清北学堂数学高联一试模拟题(1)及答案

合集下载

2020年全国高中数学联合竞赛一试试题卷(高联一试含答案及评分标准)

2020年全国高中数学联合竞赛一试试题卷(高联一试含答案及评分标准)

2020年全国高中数学联合竞赛一试试题(A 卷)一.填空题:本大题共8小题,每小题8分,满分64分.1.在等比数列{}n a 中,1,13139==a a ,则13log 1a 的值为.2.在椭圆Γ中,A 为长轴的一个端点,B 为短轴的一个端点,21,F F 为两个焦点.若02121=⋅+⋅BF BF AF AF ,则21F F AB 的值为.3.设0>a ,函数xx x f 100)(+=在区间(]a ,0上的最小值为1m ,在区间[)+∞,a 上的最小值为2m ,若1m 20202=m ,则a 的值为.4.设z 为复数,若iz z --2为实数(i 为虚数单位),则3+z 的最小值为.5.在△ABC 中,4,6==BC AB ,边AC 上的中线长为10,则2cos 2sin66AA +的值为.6.正三棱锥ABC P -的所有棱长都为1,N M L ,,分别为棱PC PB PA ,,的中点,则该三棱锥的外接球被平面LMN 所截的截面面积为.7.设0,>b a ,满足:关于x 的方程b a x x =++||||恰有三个不同的实数解321,,x x x ,且b x x x =<<321,则b a +的值为_____________.8.现有10张卡片,每张卡片上写有5,4,3,2,1中两个不同的数,且任意两张卡片上的数不完全相同.将这10张卡片放入标号为5,4,3,2,1的五个盒子中,规定写有j i ,的卡片只能放在i 号或j 号盒子中.一种放法称为“好的”,如果1号盒子中的卡片数多于其他每个盒子中的卡片数.则“好的”放法公共有____________种.二.解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC ∆中,,22sin =A 求CB cos 2cos +的取值范围.10.(本题满分20分)对正整数n 及实数)0(n x x <≤,定义1][][}{}){1(),(+⋅+-=x nx n C x C x x n f 其中][x 表示不超过实数x 的最大整数,][}{x x x -=.若整数2,≥n m 满足123)1,(2,()1,(=-+++nmn m f n m f n m f ,求)1,()2,(1,(mmn n f m n f m n f -+++ 的值.11.(本题满分20分)在平面直角坐标系中,点C B A ,,在双曲线1=xy 上,满足ABC ∆为等腰直角三角2020年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 在等比数列{}n a 中,91313,1a a ,则1log 13a 的值为 .答案:13.解:由等比数列的性质知219913aa a a ,故339121313a a a .所以11log 133a . 2. 在椭圆中,A 为长轴的一个端点,B 为短轴的一个端点,12,F F 为两个焦点.若12120AF AF BF BF ,则12ABF F 的值为. 答案:2. 解:不妨设的方程为22221(0)x y a ba b ,(,0),(0,)A a B b ,1(,0)F c ,2(,0)F c ,其中22ca b .由条件知222221212()()()20AF AF BF BF c a c a c b a b c .所以2212222AB a b F F . 3. 设0a,函数100()f x xx在区间(0,]a 上的最小值为1m ,在区间[,)a 上的最小值为2m .若122020m m ,则a 的值为 .答案:1或100. 解:注意到()f x 在(0,10]上单调减,在[10,)上单调增.当(0,10]a 时,12(),(10)m f a m f ;当[10,)a 时,12(10),()m f m f a .因此总有12()(10)2020f a f m m ,即100202010120aa,解得1a或100a .4. 设z 为复数.若2iz z 为实数(i 为虚数单位),则3z 的最小值为 .答案. 解法1:设i(,)R z ab a b ,由条件知22222(2)i(2)(1)22Im Im0i (1)i (1)(1)z a b a b ab a b z a b a b a b ,故22a b .从而22223(12)((3))(3)25zab ab,即35z.当2,2a b 时,3z 取到最小值解法2:由2iR z z 及复数除法的几何意义,可知复平面中z 所对应的点在2与i 所对应的点的连线上(i 所对应的点除外),故3z 的最小值即为平面直角坐标系xOy 中的点(3,0)到直线220xy 22325.5. 在ABC 中,6,4AB BC ,边AC 上的中线长为,则66sin cos 22A A 的值为 .答案:211256.解:记M 为AC 的中点,由中线长公式得222242()BM AC AB BC , 可得222(64)4108AC.由余弦定理得2222228647cos 22868CA AB BC A CA AB ,所以66224224sin cos sin cos sin sin cos cos 22222222A A A A A A A A= 22222sin cos 3sin cos 2222A A A A231sin 4A213211cos 44256A. 6. 正三棱锥P ABC 的所有棱长均为1,,,L M N 分别为棱,,PA PB PC 的中点,则该正三棱锥的外接球被平面LMN 所截的截面面积为 .答案:3. 解:由条件知平面LMN 与平面ABC 平行,且点P 到平面,LMN ABC 的距离之比为1:2.设H 为正三棱锥P ABC 的面ABC 的中心, PH 与平面LMN 交于点K ,则PH 平面ABC ,PK 平面LMN ,故12PK PH .正三棱锥P ABC 可视为正四面体,设O 为其中心(即外接球球心),则O在PH 上,且由正四面体的性质知14OH PH .结合12PK PH 可知OK OH ,即点O 到平面,LMN ABC 等距.这表明正三棱锥的外接球被平面,LMN ABC 所截得的截面圆大小相等.从而所求截面的面积等于ABC 的外接圆面积,即233AB .7. 设,0a b,满足:关于x 的方程||||x x a b 恰有三个不同的实数解123,,x x x ,且123x x x b ,则a b 的值为 .答案:144. 解:令2at x,则关于t 22a a ttb 恰有三个不同的实数解(1,2,3)2iia t x i .由于()22a af t tt为偶函数,故方程()f t b 的三个实数解关于数轴原点对称分布,从而必有(0)2bf a .以下求方程()2f t a 的实数解.当2at时,22()4222a a f t t t a a t a ,等号成立当且仅当0t ;当2at 时,()f t 单调增,且当58a t 时()2f t a ;当2a t时,()f t 单调减,且当58at 时()2f t a .从而方程()2f t a 恰有三个实数解12355,0,88t a t t a . 由条件知3328a ab x t ,结合2ba 得128a . 于是91448aa b .8. 现有10张卡片,每张卡片上写有1,2,3,4,5中两个不同的数,且任意两张卡片上的数不完全相同.将这10张卡片放入标号为1,2,3,4,5的五个盒子中,规定写有,i j 的卡片只能放在i 号或j 号盒子中.一种放法称为“好的”,如果1号盒子中的卡片数多于其他每个盒子中的卡片数.则“好的”放法共有 种.答案:120.解:用{,}i j 表示写有,i j 的卡片.易知这10张卡片恰为{,}i j (15)i j . 考虑“好的”卡片放法.五个盒子一共放有10张卡片,故1号盒至少有3张卡片.能放入1号盒的卡片仅有{1,2},{1,3},{1,4},{1,5}.情况一:这4张卡片都在1号盒中,此时其余每个盒中已经不可能达到4张卡片,故剩下6张卡片无论怎样放都符合要求,有6264种好的放法.情况二:这4张卡片恰有3张在1号盒中,且其余每盒最多仅有2张卡片. 考虑{1,2},{1,3},{1,4}在1号盒,且{1,5}在5号盒的放法数N .卡片{2,3},{2,4},{3,4}的放法有8种可能,其中6种是在2,3,4号的某个盒中放两张,其余2种则是在2,3,4号盒中各放一张.若{2,3},{2,4},{3,4}有两张在一个盒中,不妨设{2,3},{2,4}在2号盒,则{2,5}只能在5号盒,这样5号盒已有{1,5},{2,5},故{3,5},{4,5}分别在3号与4号盒,即{2,5},{3,5},{4,5}的放法唯一;若{2,3},{2,4},{3,4}在2,3,4号盒中各一张,则2,3,4号盒均至多有2张卡片,仅需再使5号盒中不超过2张卡片,即{2,5},{3,5},{4,5}有0张或1张在5号盒中,对应0133C C 4种放法. 因此612414N .由对称性,在情况二下有456N 种好的放法. 综上,好的放法共有6456120种.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分) 在ABC 中,2sin 2A .求cos 2cosBC 的取值范围.解:记cos 2cos fBC . 由条件知4A 或34A . …………………4分当4A 时,34B C ,其中30C,此时 3cos 2cos 4f C C 22sin cos 22C C sin (0,1]4C . …………………8分当34A 时,4B C ,其中04C,此时 cos 2cos 4f C C 232sin cos 22C C 5sin()C , 其中arctan 3. …………………12分 注意到42,,函数()5sin ()g x x 在0,2上单调增,在,24上单调减,又32(0)224g g,52g,故(2,5]f.综上所述,cos 2cos f BC 的取值范围是(0,1](2,5].…………………16分10. (本题满分20分)对正整数n 及实数(0)x x n ,定义[][]1(,)(1{})C {}C x x n n f n x x x ,其中[]x 表示不超过实数x 的最大整数,{}[]x x x .若整数,2m n 满足121,,,123mn f m f m f m n n n,求121,,,mn f n f n f n m m m 的值. 解:对0,1,,1k m ,有111111111,C 1+C C C 2n n n k k k k m m m mi i i i i i n f m k n n n . …………………5分 所以121,,,mn f m f m f m n nn 111101C ,m m n jm j k i i f m kn11100122C C 2m m mk k m m k k n1222121(21)12m mm m n n .……………10分 同理得121,,,mn f n f n f n m m m(21)1n m . 由条件知(21)1123m n ,即(21)124m n ,故(21)124m .又2m ,所以21{3,7,15,31,63,127,}m ,仅当5m 时,2131m 为124的约数,进而有124431n .进而121,,,mn f n f n f n m mm4(21)5174.…………………20分11. (本题满分20分)在平面直角坐标系中,点,,A B C 在双曲线1xy 上,满足ABC 为等腰直角三角形.求ABC 的面积的最小值.解:不妨设等腰直角ABC 的顶点,,A B C 逆时针排列,A 为直角顶点.设(,)ABs t ,则(,)ACt s ,且ABC 的面积222122ABCs t SAB . …………………5分注意到A 在双曲线1xy上,设1,A a a,则11,,,B a s t C a t s a a.由,B C 在双曲线1xy 上,可知11()()1a s t a t s a a,这等价于sat st a , ① tas st a.②由①、②相加,得()0s ta t sa,即2t sa t s. ③由①、②相乘,并利用③,得2222221s t s t at as a st s t a a a 2222224t s t s st st s t st st t s t s s t22222()s t s t . …………………10分所以由基本不等式得2224222222222221()()22()4s t s t s t s t s t s t32222222226122()()43108s t s t s t s t ,④故2210863s t . …………………15分以下取一组满足条件的实数(,,)s t a ,使得2263s t (进而由,,s t a 可确定一个满足条件的ABC ,使得22332ABCs t S).考虑④的取等条件,有222222()s t s t ,即2223s t.不妨要求0st ,结合2263s t ,得3(31),3(31)s t .由①知0a,故由③得tsa ts,其中3131312t s s ,从而有312312a.综上,ABC 的面积的最小值为 …………………20分。

清北学堂数学高联一试模拟题(8)及答案

清北学堂数学高联一试模拟题(8)及答案
清北学堂高联一试模拟题(八)
2a 5
1.
2.

20 5x2
Байду номын сангаас
ax0
0

2 x

xa
2
,可知
a
1,且在区间
(2,1)

20 5x2
10(a

x)
只有一个整数解 x 1,即 2a x 2 2x 4 在区间 (2,1) 上只有一个整数解 x 1,
4 16x02 y02
2 ,化简得16x02 y02 4 ,
即所求方程为16x2 y2 4 .
P
x
O
M
又直线 MN 与曲线 C 交于两点,可知 x0 0,
4x0 y0
2.
结合方程,可算得 5 x 1 .
5
2
9.(1)
sin A cos A
3 cos 3 sin
2
2
2cos C 1 2cos2 C 2cos C 2(cos C 1)2 3 3 ,当 C 时取等.
2 22
3
10.
显然 x 0 不是方程的解,两边同除以 x2 得 x2
ax b
a x

1 x2
0.

y x 1 得到关于 y 的一元二次方程 y2 ay (b 2) 0 . x
由二次函数 y x2 2x 4 图像可知 2 a 5 ,经验证 2 a 5 满足条件.
2
2
2.384. 1,2,3, …,20 中 3 的倍数 6 个,除以 3 余 1 的数 7 个,除以 3 余 2 的数 7 个,

清北学堂数学高联一试模拟题(6)及答案

清北学堂数学高联一试模拟题(6)及答案

清北学堂高联一试模拟题(六)答案 1. 542.二十七倍3.25164. 2个5. (1)n a n n =+.6. 7. 1{|ln ,}3a a a R ≠∈8. 12 9.显然0x =不是方程的解,两边同除以2x 得2210a x ax b x x ++++=. 令1y x x =+得到关于y 的一元二次方程2(2)0y ay b ++-=.因为x 是模长为1的复数,故12Re y x x x=+=是[2,2]-中的实数. 反过来,如果1x x +是[2,2]-中的实数,可设12cos ([0,2))x xθθπ+=∈,则cos sin x i θθ=±是模长为1的复数.这样,问题转化成求正整数组(,)a b 使得关于y 的方程2(2)0y ay b ++-=的两个实根都在2-与2之间.令2()(2)f y y ay b =++-,则易知2(2)220(2)2202224(2)0f a b f a b a a b =++≥⎧⎪-=-++≥⎪⎪⎨-≤-≤⎪⎪∆=--≥⎪⎩. 对1,2,3,4a =分别讨论知,满足要求的正整数组有(1,1),(1,2),(2,2),(2,3),(3,4),(4,6),共6组.10. 因为22a bc =,所以:42224()a a c c =-,解得离心率e,22222a b c == ,则椭圆方程可以写为:222220x y c +-=;设1122(,),(,)M x y N x y ,直线MN :()y k x c =-,与椭圆联立,消去y ,得到: 22222(21)42(1)0k x k cx c k +-+-=,所以:22212122242(1),,2121k c c k x x x x k k -+==++ 由直线MA :11()y y x a x a =++,可得:11(2,(2))y P c c a x a++; 由直线NA :22()y y x a x a =++,可得:22(2,(2))y P c c a x a++;因此: 11(,(2))y FP c c a x a =++,22(,(2))y FQ c c a x a=++, 则:221212(2)()()y y FP FQ c c a x a x a ⋅=++++ 2222121221212[()](2)()k x x c x x c c c a x x a x x a -++=+++++ 而222222222212122222(1)4[()][]212121c k k c k c k x x c x x c k c k k k ---++=-+=+++ 222222212122222(1)42()()212121c k k ca k a c x x a x x a a k k k -++++=++=+++, 利用222a c =,则2222121221212[()](2)()k x x c x x c FP FQ c c a x x a x x a -++⋅=+++++ 22222222222222(2)21(2)02()2()21k c c a k c c a c c c c k a c a c k -++=++=-=-=+++ 故0FP FQ ⋅=,得到90PFQ ∠=.11. 证明: 因为21212n n n n a a a a +-=-,所以12212.nn n n n a a a a a +-=-即12212.n n n n na a a a a +-=-从而1122221211112().n nn n na a aa a a aa a +++++=-=容易计算得12341, a a a a ====352412343, 7, 47a a a a a a a a ====猜想2212 4.n n na a a +-=使用数学归纳法易证明猜想.从而由1n a a +=12221211112() 1.n n n n n a a a a a a a ++++==== 所以12111na a a +++<。

清北学堂数学高联一试模拟题5

清北学堂数学高联一试模拟题5

清北学堂高联一试模拟题(五)1.已知集合{1,2,3,4,5}A =,{sin tan 0}B x A x x =∈+≥,则集合B 中所有元素之和为_____.2. 已知,a b 是方程3274log 3log (3)3x x +=-的两个根,则a b +=________.3.互不相等的复数a ,b ,c 满足a²(b+c)=b²(a+c)=2018,则c²(a+b )=___________4.掷四个标准骰子一次,最大数和最小数差为5的概率是__________5. 椭圆x 25+y 24=1两焦点分别为F 1,F 2 ,点 A(0,a) 在椭圆内,从A点发出的一束光线经椭圆第一次反射后过F 1, 第二次反射后过F 2,第三次反射后回到A 点,那么a=__________6.函数f :N +→N+,满足对所有正整数n 都有f(f(n))=3n ,则f(2018)=______________7.已知数列{}n a 满足:122,6a a ==,且2121n nn a a a +++=+.若2n n a λ≥+对一切正整数n 都成立,则λ的最小值为8.已知长方体ABCD-EFGH 的体积是720,则四面体ACFH 和四面体BDEG 的公共部分的体积是___________⑨已知函数1*(),[0,1],n n n f x x x x n +=-∈∈N .(1)求()n f x 的极大值n a ;(2)求n a 的最大值.10.设0,0,0x y z ≥≥≥,且2221x y z ++=,求2f x y z xyz =++-的最大值和最小值.11. 已知内接于抛物线2y x =的梯形ABCD ,其中//AD BC ,AD BC >,M ,N 分别为AD ,BC 的中点,K 是对角线AC ,BD 的交点,且KM m =,KN n =,求梯形ABCD 的面积(用m ,n 表示)。

2023年普通高等学校招生全国统一考试考前模拟试卷数学(一)答案

2023年普通高等学校招生全国统一考试考前模拟试卷数学(一)答案

参考答案2023年普通高等学校招生全国统一考试考前模拟试卷数学(一)1.D 【解析】B ={x |x 2=4}={-2,2},由题可知,UA )∩B ={2}.故选D.2.C 【解析】∵z =(4-i )(2i-1)=8i -4+i +2=-2+9i ,故z =-2-9i ,∴z 的共轭复数在复平面内对应的点为(-2,-9),位于第三象限.故选C .3.B 【解析】|a +b |=a 2+b 2+2a·b 姨=|a |2+|b |2+2a ·b 姨=10姨,|b |=12+12姨=2姨,∴a ·b =2,∴a 在b 上的投影向量为a·b |b |·b |b |=b =(1,1),故选B .4.D 【解析】由题意可知,该事件的概率为12·C 22C 28+12·C 22C 23=12×128+12×13=31168,故选D.5.B 【解析】由题意可知,结果只需精确到0.001即可,令x=0.5,取前6项可得,e 姨=+∞n=0移0.5nn !≈5n=0移0.5nn !=0.500!+0.511!+0.522!+0.533!+0.544!+0.555!=1+0.5+0.252+0.1256+0.062524+0.03125120≈1.649,∴e 姨的近似值为1.649,故选B.6.A 【解析】设f (x )=sin x-x ,x ∈0,仔22',则f ′(x )=cos x -1<0,∴f (x )在0,仔222上单调递减,∴f (x )<f (0)=0,∴当x ∈0,仔222时,sin x-x <0,即sin x<x .a =sin 20°=sin 仔9<仔9=b ,c=12ln e 姨=14<仔9=b ,c =12ln e 姨=14<6姨-2姨4=sin 15°<sin 20°=a ,∴c<a<b ,故选A .7.B 【解析】由题意可知,设底面圆的半径为R ,则S=仔R 2=16仔,解得R =4.∵由直三棱柱的定义可知,要使能截得直三棱柱体积最大,只需要圆的内接三角形面积最大即可,S =12ab sin C =12·2R sin A ·2R sin B ·sin C=2R 2sin A ·sin B ·sin C ≤2R 2sin A+sin B+sin C 3223≤2R 2·sin A+B+C 3223=2R 2·sin 仔3223=33姨4R 2.当且仅当sin A=sin B=sin C ,即A=B=C =仔3时,等号成立,∴三角形是正三角形时,圆的内接三角形面积最大,V=Sh =33姨4×42×6=723姨.∴能截得直三棱柱体积最大为723姨.故选B .8.D 【解析】g (x +1)为偶函数,则g (x )关于x =1对称,即g (x )=g (2-x ),即(x-1)f (x )=(1-x )f (2-x ),即f (x )+f (2-x )=0,∴f (x )关于(1,0)对称,又f (x )是定义域为R 的偶函数,∴f (x )=-f (2-x )=-f (x -2),∴f (x -4)=f [(x -2)-2]=-f (x -2)=-[-f (x )]=f (x ),即f (x -4)=f (x ),∴f (x )周期为4,∴f (5.5)=f (1.5)=f (-2.5)=f (2.5)=2,∴g (-0.5)=g (2.5)=1.5f (2.5)=3.故选D.9.ABD 【解析】∵sin 兹+cos 兹=15①,∴(sin 兹+cos 兹)2=sin 2兹+2sin 兹cos 兹+cos 2兹=125,∴2sin 兹cos 兹=-2425.又兹∈(0,仔),∴sin 兹>0,∴cos 兹<0,即兹∈仔2,22仔,故A 正确;(sin 兹-cos 兹)2=1-2sin 兹cos 兹=4925,∴sin 兹-cos 兹=75②,故D 正确;由①②,得sin 兹=45,cos 兹=-35,故B 正确;tan 兹=sin 兹cos 兹=-43,故C 错误.故选ABD .10.BCD 【解析】如图1,当P 为BC 1的中点时,OP ∥DC 1∥AB 1,故A 不正确;∵如图2,A 1C 奂平面AA 1C 1C ,O ∈平面AA 1C 1C ,O 埸A 1C ,P 埸平面AA 1C 1C ,∴直线A 1C 与直线OP 一定是异面直线,故B 正确;∵如图2,A 1A 奂平面AA 1C 1C ,O ∈平面AA 1C 1C ,O 埸A 1A ,P 埸平面AA 1C 1C ,∴直线A 1A 与直线OP 一定是异面直线,故C 正确;∵如图3,AD 1奂平面AD 1C ,O ∈平面AD 1C ,O 埸AD 1,P 埸平面AD 1C ,∴直线AD 1与直线OP 一定是异面直线,故D 正确.故选BCD.11.BD 【解析】如图所示,当直线l 的倾斜角越小时,△PQA 1的周长越大,故A 不正确;△PF 1Q 的周长为|PF 1|+|QF 1|+|PQ |=4a +|PF 2|+|QF 2|+|PQ |=4a +2|PQ |,∴△PF 1Q 的周长与2|P P /Q |之差为4a ,故B 正确;设P (x ,y ),则tan 琢=|y |a+x,tan 琢=-|y |x-a,由tan 琢tan 茁=a-x a+x不是常量,故C 不正确;由tan 琢·tan 茁=|y |a+x ·|y |a-x =y 2a 2-x 2=x 2a 2-221b 2a 2-x 2=-b 2a 2为常量,故D 正确.故选BD .12.AD 【解析】令x 1=x 2=1得,f (1)=f (1)+f (1),f (1)=0,故A 正确;再令x 1=x 2=-1得,f (1)=f (-1)+f (-1)=0,f (-1)=0,故B 错;令x 1=-1,x 2=x ,则f (-x )=x 2f (-1)+f (x )=f (x ),f (x )是偶函数,故C 错;令x 1=x ,x 2=1x,则f (1)=1x2f (x )+x 2f 1x 22,∴f (x )=-x 4f 1x 22,当0<x <1时,1x>1,f 1x 22>0,∴f (x )<0,故D 正确.故选AD .13.0.3【解析】由P (X ≥90)=0.5知,滋=90,∵P (X ≤70)=P (X ≥110)=0.2,∴P (70≤X ≤90)=1-2×0.22=0.3.故答案为0.3.14.45姨5≤r ≤13姨【解析】当A ,B 两点都在圆内时,则4+9<r 2,4+1<r 22,解得r >13姨,直线AB 的方程为y -3x +2=1-32+2,即x +2y -4=0,原点到直线AB 的距离为|-4|1+4姨=45姨5,又k OA =-32,k OB =12,k AB =-12,参考答案第1页共28页参考答案第2页共28页A 1B 1C 1D 1OPDABC A 1B 1C 1D 1OPDABC A 1B 1C 1D 1OPDABC 图1图2图3第10题答图xy OAB 第14题答图xy OF 1F 2P 2Q 2QPA 1A 2第11题答图37∴原点与线段AB 上的点所在直线的斜率的范围为-32,12!",∵圆C :x 2+y 2=r 2(r >0)与线段AB (包含端点)有公共点,∴45姨5≤r ≤13姨.故答案为45姨5≤r ≤13姨.15.4【解析】由题意得,ab (a +3b )=3a+b ,∴a +3b =3a+b ab =3b +1a ,∴(a +3b )2=3b +1a a &(a +3b )=10+3a b +3b a ≥10+23a b ·3b a姨=16(当且仅当a=b=1时取等号).∵a +3b ≥4,∴a +3b 的最小值为4.答案为4.16.6e e 2-1,+a &∞【解析】∵f (x 0)+3e x<0,即3ln x 0-kx 0+k x 0+3e x 0<0.当x 0=1时,3e <0显然不成立,即在x 0=1时不满足原式;当x 0∈(1,e ]时,整理得x 0ln x 0+e x 02-1<k 3.令g (x )=x ln x +e x 2-1,x ∈(1,e ],则g ′(x )=(x 2-2e x -1)-(x 2+1)ln x (x 2-1)2,∵当x ∈(1,e ]时,(x 2+1)ln x >0,x 2-2e x -1=(x -e )2-e 2-1<0,则g ′(x )<0,当x ∈(1,e ]时恒成立,∴g (x )在(1,e ]上单调递减,则g (x )≥g (e )=2e e 2-1,则2e e 2-1<k 3,即k >6e e 2-1.综上所述,数k 的取值范围为6e e 2-1,+a &∞.故答案为6ee 2-1,+a &∞.17.【解析】(1)∵a 1+2a 2+…+na n =2n ,∴当n ≥2时,a 1+2a 2+…+(n -1)a n -1=2(n -1),两式相减得na n =2,a n =2n ,又n =1时,a 1=2,也符合.∴a n =2n.(2)由(1)知,1a n =n 2,∵对任意的正整数m ≥2,均有b m -1+b m +b m +1=1a m =m 2,故数列{b n }的前99项和b 1+b 2+b 3+b 4+b 5+b 6+…+b 97+b 98+b 99=(b 1+b 2+b 3)+(b 4+b 5+b 6)+…+(b 97+b 98+b 99)=1a 2+1a 5+…+1a 98=3322+982a &2=825.18.【解析】(1)由题得a-b=a sin A-c sin C sin B ,∴a-b=a 2b -c 2b,∴ab-b 2=a 2-c 2,∴ab=a 2+b 2-c 2,∴ab =2ab cos C ,∴cos C=12.∵0<C <仔,∴C =仔3.(2)由正弦定理得c sin C =2R =4,则c =4sin C=4sin 仔3=23姨,由余弦定理得c 2=12=a 2+b 2-2ab cos C ≥2ab-ab=ab ,即ab ≤12(当且仅当a=b 时取等号),故S =12ab sin C ≤12×12×3姨2=33姨(当且仅当a=b 时取等号).即△ABC 面积S 的最大值为33姨.19.【解析】(1)由题意得,(0.002+0.006+0.008+a+b+0.008+0.002+0.002)×20=1,110+0.5-(0.002+0.006+0.008)×2020a×20=1255,,,+,,,-,解得a =0.012,b =0.010,∴滋=(60×0.002+80×0.006+100×0.008+120×0.012+140×0.01+160×0.008+180×0.002+200×0.002)×20=125.6.(2)某职工日行步数w =157(百步),着=157-125.6125.6×100=25,∴职工获得三次抽奖机会,设职工中奖次数为X ,在方案甲下X~B 3,13a &,E (X)=1.在方案乙下E (X )=1.8,∴更喜欢方案乙.20.【解析】(1)在直三棱柱ABC 鄄A 1B 1C 1中,A 1A ⊥平面ABC ,AB 奂平面ABC ,∴A 1A ⊥AB ,又AB ⊥AC ,A 1A ∩AC=A ,A 1A ,AC 奂平面ACC 1A 1,∴AB ⊥平面ACC 1A 1,又A 1M 奂平面ACC 1A 1,∴A 1M ⊥AB ,又在矩形ACC 1A 1中,AA 1=4,A 1M=AM =22姨,即A 1M 2+AM 2=A 1A 2,∴A 1M ⊥AM ,∵AB ∩AM=A ,AB ,AM 奂平面ABM ,∴A 1M ⊥平面ABM.(2)取AC 的中点为N ,连接BN ,∴BN ⊥AC ,又平面ABC ⊥平面ACC 1A 1,平面ABC ∩平面ACC 1A 1=AC ,BN 奂平面ABC ,∴BN ⊥平面ACC 1A 1,取A 1C 1的中点N 1,连接NN 1,同理可得NN 1⊥平面ABC ,如图建立空间直角坐标系,则B (3姨,0,0),C (0,1,0),A 1(0,-1,4),M (0,1,2),设P (0,t ,3-t ),t ∈[-1,1],则B B 2P =(-3姨,t ,3-t ),易知平面ABC 的法向量为n =(0,0,1),设BP 与平面ABC 所成角为兹,设t-1=姿∈[-2,0],∴sin 兹=3-t 3+t 2+(3-t )2姨=(3-t )22t 2-6t +12姨=2姨2·1-3(t-1)t 2-3t +6姨=2姨2·1-3姿姿2-姿+4姨.当姿=0时,sin 兹=2姨2,当姿∈[-2,0)时,sin 兹=2姨2·1-3姿-1+4姿姨,∵y=x +4x 在[-2,0)上单调递减,∴sin 兹关于姿单调递减,故sin 兹∈2姨2,25姨5"a .综上可得sin 兹∈2姨2,25姨5!".21.【解析】(1)由题意知,|22姨-x |=2姨·(x -2姨)2+y 2姨,两边平方,整理即得x 2+2y 2=4,∴曲线C 的方程为x 24+y 22=1.(2)设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),当x 20=43时,y 20=43,则不妨设点M 23姨3,23姨3a &,则点A 23姨3,-23姨3a &或A -23姨3,23姨3a &,此时O B 2M ·O B 2A =0,则OM ⊥OA ;当x 20≠43时,设直线MA :y=kx+m ,MA 1B 1C 1PAB C xyz NN 1第20题答图参考答案第3页共28页参考答案第4页共28页38由直线MA 与圆O :x 2+y 2=43相切,可得|m |1+k 2姨=23姨,即3m 2=4(1+k 2),联立y=kx+m ,x 2+2y 2=44,可得(2k 2+1)x 2+4kmx +2m 2-4=0,Δ=16k 2m 2-4(2k 2+1)(2m 2-4)=8(4k 2+2-m 2)=163(4k 2+1)>0,由韦达定理可得x 0+x 1=-4km 2k 2+1,x 1x 2=2m 2-42k 2+1,则O O $M ·O O $A =x 0x 1+y 0y 1=x 0x 0+(kx 0+m )(kx 1+m )=(1+k 2)x 0x 1+km (x 0+x 1)+m 2=(1+k 2)(2m 2-4)-4k 2m 2+m 2(1+2k 2)1+2k 2=3m 2-4(1+k 2)1+2k 2=0,∴OM ⊥OA ,同理可得OM ⊥OB.选①,由OM ⊥OA 及OP ⊥AM 可得Rt △MOP ∽Rt △AOP ,则|PM ||OP |=|OP ||PA |,∴|PM |·|PA |=|OP |2=43.选②,由OM ⊥OA 及OM ⊥OB 可得,A ,O ,B 三点共线,则|OA |=|OB |,又|MA |2=|OA |2+|OM |2=|OB |2+|OM |2=|MB |2,因此,|MA |=|MB |.22.【解析】(1)根据题意得,f (x )的定义域为(0,+∞),∴f ′(x )=e x -1-1x -e +12,又f ″(x )=e x -1+1x2>0,∴f ′(x )在(0,+∞)上单调递增,易知f ′(2)=e -12-e +12=0,∴当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,∴函数f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)∵a >0,f (x )的定义域为(0,+∞),∴f ′(x )=e x -1-1x-a ,∴f ″(x )=e x -1+1x2>0,∴f ′(x )在(0,+∞)上单调递增,设h (x )=e x-x -1,则h ′(x )=e x -1,当x >0时,h ′(x )>0,∴h (x )单调递增,当x <0时,h ′(x )<0,∴h (x )单调递减,∴h (x )≥h (0)=0,∴e x -x-1≥0,即e x ≥x+1,∴f ′(1+a )=e a -11+a -a >a +1-11+a -a =1-11+a>0,又f ′(1)=-a <0,∴存在唯一的t 0∈(1,1+a ),使得f ′(t 0)=0,即e t 0-1 -1t 0-a =0,当x ∈(0,t 0)时,f ′(t 0)<0,f (x )单调递减,当x ∈(t 0,+∞)时,f ′(t 0)>0,f (x )单调递增,∴f (x )min =f (t 0),又e x ≥x +1,∴x ≥ln (x +1),∴x -1≥ln x ,当x =1时,等号成立,则x >ln x ,∴f (x )=e x -1-ln x -ax >e x -1-x-ax =e x -1-(a +1)x ,即f (x )>e x -1-(a +1)x ,又e x≥x +1,∴e x -1≥x ,∴ex 2-1≥x 2,∴e x -2≥x 24,又e x -1>e x -2,∴e x -1>x 24,∴f (x )>e x -1-(a+1)x >x 24-(a +1)x ,即f (x )>x 24-(a +1)x ,∴f [4(a+1)]>16(a +1)24-(a +1)×4(a +1)=0,当x $0时,f (x )>0,若函数f (x )有唯一零点x 0,则f (t 0)=0,∴x 0=t 0,即e x 0-1 =1x 0+a ,∴f (x 0)=1x 0+a -ln x 0-ax 0=0,设u (x 0)=1x 0+a -ln x 0-ax 0,∴u ′(x 0)=-1x 20-1x 0-a <0,∴u (x 0)在(1,+∞)单调递减,∴u (1)=1>0,u (2)=12-ln 2-a <0,∴1<x 0<2.2023年普通高等学校招生全国统一考试考前模拟试卷数学(二)1.C 【解析】由题意可得,z=4+3i i =(4+3i )i i 2=4i -3-1=3-4i.故选C.2.C 【解析】解不等式x 2-x -6≤0得,-2≤x ≤3,即A ={x |-2≤x ≤3},解不等式x -1<0得x <1,则B ={x |x <1},UB )={x |x ≥-2}.故选C .3.A 【解析】∵O ,A ,B 三点共线,则O O $A ∥O O $B ,∴埚姿∈R ,O O $B =姿O O $A ,即x m +n =姿(5m -3n ).整理得,(5姿-x )m =(3姿+1)n.又∵向量m ,n 不共线,则5姿-x =3姿+1=0,则x =-53.故选A .4.B 【解析】log 9a 1+log 9a 2+…+log 9a 10=log 9[(a 1a 10)·(a 2a 9)·(a 3a 8)·(a 4a 7)·(a 5a 6)]=log 995=5,故选B .5.A 【解析】sin 2琢+仔660=sin 2琢+仔363-仔223=-cos 2琢+仔333=2sin 2琢+仔363-1=2×89-1=79.故选A .6.C 【解析】小明从中随机夹了3个饺子共有C 310=10×9×83×2×1=120种;如果是1个麸子、1个钱币饺子、1个糖饺子,共有5×3×2=30种;如果是1个麸子、2个钱币饺子,共有C 15C 23=15种;如果是2个麸子、1个钱币饺子,共有C 25C 13=30种.由古典概型的概率公式得,小明夹到的饺子中,既有麸子饺子又有钱币饺子的概率是P =30+15+30120=58.故选C .7.D 【解析】由题可得AB =8,∵AP=BP ,∴S △ABP =12×8×4=16,∵PC ⊥平面ABP ,且PC =4,∴V C 鄄ABP =13×16×4=643,∵AP=BP =42姨,∴AC=BC =43姨,∴S △ABC =12×8×48-16姨=162姨,设点P 到平面ABC 的距离为d ,则V P 鄄ABC =13×162姨d =643,解得d =22姨.故选D.8.C 【解析】a 1a =b 1b 两边同取自然对数得ln a a =ln b b,设f (x )=ln x x,由f ′(x )=1-ln x x2,令f ′(x )>0,解得0<x <e ,令f ′(x )<0,解得e <x ,∴f (x )在区间(0,e )上单调递增,在区间(e ,+∞)上单调递减,∴f (x )在x =e 处取得最大值f (e )=1e,在区间(0,e )上函数f (x )有唯一的零点x =1,在区间(e ,+∞)上函数f (x )>0,又∵a>b >0且f (a )=f (b )>0,∴1<b<e ,a >e.故选C.9.ABD 【解析】如图,∵正四棱柱ABCD 鄄A 1B 1C 1D 1的底面边长为2,∴B 1D 1=22姨,又侧棱AA 1=1,∴DB 1=(22姨)2+12姨=3,则P 与B 1重合时PD =3,此时P 点唯一,故A 正确;∵PD =3姨∈(1,3),DD 1=1,则PD 1=2姨,即点P 的轨迹是一段圆弧,故B 正确;连接DA 1,DC 1,可得平面A 1DC 1∥平面ACB 1,则当P 为A 1C 1中点时,DP 有最小值为(2姨)2+12姨=3姨,故C 错误;平面BDP 即为平面BDD 1B 1,平面BDP 截正四棱柱ABCD 鄄A 1B 1C 1D 1的外接球所得平面图形为外接球的大圆,其半径为1222+22+12姨=32,面积为9仔4,故D 正确.故选ABD .10.BD 【解析】∵f (x )=tan x-cos x ,∴f (0)=-1,f (仔)=1,f (0)≠f (仔),故A 错误;参考答案第5页共28页参考答案第6页共28页PABC第7题答图DABCA 1B 1C 1D 1P122第9题答图39。

清北学堂数学高联一试模拟题(2)及答案

清北学堂数学高联一试模拟题(2)及答案

1,……②
故直线
AB
:
x0 x 2
y0
y
1过点
P(1,
1 2
)
,则有
x0 2
y0 2
1
x0
y0
2 ……③
故 Q 的轨迹方程为 x y 2
( 2 ) 对 直 线 AB , 当 斜 率 不 存 在 时 , 即 为 x 1 , 此 时
A(1, 2 ), B(1, 2 ),Q(2, 0)
2
2
1
2
SABQ

arg z
arg w
4
时,
z,
w 的取法有
C42
6 种.当
arg z
arg w
时,若
z
不取 2 i 和
4 2i ,则每个 z 唯一对应一个 w i z ,有 4 种情形;若 z 取 2 i 或 4 2i ,则 w 1 2i 或 2 4i ,有 2 2 4种情形.这样总共 6 4 4 14 种情形. 综上可知, zw 为纯虚数的概率为 14 7 .
1
1
a
,
f
(x)
g(a)
1, 2
1
a
a
,
a 1 a 1 0 a 1
故对 n N* , bn1 g(a) 恒成立.
又 b2n
2an (1 an )2
g(a) ,
注意到 0 g(a) 1 ,解上式得
2
1
g(a) g(a) 1 2g(a)
1
g(a) 1 2g(a) g(a)
an
1
3)3 1)2

f
(k)
(4k 2 4k 3)3 (2k 2 1)2 (2k 1)2

清北学堂数学高联一试模拟题(10)及答案

清北学堂数学高联一试模拟题(10)及答案


2
又 AC , BD 的方程为
y 0 bsin 0 x a ,
a cos a
y 0 bsin 0 x a ,
a cos a
先考虑以 P 为顶点且含有圆心的三角形,如图,显然, 这种三角形的另两个顶点必须一个属于点集 A1, A2, , An ,而 另一个属于点集B1, B2, , Bn . 且这种 PAiBj 含有圆心当且仅当 i j n 1, i, j 1, 2, , n ,今计 算合于条件的三角形个数:当i k 时,j 可取值 n,n 1, ,n k 1,
角形中,含有圆心的三角形的个数为

答案: 30. 解:一般地讨论圆周 2n 1 等分的 情况,任取其中一个分点,记为 P ,然
A1 A2 A3
P B1 B2
B3
An-1 An
Bn Bn-1
后将其余 2n 个分点这样标志,自 P 点后, 反时针方向的连续 n 个点依次记为 A1, A2, , An ; 顺时针方向的连续 n 个点依次记为 B1, B2, , Bn ;
有f (xy 1) f (y) f (x) f (x) y 2
f (x) f ( y) f ( y) x 2= f ( y) f (x) f (x) y 2
即 f (x) y f (y) x, 令y 0, 得f (x) x 1.
6、数列{an}是单调递增数列,且 n N 时 an 2n1 3an1 ,则首项
共计
k
个值,因此这种含有圆心的
PAi Bj
个数为
n

k 1
k

1 2
n
n
1

清北学堂数学高联一试模拟题(10)及答案

清北学堂数学高联一试模拟题(10)及答案

∴ . VPABC :VPBCD :VPCDA :VPABD 8 :1: 2 : 4
4、直线 y kx 2 交抛物线 y2 8x 于 A, B 两点,若 AB 中点的横坐
标为 2 ,则 AB
.
答案: 2 15 .
解:设
A x1,
y1 , B x2,
y2

,由
y

P 分别是线段 PA 、 QB 、 RC 、 SD 的中点,若用VPABC 表示三棱 锥 P ABC 的 体 积 , 其 余 的 类 推 . 则
VPABC :VPBCD :VPCDA :VPABD

答案:8:1: 2: 4 .
解:记 dP,BCD 为点 P 到平面 BCD 的距离.其余类推.设VPBCD 1.
2
2
1000 p(0) .设 x1, x2 , x3 是 p(x) 的
3
个根,则 1 1 1 的值
x1x2 x1x3 x2 x3

.
答案:1996.
4
22
所以 m
1

2m


1 2
,
所以
m

1 2

m 3.
m 3.
1
2m,
所以
m


1 2
,或
3 2

m

3

2、一列数 a1, a2, a3, 满足对于任意正整数 n,都有 a1 a2 an n3 ,
则11 1

a2 1 a3 1
a2017 1
ky2 8

2
,即
ky2
8y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

清北学堂数学高联一试模拟题(1)及答案
清北学堂高联一试模拟题(一)答案
1、|a+x|-|x+2019|的最大值是|2019-a|≤2a,解得a≥673。

2、2/√5
3、3i
4、22005-1
设集合A={1,2,4,8,16,32,64,128,256,512,1024},B=S\A。

`
任取B的一个子集B1,恰有一个A的子集A1,使得B1的元素和与
A1的元素和之和是2048的倍数。

于是S满足条件(但不一定是非
空真子集)的子集个数等于B的子集个数22005。

去掉一个空集的情
况,但是由于全集不满足条件,所以不用去掉,即为所求答案22005-
1。

5、2064
由容斥原理得到小于2018的完全平方数与完全5次方数共44+4- 1=47个,注意到452=2025,因此a2018=2018+47+1=2064
6、15/5
7、31.从1开始逐项递推即可。

8、31.设两个账号的胜率分别是a/b>c/d,都是最简分数。

那么0.0045≥a/b-c/d=(ad-bc)/bd≥1/bd,所以
bd≥1/0.0045>222。

所以b+d≥2√222>29。

若b+d=30,而bd>223,所以(b-d)2≤302-223×4=8。

而b与d同奇偶,所以(b,d)=(14,16)或(15,15)
此时b与d不互素,这样的话a/b与c/d通分,分母≤bd/2<150,矛盾。

所以b+d≥31。

假设一个账号14局胜9局,另一个17局胜11局,那么两个胜率差就是
(154-153)/(14×17)=1/238≈0.420%
9.
11.设抛物线方程为. , ,
三条切线方程为, ,
联立解得:, ,
故的外接圆方程为:
其中是三条切线方程的左边的式子.
展开外接圆方程整理得:
其中, ,
因为该方程表示圆,故.
从而,.
故外接圆方程为:
代入可知成立.故四点共圆.。

相关文档
最新文档