三角形,若所有的正方形的面积之和为507cm2,试求最大的正方形的边长。
中考勾股数知识点总结

中考勾股数知识点总结一、勾股定理在讨论勾股数之前,首先需要了解勾股定理。
勾股定理是古希腊数学家毕达哥拉斯在公元前6世纪提出的一个重要定理,它表明在直角三角形中,直角三角形的斜边的平方等于两条直角边的平方之和,即a² + b² = c²。
这个定理对于解决数学和几何问题都有很大的帮助,也为勾股数的研究奠定了基础。
二、勾股数的性质1. 勾股数的分类根据勾股定理,我们可以将勾股数分为两种情况:(1)素勾股数:如果a、b、c互质(即它们的最大公因数为1),则称这组勾股数为素勾股数。
(2)合成勾股数:如果a、b、c不互质(即它们的最大公因数大于1),则称这组勾股数为合成勾股数。
2. 勾股数的性质勾股数有着一些特殊的性质,这些性质对于中考数学的学习和解题都有一定的帮助:(1)勾股数的性质1:一个数的平方如果是勾股数,那么这个数一定是偶数。
这可以通过反证法来证明:假设一个数n的平方是勾股数,且n是奇数,那么n可以表示为2m+1,其中m是整数。
那么n的平方就可以表示为(2m+1)²=4m²+4m+1=2(2m²+2m)+1,这样n的平方就变成了奇数,与勾股数必为偶数的性质相矛盾。
所以一个数的平方如果是勾股数,那么这个数一定是偶数。
(2)勾股数的性质2:3、4、5是最小的一组勾股数。
根据勾股定理,3²+4²=5²,所以3、4、5就是最小的一组勾股数。
这也是勾股数的一个重要性质。
(3)勾股数的性质3:所有的勾股数都可以表示成m²-n²、2mn、m²+n²的形式。
这是勾股数的三角形形式,通过这个公式,我们可以求得无数个勾股数。
三、勾股数的判定方法判定一个数是否是勾股数是中考数学的重要考点之一,下面将介绍几种判定勾股数的方法:1. 枚举法:对于一个较小的数,可以通过暴力枚举的方法判断它是否是勾股数。
中考数学考点复习 勾股定理

中考数学考点复习勾股定理一.选择题1. 在ABC 中,10AB =,AC =,BC 边上的高6AD =,则另一边BC 等于( )A .10B .8C .6或10D .8或102.直角三角形有两边为3和4,则第三边的长为( )A. 5B. D. 无法确定3. 已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( )A 、40B 、80C 、40或360D 、80或3604. 乐乐婷想测量教学楼的高度,他用一根绳子从楼顶垂下,发现绳子垂到地面后还多了 米,当他把绳子的下端拉开 米后,发现绳子下端刚好接触地面,则教学楼的高度是( )米.A. B. C. D.5.在平面直角坐标系中,以点M (6,8)为圆心,2为半径的圆上有一动点P ,若A (﹣2,0),B (2,0),连接PA ,PB ,则当PA 2+PB 2取得最大值时,PO 的长度为( )A .8B .10C .12D ..6.如图,在Rt ABC ∆中,90,45,B BCA AC ︒︒∠=∠==点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .2BC 1D .17.如图,两棵树高分别为6m ,2m ,两树相距5m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞( )A .4mB . mC .3mD .9m 8.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是( )A .B .C .13D .59.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距_________A 25海里B 30海里C 35海里D 40海里10. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =6,大正方形的面积为16,则小正方形的面积为( )A .8B .6C .4D .311.如图,有一个圆锥,高为8cm ,底面直径为12cm.在圆锥的底边B 点处有一只蚂蚁,它想吃掉圆锥顶部A 处的食物,则它需要爬行的最短路程是( )A.8cmB.9cmC. 10cmD. 11cm12. 如图,在矩形ABCD 中,BC ,ADC ∠的平分线交边BC 于点E ,AH DE ⊥于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O .给出下列命题:①AEB AEH ∠=∠;②DH =;③12HO AE =;④BC BF -.其中正确命题为( )A .①②B .①③C .①③④D .①②③④13.观察图形,可以验证( )A .a 2+b 2=c 2 B.(a ﹣b )2=a 2﹣2ab+b 2 C.a 2﹣b 2=(a+b )(a ﹣b ) D.(a+b )2=a 2+2ab+b 214.如图,等腰ABC 中,10AB AC ==,12BC =,点D 是底边BC 的中点,以A 、C 为圆心,大于12AC 的长度为半径分别画圆弧相交于两点E 、F ,若直线EF 上有一个动点P ,则线段PC PD +的最小值为( )A .6B .8C .10D .1215.如图,点E 是矩形ABCD 的边AB 的中点,点F 是边CD 上一点,连接ED ,EF ,ED 平分∠AEF ,过点D 作DG ⊥EF 于点M ,交BC 于点G ,连接GE ,GF ,若FG ∥DE ,则AB AD的值是( )A .32B .2CD 二.填空题16. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .17. 若直角三角形的两直角边的长的比是:512,斜边长是26,则斜边上的高是 .18.19. 如图所示,一架梯子 长 米,顶端 靠在墙 上,此时梯子下端 与墙角 的距离为 米,当梯子滑动后停在 的位置上,测得 长为 米.则梯子顶端 沿墙下移了________米.20. 一长方体如图,在A 处有一只蚂蚁,它想吃到上底面B 点的食物,它沿长方体的侧面爬行的最短距离是 .21. 如图是单位长度为1的网格图,A 、B 、C 、D 是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成________个直角三角形.22.如图是用八个全等的直角三角形拼接而成.记图中正方形 ,正方形 ,正方形 的面积分别为 , , .若 ,则 的值是________.23.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,,则是________.24.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8,设CD=x .则AC+CE 的最小值是_____.25.如下图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为________.26. 如图,在等腰ABC 中,5AC BC ==,6AB =,D ,E 分别为AB ,AC 边上的点,将边AD 沿DE 折叠,使点A 落在CD 上的点F 处.当点F 与点C 重合时,AD =________.27.如图,是一个三级台阶,它的每一级的长、宽、高分别为,,20dm 3dm 2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路...程.是 .在一个长为13米,宽为8米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD 平行且大于AD ,木块的正视图是边长为1米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是________米.28.29. 如图,在ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ;已知3CE =,5BE =,则AC 的长为________.30.如图,是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5 m 的半圆,其边缘AB =CD =20 cm ,小明要在AB 上选取一点E ,能够使他从点D 滑到点E 再到点C 的滑行距离最短,则他滑行的最短距离为__________ m .(π取3)三.解答题31.如图,在△ABC 中,AB =17cm ,AC =8cm ,BC =15cm ,将AC 沿AE 折叠,使得点C 与AB 上的点D 重合.(1)证明:△ABC 是直角三角形;(2)求△AEB 的面积.32. 如果m ,n 是任意给定的正整数(m >n ),证明:m 2+n 2,2mn ,m 2﹣n 2是勾股数(又称毕达哥拉斯数).33.如图,在垂直于地面的墙上2m 的A 点斜放一个长2.5m 的梯子,由于不小心,梯子在墙上下滑0.5m .求梯子在地面上滑出的距离BB ′的长度.34.如图,在中,,为边上一点,且,.(1)求的长; (2)若,求的面积.35.如图,在四边形ACDB 中,CD BD ⊥,4CD =,BCD △的面积为6,12AC =,13AB =,(1)求BC 的长;(2)求ABC 的面积.36.如图,在中,点、分别是,边中点于,延长,过作于. (1)求证:. (2)若,,求的长度.37. 如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在E 处,BE 交AD 于点F .(1)判断BDF 的形状,并说明理由;(2)若6AB =,10AD =,求BDF 的面积.38.已知:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l .(1)填表:(2)如果a +b -c =m ,观察上表猜想:S l= (用含有m 的代数式表示). (3)证明(2)中的结论.39.问题背景.在△ABC中,AB=,BC=,AC=,求这个三角形的面积,乐乐同学在解答这道题时先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(△ABC的三个顶点都在正方形的顶点处),如图所示,这样不需要求△ABC的高,而借用网格就能计算它的面积.(1)请直接写出△ABC的面积;(2)我们把上述方法叫做构图法,若△ABC中,AB,BC,AC三边的长分别为,,,请你在图2的正方形网格(每个小正方形的边长为a)中画出相应的△ABC.并求其面积.40.在四边形ABCD中,∠A=∠B=90°,BC=4,CD=6,E为AB边上的点.(1)连接CE,DE,CE⊥DE.①如图1,若AE=BC,求证:AD=BE;②如图2,若AE=BE,求证:CE平分∠BCD;(2)如图3,F是∠BCD的平分线CE上的点,连结BF,DF,BF=DF,求CF的长.41.如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO,AB边上的动点,点P,点Q同时从点A出发,若P以32个单位每秒的速度从点A向点O运动,点Q以2个单位每秒的速度从点A向点B运动,设运动时间为t.(1)如图1,已知点A的坐标为(a,b),且满足(a﹣3)2﹣b|=0,则A点坐标;(2)如图1,连接BP,OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形?若能,试求:①运动时间t;②此时四边形APDQ的面积;若不能,请说明理由.42.我们在探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边,与斜边满足关系式,称为勾股定理.(1)爱动脑筋的东东把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助东东完成验证的过程.(2)如图,在每个小正方形边长为的方格纸中,的顶点都在方格纸格点上.请在图中画出的高,利用上面的结论,求高的长.。
中考数学专题复习:勾股定理

中考数学专题复习:勾股定理一、选择题1.下列各组数中不是勾股数的是()A.3,4,5 B.4,5,6 C.5,12,13 D.6,8,102.下列条件中,不能判定△ABC为直角三角形的是()A.a:b:c=5:12:13 B.∠A+∠B=∠CC.∠A:∠B:∠C=2:3:5 D.a=6,b=12,c=103.在一水塔A的东北方向32m处有一抽水池B,在水塔A的东南方向24m处有一建筑工地C,在BC间需建一条直水管道,则水管的长为()A.45m B.40m C.50m D.56m4.如果△ABC的三边长分别是m2﹣1、2m、m2+1(m>1),那么()A.△ABC是直角三角形,且斜边长为2mB.△ABC是锐角三角形C.△ABC是直角三角形,且斜边长为m2+1D.△ABC是否为直角三角形,需看m的值5.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12 B.14 C.16 D.186.如图,在△ABC中,AB=AC=5,BC=6,点M为BC边中点,MN⊥AC于点N,那么MN等于()A.B.C.D.7.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m8.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题9.在△ABC中,若三条边的长度分别为9,12、15,则以两个这样的三角形所拼成的四边形的面积是________.10.若直角三角形的两条直角边长为a、b,且满足(a﹣3)2+|b﹣4|=0,则该直角三角形的第三条边长为________.11.如图,已知AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,则∠BAD的度数为________.12.在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为________.13.如图,点P是等边△ABC内一点,连接P A,PB,PC,P A:PB:PC=3:4:5,以AC 为边作△AP′C≌△APB,连接PP′,则有以下结论:①△APP′是等边三角形;②△PCP′是直角三角形;③∠APB=150°;④∠APC=105°.其中一定正确的是________.(把所有正确答案的序号都填在横线上)14.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是________m.三、解答题15.在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.16.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?17如图,四边形ABCD中,∠ADC=90°,AD=12,CD=9,AB=25,BC=20,求四边形ABCD的面积.18如图是一块地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD⊥AD,求这块地的面积.19如图,已知BE⊥AE,∠A=∠EBC=60°,AB=4,BC2=12,CD2=3,DE=3.求证:(1)△BEC为等边三角形;(2)ED⊥CD.20如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.21如图所示,等腰三角形ABC的底边长为8cm,腰长为5cm,一动点P在底边上从B向C 以0.25cm/s的速度运动,当点P运动到P A与腰垂直的位置时,求点P运动的时间.22阅读理解:我们知道在直角三角形中,有无数组勾股数,例如5,12,13;9,40,41;…但其中也有一些特殊的勾股数,例如:3,4,5是三个连续正整数组成的勾股数.解决问题:(1)在无数组勾股数中,是否存在三个连续偶数能组成勾股数?若存在,试写出一组勾股数;(2)在无数组勾股数中,是否还存在其他的三个连续正整数能组成勾股数?若存在,求出勾股数;若不存在,说明理由.23距沿海某城市A的正南方向240千米的B处有一台风中心,其中心风力为12级,每远离台风中心25千米,风力就会减弱一级,该台风中心现正以20千米/时的速度沿北偏东30°的方向往C移动,如图所示,且台风中心的风力不变.若城市所受风力达到或超过4级,则称受台风影响.(1)该城市是否会受台风的影响?请说明理由.(2)若会受到台风影响,则台风影响城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?参考答案1.【解答】解:A、∵32+42=52,∴以3、4、5为边能组成直角三角形,即3、4、5是勾股数,故本选项错误;B、∵42+52≠62,∴以4、5、6为边不能组成直角三角形,即4、5、6不是勾股数,故本选项正确;C、∵52+122=132,∴以5、12、13为边能组成直角三角形,即5、12、13是勾股数,故本选项错误;D、∵62+82=102,∴以6、8、10为边能组成直角三角形,即6、8、10是勾股数,故本选项错误;故选:B.2.【解答】解:A、∵52+122=132,∴△ABC是直角三角形,故能判定△ABC是直角三角形;B、∵∠A+∠B=∠C,∴∠C=90°,故能判定△ABC是直角三角形;C、∵∠A:∠B:∠C=2:3:5,∴∠C=×180°=90°,故能判定△ABC是直角三角形;D、∵62+102≠122,∴△ABC不是直角三角形,故不能判定△ABC是直角三角形;故选:D.3.【解答】解:已知东北方向和东南方向刚好是一直角,∴∠BAC=90°,又∵AB=32m,AC=24m,∴BC===40(m).故选:B.4.【解答】解:∵△ABC中的三边分别是m2﹣1,2m,m2+1(m>1),又∵(m2﹣1)2+(2m)2=(m2+1)2,∴△ABC是直角三角形,斜边为m2+1.故选:C.5.【解答】解:∵∠D=90°,CD=6,AD=8,∴AC==10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=16,故选:C.6.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又∵S△AMC=MN•AC=AM•MC,∴MN==.故选:C.7.【解答】解:∵△ABC是直角三角形,BC=3m,AC=5m ∴AB===4m,∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故选:C.8.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=xcm,则ED=BE=(9﹣x)cm,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.9.【解答】解:∵92+122=225,152=225,∴92+122=152,这个三角形为直角三角形,且9和12是两条直角边;∴拼成的四边形的面积=×9×12×2=108.故答案为:108.10.【解答】解:∵(a﹣3)2+|b﹣4|=0,∴a﹣3=0,b﹣4=0,∴a=3,b=4,∴直角三角形斜边为:,故答案为:5.11.【解答】解:∵AB:BC:CD:DA=2:2:3:1,∴设AB=2x,BC=2x,CD=3x,AD=x,∴AB=BC,∵∠ABC=90°,∴AC=,∠BAC=45°,∵AD2+AC2=x2+8x2=9x2,CD2=9x2,∴AD2+AC2=CD2,∴∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°,故答案为:135°.12.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.13.【解答】解:△ABC是等边三角形,则∠BAC=60°,又△AP'C≌△APB,则AP=AP′,∠P AP′=∠BAC=60°,∴△APP'是正三角形,①正确;又P A:PB:PC=3:4:5,∴设P A=3x,则:PP′=P A=3x,P′C=PB=4x,PC=5x,根据勾股定理的逆定理可知:△PCP'是直角三角形,且∠PP′C=90°,②正确;又△APP'是正三角形,∴∠AP′P=60°,∴∠APB=150°③正确;错误的结论只能是∠APC=105°.故答案为①②③.14.【解答】解:根据题意可知当机器人走到A6点时,A5A6=18米,点A6的坐标是(6+3=9,18﹣6=12),即(9,12).所以,当机器人走到点A6时,离点O的距离是=15.故答案为:15.15.【解答】解:(1)∵∠ACB=90°,∴AB=,∵BC=15,AC=20,∴AB===25,∴AB的长是25;(2)∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,∵AC=20,BC=15,AB=25,∴20×15=25CD,∴CD=12,∴CD的长是12.16.【解答】解:在Rt△AOB中,∵AB=25m,OB=7m,OA2=AB2﹣OB2,∴OA===24(m),∵AA′=4m,∴OA′=OA﹣AA′=20m;在Rt△A′OB′中,∵OB′2=A′B′2﹣OA′2,∴OB′==15(m),∴BB′=OB′﹣OB=8(m).故这个梯子的顶端距地面24m;梯子的底端在水平方向上不是滑动了4m,而是滑动了8m.17.【解答】解:连接AC,在△ADC中,∵∠D=90°,AD=12,CD=9,∴AC==15,S△ABC=AD•CD=×12×9=54,在△ABC中,∵AC=15,AB=25,BC=20,∴BC2+AC2=AB2,∴△ACB是直角三角形,∴S△ACB=AC•BC=×15×20=150.∴四边形ABCD的面积=S△ABC+S△ACD=150+54=204.18.【解答】解:连接AC,∵CD⊥AD∴∠ADC=90°,∵AD=4,CD=3,∴AC2=AD2+CD2=42+32=25,又∵AC>0,∴AC=5,又∵BC=12,AB=13,∴AC2+BC2=52+122=169,又∵AB2=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴S四边形ABCD=S△ABC﹣S△ADC=30﹣6=24m2.19.【解答】证明:(1)在Rt△ABE中,∵∠A=60°,∠AEB=90°,∴∠ABE=30°.∵AB=4,∴AE=AB=2,BE2=AB2﹣AE2=12.又∵BC2=12,∴BE=BC.又∵∠CBE=60°,∴△BEC为等边三角形.(2)∵△BEC为等边三角形,∴EC2=BC2=12.又∵DE2=9,CD2=3,∴DE2+CD2=12=EC2,∴△CDE为直角三角形,且∠D=90°,∴ED⊥CD.20.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE =AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.21.【解答】解:如图,作AD⊥BC,交BC于点D,∵BC=8cm,∴BD=CD=BC=4cm,∵AB=5cm,∴AD=3cm,分两种情况:当点P运动t秒后有P A⊥AC时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52,∴PD=2.25cm,∴BP=4﹣2.25=1.75=0.25t,∴t=7秒,当点P运动t秒后有P A⊥AB时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴点P运动的时间为7秒或25秒.22.【解答】解:(1)设中间的偶数为m,则较大的偶数为m+2,较小的偶数为m﹣2,由勾股定理得,(m﹣2)2+m2=(m+2)2,解得m=8,m=0(舍去)所以这三个连续偶数为6,8,10,因此存在三个连续偶数能组成勾股数,如6,8,10;(2)不存在.理由:假设在无数组勾股数中,还存在其他的三个连续正整数能组成勾股数.设这三个正整数分别为n﹣1、n、n+1,由勾股定理得,(n﹣1)2+n2=(n+1)2,解得n=4,n=0(舍去).所以三个连续正整数是3,4,5,所以除了3、4、5以外,不存在其他的三个连续正整数能组成勾股数.23.【解答】解:(1)该城市会受到这次台风的影响.理由是:如图,过A作AD⊥BC于D.在Rt△ABD中,∵∠ABD=30°,AB=240,∴AD=AB=120,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200.∵120<200,∴该城市会受到这次台风的影响.(2)如图以A为圆心,200为半径作⊙A交BC于E、F.则AE=AF=200.∴台风影响该市持续的路程为:EF=2DE=2=320.∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)≈7(级).。
勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。
2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
⑵ 命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
⑷ 定理:用推理的方法判断为正确的命题叫做定理。
⑸ 证明:判断一个命题的正确性的推理过程叫做证明。
⑹ 证明的一般步骤① 根据题意,画出图形。
② 根据题设、结论、结合图形,写出已知、求证。
③ 经过分析,找出由已知推出求证的途径,写出证明过程。
AB C a b c 弦股勾A BD 5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
中考数学复习《勾股定理》专项练习题-附带有答案

中考数学复习《勾股定理》专项练习题-附带有答案一、单选题1.线段a、b、c组成的三角形不是直角三角形的是()A.a=7,b=24,c=25 B.Ba= √41,b=4,c=5C.a= 34,b=1,c= 54D.a=40,b=50,c=602.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.65B.95C.125D.1653.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为()A.16 B.2 C.32 D.1304.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()A.3 B.4 C.5 D.75.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A=10,S B=8,S C=9,S D=4则下列判断不正确的是()A.S E=18B.S F=13C.S M=31D.S M−S E=176.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.1B.√5C.2√2D.2√37.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么(a+b)2的值为().A.49 B.25 C.13 D.18.如图,在△ABC中∠C=60°,AC=4,BC=3 .分别以点A,B为圆心,大于12AB的长为半径作弧,两弧交于M、N两点,作直线MN交AC于点D,则CD的长为()A.1 B.75C.32D.3二、填空题9.如图,△ABC中AB=AC=10,BC=16,△ABC的面积是.10.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4 √2,则BC=.11.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是12.某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子底端A到左墙的距离AE为0.7m,梯子顶端D到地面的距离DE为2.4m,若梯子底端A保持不动,将梯子斜靠在右墙BC上,梯子顶端C到地面的距离CB为2m,则这两面直立墙壁之间的安全通道的宽BE为m.13.活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为三、解答题14.如图,点C在∠DAB内部,CD⊥AD于点D,CB⊥AB于点B,CD=CB,若AD=5,求AB的长.15.如图,在△ABC中,CD⊥AB,垂足为D.AD=1,BD=4,CD=2.求证:∠ACB=90°.16.如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C 点的距离.17.如图,在△ABC中,∠ACB的平分线CD交AB于点D,E为AC边上一点,且满足∠AED=2∠DCB.(1)求证:DE∥BC;(2)若∠B=90°,AD=6,AE=9,求CE的长.18.如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.答案1.D2.C3.A4.C5.D6.B7.A8.B9.4810.511.1.512.2.213.2√3或√314.解:解法一:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°在Rt△ABC与Rt△ADC中有AC=AC,CD=CB∴Rt△ABC≌Rt△ADC(HL)∴AB=AD=5解法二:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°∵CD=CB∴由勾股定理得:AB= √AC2−BC2 = √AC2−CD2 =AD=515.证明:∵CD是△ABC的高∴∠ADC=∠BDC=90°.∵AD=1,BD=4,CD=2∴AC2=AD2+CD2=12+22=5,BC2=BD2+CD2=42+22=20,AB2=(1+4)2=25.∴AC2+BC2=AB2.∴△ABC是直角三角形∴∠ACB=90°.16.解:由勾股定理得;BC2=AC2−AB2=252−202=225∴BC=15(米)∵BD=AB−AD=20−12=8(米)∴在Rt△BCD中,由勾股定理得CD=√DB2+BC2=√82+152=17∴此时小鸟到地面C点的距离17米.答;此时小鸟到地面C点的距离为17米.17.(1)证明:∵CD平分∠ACB∴∠ACD=∠DCB即∠ACB=2∠DCB又∵∠AED=2∠DCB∴∠ACB=∠AED∴DE//BC;(2)解:∵DE//BC∴∠EDC=∠BCD,∠B=∠ADE=90°∵∠BCD=∠ECD∴∠EDC=∠ECD∴ED=CE∵AD=6,AE=9∴DE=√AE2−AD2=√92−62=3√5∴CE=3√5.18.(1)解:∵△ABC是等边三角形∴AB=AC,∠BAC=∠C=60°又∵AD=CE ∴△ABD≌△CAE(SAS)∴∠BME=∠ABD+∠BAE=∠CAE+∠BAE=∠BAC=60°(2)解:①∵BH⊥AE ∠BME=60°∴∠HBM=30°∴BM=2MH∵△ABD≌△CAE ∴AE=BD=BM+MD=2MH+MD②过点E作EG⊥AB于点GBE=2EC=2 ∴AB=BC=3∴使用ABC=60°∴BG=1,AG=2,由勾股定理可得,GE= √3,AE= √7设HE=x,则AH= √7 -x由勾股定理得32-(√7 -x)2=22-x2解得x= √77再由勾般定理可得:BH= 3√21.7。
勾股定理中考复习

B勾股定理及其逆定理中考复习一 勾股定理及其简单应用1.已知直角三角形的周长为斜边为2,则该三角形的面积是( ).2. 已知直角三角形的三边长分别为a +1、a +2、a +3,则a =________.3. 观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.4. 在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)若a ∶b =3∶4,c =75cm ,求a 、b ;(2)若a ∶c =15∶17,b =24,求△ABC 的面积;(3)若c -a =4,b =16,求a 、c ;5. 在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求这里的水深是多少m .6. 在数轴上画出表示10-及13的点.二 折叠与方程思想7. 如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.8. 如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长. 9. (11延庆二22)阅读材料:(1)操作发现:如图,矩形ABCD 中,E 是AD 的中点,将△ABE ∆沿BE 折叠后得到GBE ∆,且点 G 在矩形ABCD 内部.小明将BG 延长交DC 于点F , 认为DF GF =,你同意吗?说明理由. (2)问题解决:保持(1)中的条件不变,若DF DC 2=,求ABAD的值; (3)类比探求:保持(1)中条件不变,若nDF DC =,求ABAD的值.三分情况讨论10.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.11.若一个直角三角形的两边长分别为3和4,则此三角形的第三边长为__________.四最短路径问题12.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为________(π取3)13.如图,两个村子A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.14.如图所示,有一个长方体,其长、宽、高分别为4cm、4cm、6cm,在点A处有一只蚂蚁,它想拖走B处的食物,回到A处,那么它需要爬行的最短路程应为多少?五勾股定理证明的应用15.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算16.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2 (C)225cm2 (D)无法计算17.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是_________.18.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=_________.19.如图,△ABC中,∠C=90°,(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图①图②图③20.(2011朝阳二模,22题)阅读材料并解答问题如图①,以Rt△ABC的直角边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,可以得出结论△ABC的面积与△AEG的面积相等.(1)在图①中的△ABC的直角边AB上任取一点H,连结CH,以BH、HC为边分别向外作正方形HBDE和正方形HCFG,连结EG,得到图②,则△HBC的面积与△HEG的面积的大小关系为 .(2)如图③,若图形总面积是a,其中五个正方形的面积和是b,则图中阴影部分的面积是 .(3)如图④,点A、B、C、D、E都在同一直线上,四边形X、Y、Z都是正方形,若图形总面积是m,正方形Y的面积是n,则图中阴影部分的面积是 .图①图②图③图④21.(10海淀一22)阅读:如图1,在ABC∆和DEF∆中,90ABC DEF∠=∠=︒,,AB DE a==BC EF b==()ba<,B、C、D、E四点都在直线m上,点B与点D重合.连接AE、FC,我们可以借助于ACES∆和FCES∆的大小关系证明不等式:222a b ab+>(0b a>>). 证明过程如下:∵,,.BC b BE a EC b a===-∴11(),22ACES EC AB b a a∆=⋅=-11().22FCES EC FE b a b∆=⋅=-∵0b a>>,∴FCESACES∆∆>.即aabbab)(21)(21->-.∴22b ab ab a->-.∴222a b ab+>.解决下列问题:(1)现将△D E F 沿直线m 向右平移,设()BD k b a =-,且01k ≤≤.如图2,当BD EC =时,k = .利用此图,仿照上述方法,证明不等式:222a b ab +>(0b a >>).(2)用四个与ABC ∆全等的直角三角形纸板进行拼接,也能够借助图形证明上述不等式.请你画出一个..示意图,并简要说明理由.22. (10昌平一22)阅读下列材料:将图1的平行四边形用一定方法可分割成面积相等的八个四边形...,如图2,再将图2中的八个四边形适当组合拼成两个面积相等且不全等的平行四边形.(要求:无缝隙且不重叠) 请你参考以上做法解决以下问题:(1)将图4的平行四边形分割成面积相等的八个三角形...; (2)将图5的平行四边形用不同于(1)的分割方案,分割成面积相等的八个三角形...,再将这八个三角形适当组合拼成两个面积相等且不全等的平行四边形,类比图2,图3,用数字1至8标明.23. (10崇文一22)正方形ABCD 的边长为a ,等腰直角三角形FAE 的斜边AE b =(a b 2<),且边AD和AE 在同一直线上 .小明发现:当b a =时,如图①,在BA 上选取中点G ,连结FG 和CG ,裁掉FAG ∆和CHD ∆的位置构成正方形FGCH .(1)类比小明的剪拼方法,请你就图②和图③两种情形分别画出剪拼成一个新正方形的示意图.(2)要使(1)中所剪拼的新图形是正方形,须满足=AEBG. 图1图24图365312图5图4687758432124.(10丰台一22)在图1中,正方形ABCD的边长为a,等腰直角三角形F AE的斜边AE=2b,且边AD和AE在同一直线上.操作示例当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△F AG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.思考发现小明在操作后发现:该剪拼方法就是先将△F AG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.实践探究(1)正方形FGCH的面积是;(用含a,b的式子表示)(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.六几何证明25.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.26.已知:如图,△ABC中,BC=AC,∠ACB=90°,D、E分别为斜边AB上的点,且∠DCE=45°.求证:DE2=AD2+BE2.图3E图 4图22b=a a<2b<2a b=a 图12b<a图5b>a27.(10朝阳一23)请阅读下列材料问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PC 是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′C=150°,而∠BPC=∠AP′C=150°.进而求出等边△ABC的边长为7.问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.七勾股定理的逆定理28.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.29.已知:如图,在正方形ABCD中,F为DC的中点,E为CB的四等分点且,41CBCE 求证:AF⊥FE.八网格问题30.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC是________三角形.31.(06北京)请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.当已知条件中没有给出图形时, 应认真读句画图,避免遗漏另一 种情况。
考点2:勾股定理中的方程思想
一、利用方程求线段长
如图,笔直公路上A,B两点相距25km,C,D为两 村庄, DA⊥AB于A,CB⊥AB于B,已知DA=15k m,CB=10km,现在公路AB上建一车站E。 (1)若使得C,D两村到E站的距离相等,则E站建在 离A站多少km处? 此时DE与CE的位置关系如何? (2)若使得C,D两村到
考点5:勾股定理在找规律题中应用
如图①,分别以直角△ABC三边为直径向外作三个半圆,其面 积分别用S1、S2、S3表示,则不难证明S1=S2+S3 . 问题:如图②,分别以直角△ ABC三边为边向外作三个正方形, 其面积分别用S1、S2、S3表示,那么S1、S2、S3之间的关系为 S1=S2+S3 ______________ 变式一:如图③,分别以△ ABC三边为边向外作三个正三角形, 其面积分别用S1、S2、S3表示,那么S1、S2、S3之间的关系为 S1=S2+S3 ______________ 变式二: 若分别以直角△ ABC三边为边向外作三个正多边形, 其面积分别用S1、S2、S3表示,那么S1、S2、S3之间的关系为 ______________ S1=S2+S3
《勾股定理》专题复习
2019.4.20
• 基本知识: 勾股定理及逆定理 • 基本经验: 已知两边求第三边通常利用勾股定理直接 计算或者列方程求解,立体图形中的勾股 定理问题通常转化为平面图形来解决。 • 基本思想与方法: 数形结合,分类讨论,方程思想,转化化 归,由特殊到一般,数学建模。
一、核心内容归纳:
c b
a : b : c 1: 3 : 2
C
a
B
若∠A=45°,则
B
a
C
5.直角三角形中的有关定理 在直角三角形中,30°角所对的直角边等于斜边的一 半。
a : b : c 1:1: 2
二、常见考点枚举
• 考点1:已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1 5 cm,2cm ,则斜边长为_______cm .
2.已知直角三角形的两边长为3和4,则另一条边长 是________________ . 5或 7 3、三角形ABC中,AB=10,AC=17,BC边上的高线
9或21 AD=8,则BC的长为_______________.
考查意图说明:2,3训练学生分类讨论思想
分类思想
1.直角三角形中,已知两边长时, 应分类讨论。
a4
2 2 2
n 1
2
an
寻找规律性问题二
n 1 n 1
2
Sn
n 2
OA 10 10
2 2 S12 S 2 S10
55 4
A4 A5 S4 S3 A6 S5 ... O
A3 S2 S1 A2 A1
1
寻找规律性问题三
观察下列图形,正方形1的边长为7,则 正方形2、3、4、5的面积之和为多少?
证明:连接AE 1 正方形边长为 4, F为中点,CE BC 4 CF DF 2, CE 1 BE 3 又 B D C 90 由勾股定理知AE 2 AB2 BE 2 16 9 25 EF 2 EC 2 FC 2 1 4 5 AF 2 AD2 DF 2 16 4 20 EF 2 AF 2 5 20 25 AE 2 EF 2 AF 2 AFE 90
A D E B F C
EC=3
2、在矩形纸片ABCD中,AD=3cm,AB=9cm, 按图所示方式折叠,使点B与点D重合,折痕为 E A EF,求DE和EF的长。
D
B
F C’
C
DE=5 EF 10
3.边长为8和4的矩形OABC的两边分别在直角坐 标系的x轴和y轴上,若沿对角线AC折叠后,点B 落在第四象限B1处,设B1C交x轴于点D,求(1) 三角形ADC的面积,(2)点B1的坐标,(3) AB1所在的直线解析式.
y
C B
1S ADC
10
O
D B1
A
x
24 12 2B1 , 5 5 3 3 y x 6 4
考点3:勾股定理在立体图形展开图中的应用 问题一:如图,已知圆柱体底面直径为2cm, 高为4cm 如果蚂蚁在圆柱体表面由A点爬到CF 边中点H,求蚂蚁爬行的最短距离。
寻找规律性问题一 • (1)如图,设四边形ABCD是边长为1的正方形, 以正方形ABCD的对角线AC为边作第二个正 方形ACEF,再以第二个正方形的对角线AE为 边作第三个正方形AEGH,如此下去…(1) 记正方形ABCD的边长为 a1 1 ,依上述方法 所作的正方形的边长依次为 a2 , a3 ,, an ,求出 a2 , a3 , a4 的值。 0 a1 2 1 • (2)根据以上规律写 1 a2 2 2 出第n个正方形的边 2 a3 2 2 长的表达式 an 。 3
若a2 +b2>c2, 则∆ABC为锐角三角形; ∠C 为锐角
若a2 +b2<c2, 则∆ABC为钝角三角形;∠C为钝角
知识回顾
3、常用的勾股数: ① 3、4、5; ② 5、12、13; ④ 7、24、25 ;⑤ 8、15、17. 4、特殊三角形的三边关系:
A
③ 6、8、10;
A b c
若∠A=30°,则
知识回顾
1.勾股定理: 如果直角三角形的两直角边 长分别为a、b, 斜边长为c, 那么a2+b2=c2.
A
b
C
c
┓
a
B
∵∠C=90°
∴ a2+b2=c2 或 ∴ BC2+AC2=AB2
勾 股 定 理 公 式 变 形
a2+b2=c2
a2=c2-b2 b2 =c2-a2
2
2
a c b
2
b=
2
2 2 c -a
(4) △ABC的三边长为 钝角三角形。 (m﹥n﹥0)那么△ABC的确切形状是________ (5)在△ABC中,若三边长分别为2、3、4,那么 锐角三角形 △ABC的确切形状是_______________ 。 考查意图说明:勾股定理逆定理应用
(5)如图,正方形ABCD中,边长为4,F为DC的中点, 1 E为BC上一点, CE BC ,请你证明∠AFE是直 4 角。
3 2 4 5
S2+S3+S4+S5= S1
1
三、对于本章复习的想法:
• 基本计算的准确性 • 注意数学思想方法的渗透例如数形结合、分类 讨论,方程思想等 • 注意勾股定理与实际相结合的问题 • 注意培养学生的动手操作能力及合作探究能力 如勾股定理探索,数学活动中的折纸问题 • 注意勾股定理在综合性问题中的应用例如动点 问题。
D
E站的距离之和最短,则
此时AE相距多远?
C
15
10
110km, DE CE.215km
A
E25
B
考点2:勾股定理中的方程思想
二、利用方程解决翻折问题
1、如图,用一张长方形纸片ABCD进行折纸, 已知该纸片宽AB为8cm,长BC为10cm.当 折叠时,顶点D落在BC边上的点F处(折痕为 AE).想一想,此时EC有多长?
4
2
C
问题二:长方体的长为4cm,宽2cm,高 3cm,试求蚂蚁从长方体表面A爬行到M 点的最短路线长。
H E F
、●
G
M
D A B
113 137 153 2 2 2 113 最短路线长为 2
C
考点4:判断一个三角形是否为直角三角形
直接或间接给出三边的长度或比例关系 (1)若一个三角形的周长12cm,一边长为3cm,其他两 直角三角形 。 边之差为1cm,则这个三角形是___________ (2)将直角三角形的三边扩大相同的倍数后,得到的 三角形是 直角三角形 ____________. (3)在△ABC中,a : b : c 1 : 1 : 2 ,那么△ABC的 等腰直角三角形 确切形状是_______________ 。
拓展题
如图,笔直公路上A,B两点相距25km,C,D为两
村庄, DA⊥AB于A,CB⊥AB于B,已知DA=15k
m,CB=10km,现在公路AB上建一车站E。若使得
ED-EC的值最大,则E站建在离A站多少km处?
D
C
15 10
A
E25
B
c a b
知识回顾
A
b
C
c┓Leabharlann 2.勾股定理的逆定理: 三角形的三边a,b,c 满足a2+b2=c2,则这个三角形是直 角三角形; 较大边c 所对的角是直角.其中满足a2+b2=c2的 三个正整数,称为勾股数。
a
B
在∆ABC中, a,b,c为三边长,若 c为最大边, 则∠C为三 角形最大角。
若a2 +b2=c2, 则∆ABC为直角三角形; ∠C为直角