八年级期末试卷测试卷 (word版,含解析)

合集下载

八年级上册期末试卷测试题(Word版 含解析)

八年级上册期末试卷测试题(Word版 含解析)

八年级上册期末试卷测试题(Word版含解析)一、初二物理机械运动实验易错压轴题(难)1.2007年2月28日,从乌鲁木齐驶往阿克苏的5806次列车遭遇特大沙尘暴,列车从第1节车厢到第11节车厢相继被吹翻.看了这个报道后,某研究小组为探索沙尘暴的威力,进行了模拟研究.如图为测定沙尘暴风力的实验装置图,其中AB是一段水平放置的长为L 的光滑均匀电阻丝,电阻丝阻值较大,一质量和电阻都不计的细长金属丝一端固定于O 点,另一端悬挂球P,无风时细金属丝竖直,恰与电阻丝在B点接触,有风时细金属丝将偏离竖直方向,细金属丝与电阻丝始终保持良好的导电接触.研究小组的同学对此装置分析中,知道金属球单位面积上所受到的水平风力大小与电压表的读数成正比,空气密度为1.3kg/m3,沙的密度为2.5×103kg/m3.他们对决定金属球单位面积上所受到的风力大小的因素,进行了如下的实验研究:①在含沙量相同条件下,改变风速,记录不同风速下电压表的示数如下:风速(m/s)5101520电压表示数(V)0.6 2.4 5.49.6②在风速大小相同条件下,改变风中空气的含沙量,记录不同含沙量下电压表的示数如下:含沙量(kg/m3) 1.1 2.2 3.3 4.4电压表示数(V) 2.3 3.5 4.6 5.8(1)根据上述实验结果,试推导出单位面积上所受到的风力大小的关系式?(设比例系数为k)(2)若(1)中的比例系数k的大小为0.5,已知:车厢的高度为3m,车厢的长度为25m,车厢质量为50t,铁轨间距为1.5m,1m3沙尘暴中含沙尘2.7kg,请根据(1)中的关系式计算当时的风速至少为多大?【来源】2009年江西省上饶县二中九年级应用物理知识竞赛复赛模拟试题(三)【答案】(1)p=kρv2,ρ为含有沙尘的空气密度;(2)41m/s【解析】【分析】 【详解】 (1).①分析数据可看出风速每增加5m/s ,电压表的示数增加量分别是1.8V 、3V 、4.2V ,也就是说,在这里,风速和压力并不是呈一次函数关系,可以假设一个方程,即:U ∝av 3+bv 2+cv +d ,把表中实验数据代入表达式,解得:a =0,b =0.024,c =0,d =0,即U ∝0.024v 2;②分析含沙量与电压表示数的数据,含沙量每增加1.1kg/m 3,电压增量即为1.2V ,也就是说,含沙量与压力成正比,U ∝ρ;风力越大,导线的偏移量与电压成正比,单位面积所受压力即压强,则p =kρv 2,ρ为含有沙尘的空气密度,k 为比例常数.(2).车厢可以看做杠杆,由杠杆平衡条件得:F ×2h =G ×2d ,则风力F =d h G , F =pS =kρv 2S =kρv 2hL , v =323321.5m 5010kg 10N/kg 0.5(2.7kg/m +1.3kg/m )(3m)25mdG k h L ρ⨯⨯⨯=⨯⨯⨯≈41m/s . 答:(1).单位面积上所受到的风力大小的关系式为p =kρv 2,ρ为含有沙尘的空气密度; (2).风速为41m/s .2.如图,测平均速度时,测得小车从斜面的顶端A 处由静止开始滑到B 处所用时间为t ,小车长为S 1,斜面长为S 2.(1)小车从A 到B 的平均速度的数学表达式为v=_____(用题中字母来表示); (2)若小车还没放开之前就已开始计时,则测得的平均速度跟真实值相比偏_____;(3)如图中能够准确反应小车运动情况的是_____.【来源】湖北省宜城市2019-2020学年八年级(上)期末考试物理试题【答案】小 C 【解析】【分析】【详解】(1)由图可知,小车从斜面的顶端A 处由静止开始滑到B 处所通过的路程s=s 2-s 1,则小车从A 到B 的平均速度21v s s s t t-==; (2)若小车还没放开之前就已开始计时,测得的时间偏大,根据v s t=可知,则测得的平均速度跟真实值相比偏小;(3)小车下滑过程做加速运动.A .s-t 图象,路程s 不随时间t 变化而变化,所以物体处于静止状态,故A 不符合题意.B .s-t 图像是过原点的直线,路程与时间成正比,物体做匀速直线运动,故B 不符合题意.C .由图可知,相同时间内通过的路程逐渐增加,物体做加速运动,故C 符合题意.D .由图可知,v-t 图象,速度v 不发生变化,物体做匀速直线运动,故D 不符合题意. 答案为C .3.如图所示,在测量小车运动的平均速度实验中,让小车从斜面的A 点由静止开始下滑并开始计时,分别测出小车到达B 点和C 点的时间,即可算出小车在各段的平均速度。

人教版部编版八年级下册数学期末试卷检测(提高,Word版含解析)

人教版部编版八年级下册数学期末试卷检测(提高,Word版含解析)

人教版部编版八年级下册数学期末试卷检测(提高,Word 版含解析) 一、选择题1.当x =0时,下列式子有意义的是( )A .0xB .xC .x D .1x -2.下列各组数中,能构成直角三角形的是( ) A .2,3,4B .4,5,6C .1,3,2D .5,11,133.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠FB .∠B =∠BCFC .AC =CFD .AD =CF4.小明和小兵两人参加了5次体育项目训练,其中小明5次训练测试的成绩分别为11、13、11、12、13;小兵5次训练测试成绩的平均分为12,方差为7.6.关于小明和小兵5次训练测试的成绩,则下列说法不正确的是( ) A .两人测试成绩的平均分相等 B .小兵测试成绩的方差大 C .小兵测试的成绩更稳定些 D .小明测试的成绩更稳定些 5.△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A .42B .32C .42或32D .37或336.如图,菱形 ABCD 的顶点 C 在直线 MN 上,若∠1=50°,∠2=20°,则∠BDC 的度数为()A .20°B .30°C .35°D .40°7.如图,数轴上A 点表示的数为2-,B 点表示的数是1.过点B 作BC AB ⊥,且2BC =,以点A 为圆心,AC 的长为半径作弧,弧与数轴的交点D 表示的数为( )A 13B 132C 132D 1338.如图,在平面直角坐标系中,四边形11112222333,,OA B C A A B C A A B C ,…都是菱形,点123,,A A A …都在x 轴上,点123,,C C C ,…都在直线3333y x =+上,且11212323160,1C OA C A A C A A OA ∠=∠=∠==︒=,则点n C 的横坐标是( )A .2321n -⨯-B .2321n -⨯+C .1321n -⨯-D .1321n -⨯+二、填空题9.若1x -在实数范围内有意义,则x 的取值范围是____________. 10.菱形的周长是20,一条对角线的长为6,则它的面积为_____. 11.如图,每个方格都是边长为1的小正方形,则AB +BC =_____.12.如图,点E 是矩形纸片ABCD 的边BC 上的一动点,沿直线AE 折叠纸片,点B 落在点B '位置,连接C B '.若AB =3,BC =6,则线段C B '长度的最小值为 ________________.13.定义:对于一次函数y kx b =+,我们把点(),b k 称为这个一次函数的伴随点.已知一次函数4y x m =+-的伴随点在它的图象上,则=m __________.14.如图,在正方形ABCD 中,点E 、F 分别在对角线BD 上,请你添加一个条件____________,使四边形AECF 是菱形.15.甲从A 地出发以某一速度向B 地走去,同时乙从B 地出发以另一速度向A 地而行,如图中的线段1y 、2y 分别表示甲、乙离B 地的距离(km )与所用时间()h x 的关系.则A 、B两地之间的距离为______km,甲、乙两人相距4km时出发的时间为______h.16.如图,正方形ABCD的面积为144,点H是边DC上的一个动点,将正方形沿过点H的直线GH折叠(点G在边AB上),使顶点D的对应点E恰好落在BC边上的三等分点处,则线段DH的长是___.三、解答题17.计算:(1)23439 3415⨯(2)20511235--⨯18.位于沈阳周边的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,工作人员以0.7米/秒的速度拉绳子,经过10秒后游船移动到点D的位置,问此时游船移动的距离AD的长是多少?19.图①、图②均是44⨯的正方形网格,小正方形的边长为1,每个小正方形的顶点称为格点,点A、B均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,所画图形不全等,不要求写画法.(1)在图①中以线段AB为边画一个正方形ABCD.(2)在图②中以线段AB为边画一个菱形ABEF.20.已知:如图,在ABC 中,AD 是BAC 的平分线,//,//DE AC DF AB . 求证:四边形AEDF 是菱形.21.先观察下列等式,再回答问题: 2211+2+()1 =1+1=2;2212+2+()212=2 12;2213+2+()3=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.在乡村道路建设过程中,甲、乙两村之间需要修建水泥路,甲、乙两村合作完成.已知甲村需要水泥70吨,乙村需要水泥110吨,A 厂可提供100吨水泥,B 厂可提供80吨水泥,两厂到两村的运费如表:目的地运费/(元/吨)甲村乙村 A 厂 240 180 B 厂250160x (吨)之间的函数关系式,并写出自变量x 的取值范围;(2)请你设计出运费最低的运送方案,并求出最低运费.23.将两张宽度相等的纸片叠放在一起,得到如图的四边形ABCD .(1)求证:四边形ABCD 是菱形;(2)如图,联结AC ,过点A 、D 分别作BC 的垂线、DE ,垂足分别为点F 、E . ①设M 为AC 中点,联结、,求证:;②如果,P 是线段AC 上一点(不与点A 、C 重合),当为等腰三角形时,求的值.24.如图,在平面直角坐标系中,直线1l :1y kx b =+经过,两点,且a 、b满足,过点B 作轴,交直线2l :于点P ,连接.(1)求直线AB 的函数表达式; (2)在直线2l 上是否存在一点Q ,使得?若存在,求出点Q 的坐标;若不存在,请说明理由. (3)点是x 轴上的一个动点,点D 是y 轴上的一个动点,过点C 作x 轴的垂线交直线1l 、2l 于点M 、N ,若是等腰直角三角形,请直接写出符合条件的的值.25.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN : ①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).26.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点AB 、重合),另一直角边与CBM ∠的平分线BF 相交于点F . (1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想; (3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.【参考答案】一、选择题 1.C 解析:C 【分析】根据零指数幂、分式有意义,二次根式有意义的条件进行判断即可; 【详解】解:当x =0时,0x 0x 当x =0=0x x当x =0时,x-1=-11x - 故选:C【点睛】本题考查了零指数幂、分式有意义,二次根式有意义的条件,熟练掌握相关知识是解题的关键2.C解析:C 【分析】根据勾股定理的逆定理对四组数据进行逐一判断即可. 【详解】解:A 、∵22 +32 ≠4 2 ,∴不能构成直角三角形; B 、∵42 +52 ≠62 ,∴不能构成直角三角形;C 、∵22212+= ,∴能构成直角三角形;D 、∵5 2 +11 2 ≠13 2 ,∴不能构成直角三角形. 故选C . 【点睛】本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a 2 +b 2 =c2,则此三角形是直角三角形.3.B解析:B 【解析】 【分析】根据已知条件可以得到//AC DE ,对选项判断即可求出解. 【详解】解:∵D ,E 分别是AB ,BC 的中点 ∴//AC DE ,12DE AC =A :根据∠B =∠F 得不出四边形ADFC 为平行四边形,选项不符合题意; B :∠B =∠BCF ,∴CF//AD ,∴四边形ADFC 为平行四边形,选项符合题意; C :根据AC =CF 得不出四边形ADFC 为平行四边形,选项不符合题意; D :根据AD =CF 得不出四边形ADFC 为平行四边形,选项不符合题意; 故答案为B . 【点睛】此题考查了中位线的性质以及平行四边形的判定,熟练掌握有关性质即判定方法是解题的关键.4.C解析:C 【解析】 【分析】先计算出小明5次训练测试成绩的平均分和方差,再与小兵5次训练测试成绩的平均分和方差进行比较即可得出结论. 【详解】解:小明5次训练测试成绩的平均分为1(1113111213)125++++=(分);小明5次训练测试成绩的方差为:2222221[(1112)(1312)(1112)(1212)(1312)]0.85S =-+-+-+-+-=(分2)∴22S S <小明小兵∴两人的平均成绩一样好,小兵的方差大, ∴小明测试的成绩更稳定些 故选:C . 【点睛】本题考查了方差的意义.方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.C解析:C 【分析】存在2种情况,△ABC 是锐角三角形和钝角三角形时,高AD 分别在△ABC 的内部和外部 【详解】情况一:如下图,△ABC 是锐角三角形∵AD 是高,∴AD ⊥BC ∵AB=15,AD=12 ∴在Rt △ABD 中,BD=9 ∵AC=13,AD=12 ∴在Rt △ACD 中,DC=5∴△ABC 的周长为:15+12+9+5=42 情况二:如下图,△ABC 是钝角三角形在Rt △ADC 中,AD=12,AC=13,∴DC=5 在Rt △ABD 中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC 的周长为:15+13+4=32 故选:C 【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.6.C解析:C 【解析】 【分析】先求出BCD ∠,根据菱形性质得出BC CD =,即得到CBD CDB ∠=∠,可得BDC ∠的度数. 【详解】∵∠1=50°,∠2=20° ∴18012110BCD ︒︒∠=-∠-∠= ∵四边形ABCD 为菱形 ∴BC BD =∴1(180)352BDC BCD ︒︒∠=-∠=故选:C . 【点睛】本题考查了菱形的性质求角度,熟知以上知识是解题的关键.7.C解析:C 【解析】 【分析】根据题意先求得AB 的长,根据勾股定理求得AC 的长,根据题意AC AD =,进而求得D 点表示的数. 【详解】依题意,数轴上A 点表示的数为2-,B 点表示的数是1,()123AB ∴=--=,BC AB ⊥,2BC =,AC ∴ AC AD =,AD ∴=数轴上A 点表示的数为2-,∴D 2.故选C .【点睛】本题考查了实数与数轴,勾股定理,勾股定理求得AC 是解题的关键.8.A解析:A 【分析】分别过点123,,,...C C C 作x 轴的垂线,交于123,,,...D D D ,再连接112233,,,...C D C D C D ,利用勾股定理及根据菱形的边长求得1A 、2A 、3A ⋯的坐标然后分别表示出1C 、2C 、3C ⋯的坐标找出规律进而求得n C 的坐标.【详解】解:分别过点123,,,...C C C 作x 轴的垂线,交于123,,,...D D D ,再连接112233,,,...C D C D C D 如下图:11OA =,11OC ∴=,1121232360C OA C A A C A A ∴∠=∠=∠=⋯=︒,在11Rt OC D 中,111122OD OC ==根据勾股定理得:2221111OD OC C D =-,即222111()2OD =-,解得:13OD =1C ∴312,11(2C ∴3),四边形111OA B C ,1222A A B C ,2333A A B C ,⋯都是菱形,122A C ∴=,234A C =,348A C =,⋯,2C ∴的纵坐标为:22122122413A C D D AC =--33y 2,23)C ∴,3C 的纵坐标为:33C D =y x =为5,3(5C ∴,,4(11C ∴,,5(23C ,,6(47C ∴,;,⋯,2(321n n C -⨯-,2n -则点n C 的横坐标是:2321n -⨯-,故选:A .【点睛】本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C 点的坐标,找出规律是解题的关键.二、填空题9.1≥x 且3x ≠【解析】【分析】根据分母不等于0,且被开方数是非负数列式求解即可.【详解】由题意得10x -≥且30x -≠解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.D解析:【解析】【分析】先画出图形,根据菱形的性质可得5AD =,DO =3,根据勾股定理可求得AO 的长,从而得到AC 的长,再根据菱形的面积公式即可求得结果.【详解】由题意得2045AD =÷=,6BD =∵菱形ABCD∴3DO =,AC ⊥BD ∴4AO ==∴28AC AO == ∴1242S AC BD =⋅=考点:本题考查的是菱形的性质【点睛】解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.11.A解析:25【解析】【分析】根据勾股定理可以求出AB 和BC 的长,进而可求出AB+BC 的值.【详解】解:∵每个方格都是边长为1的小正方形,∴22125AB =+=,22125BC =+=∴AB +BC =5525+=.故答案为25.【点睛】本题考查了勾股定理.熟练掌握勾股定理是解题的关键.12.A解析:35﹣3【分析】连接AC ,当A 、B '、C 共线时,C B '的值最小,进而解答即可.【详解】解:如图,连接AC .∵折叠,∴AB =A B '=3,∵四边形ABCD 是矩形,∴∠B =90°,∴AC=∵C B '≥AC ﹣A B ',∴当A 、B '、C 共线时,C B '的值最小为:3,故答案为:3.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,作出正确的辅助线,属于中考常考题型.13.43【分析】先写出4y x m =+-的伴随点,再根据伴随点在它的图象上代入一次函数解析式,计算即可求得m .【详解】解:4y x m =+-的伴随点为(),4m -,因为4y x m =+-伴随点在它的图象上,则有44m m -=+- 解得43m =. 故答案为:43. 【点睛】本题考查一次函数图象上点的坐标特征. 一次函数图象上任意一点的坐标都满足函数关系式y=kx+b .14.B解析:BE=DF【分析】根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据 SAS ,可得△ABF 与△CBF 与△CDE 与△ADE 的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果.【详解】添加的条件为:BE=DF ,理由:正方形ABCD 中,对角线BD ,∴AB=BC=CD=DA ,∠ABE=∠CBE=∠CDF=∠ADF=45°.∵BE=DF ,∴△ABE ≌△CBE ≌△DCF ≌△DAF (SAS ).∴AE=CE=CF=AF ,∴四边形AECF 是菱形;故答案为:BE=DF .【点睛】本题考查了正方形的性质,菱形的判定,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.15.2或3【分析】①利用路程的函数图象解得的解析式,再求的值;②根据题意列方程解答即可.【详解】解:①设=kx +b ,∵经过点P (2.5,7.5),(4,0).∴ ,解得 ,∴=解析:2或3【分析】①利用路程1y 的函数图象解得1y 的解析式,再求的1y 值;②根据题意列方程解答即可.【详解】解:①设1y =kx +b ,∵1y 经过点P (2.5,7.5),(4,0).∴ 2.57.540k b k b ⎧⎨⎩+=+= , 解得520k b -⎧⎨⎩== , ∴1y =−5x +20,当x =0时,1y =20.答:AB 两地之间的距离为20km .②根据题意得:53204x x +=-或53204x x +=+,解得:2x =或3x =.即出发2小时或3小时,甲、乙两人相距4km【点睛】此题主要考查了根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.熟练掌握相遇问题的解答也很关键.16.或【分析】由已知可知CE =4或CE =8,由折叠可知DH =EH ,则CH =12﹣DH ,分两种情况求,在Rt △ECH 中,利用勾股定理求解.【详解】解:∵正方形ABCD 的面积为144,∴正方形的边解析:263或203【分析】由已知可知CE=4或CE=8,由折叠可知DH=EH,则CH=12﹣DH,分两种情况求,在Rt△ECH中,利用勾股定理求解.【详解】解:∵正方形ABCD的面积为144,∴正方形的边长为12,∵E为BC的三等分点,∴BE=4或BE=8,由折叠可知DH=EH,∴CH=12﹣DH,当CE=8时,在Rt△ECH中,EH2=EC2+CH2,∴DH2=64+(12﹣DH)2,∴DH=263;当CE=4时,在Rt△ECH中,EH2=EC2+CH2,∴DH2=16+(12﹣DH)2,∴DH=203;综上所述:DH的长为263或203,故答案为263或203.【点睛】本题考查了正方形的性质,折叠的性质,勾股定理,以及分类讨论的数学思想,分类讨论是解答本题的关键.三、解答题17.(1)6;(2)-1【分析】(1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案;(2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可.【详解】(1)(2).解析:(1)6;(2)-1(1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案;(2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可.【详解】(1263=⨯(22121=--=-. 【点睛】此题考查二次根式的计算,正确掌握二次根式的乘除法法则,二次根式混合运算法则,以及二次根式的性质化简二次根式是解题的关键.18.游船移动的距离AD 的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD 的长,在中,在中,,即可求出最终结果.【详解】解:工作人员以0.7米/秒的速度拉绳子,经过10秒解析:游船移动的距离AD 的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD 的长,在Rt BCD 中BD Rt ABC 中,AB =【详解】 解:工作人员以0.7米/秒的速度拉绳子,∴经过10秒拉回绳子100.7=7⨯米,开始时绳子AC 的长为17m ,∴拉了10秒后,绳子CD 的长为17-7=10米,∴在Rt BCD 中,6BD ===米,在Rt ABC 中,15AB =米,∴AD =15-6=9米,答:游船移动的距离AD 的长是9米.【点睛】本题主要考查勾股定理的运用,属于综合题,难度一般,熟练掌握勾股定理解三角形是解决本题的关键.19.(1)见解析;(2)见解析【分析】(1)根据正方形的判定进行画图即可;(2)根据菱形的判定进行画图即可.【详解】解:(1)如图所示:,,∴,∴∠ABC=90°,∴四边形AB解析:(1)见解析;(2)见解析【解析】【分析】(1)根据正方形的判定进行画图即可;(2)根据菱形的判定进行画图即可.【详解】解:(1)如图所示:22AC=+=,221310AB CD AD BC====+=,125∴222+=,AB BC AC∴∠ABC=90°,∴四边形ABCD是正方形;(2)如图所示22====+=,AB EF AF BE125∴四边形ABEF是菱形.【点睛】本题主要考查了菱形的判定,正方形的判定,勾股定理和勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.20.见解析.【分析】根据四边形是平行四边形,再证明有一组邻边相等即可.【详解】解:∵,∴四边形是平行四边形,∵平分,∴,∵,∴,∴,∴,∴平行四边形是菱形.【点睛】本题考查了解析:见解析.【分析】根据//,//DE AC DF AB 四边形AEDF 是平行四边形,再证明有一组邻边相等即可.【详解】解:∵//,//DE AC DF AB ,∴四边形AEDF 是平行四边形,∵AD 平分BAC ∠,∴12∠=∠,∵//DE AC ,∴23∠∠=,∴13∠=∠,∴AE DE =,∴平行四边形AEDF 是菱形.【点睛】本题考查了平行线的性质,菱形的判定,等腰三角形的判定,解题关键是熟练运用相关性质,准确进行推理证明.21.(1);(2),证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1144+=144;(2211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)∵1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,∴ 144+= 144.(21+1=2,212+=212313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.(1)y =﹣30x+37100(0≤x≤70);(2)最低运送方案为A 厂运往甲村水泥70吨,运往乙村水泥30吨:B 厂运往甲村水泥0吨,B 厂运往乙村水泥80吨,最低运费为35000元.【分析】(1解析:(1)y=﹣30x+37100(0≤x≤70);(2)最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元.【分析】(1)由从A厂运往甲村水泥x吨,根据题意首先求得从A厂运往乙村水泥(100-x)吨,B 厂运往甲村水泥(70-x)吨,B厂运往乙村水泥吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最低运费.【详解】(1)设从A厂运往甲村水泥x吨,则A厂运往乙村水泥(100﹣x)吨,B厂运往甲村水泥(70﹣x)吨,B厂运往乙村水泥110﹣(100﹣x)=(10+x)吨,∴y=240x+180(100﹣x)+250(70﹣x)+160(10+x)=﹣30x+37100,x的取值范围是0≤x≤70,∴y=﹣30x+37100(0≤x≤70);(2)∵y=﹣30x+37100(0≤x≤70),﹣30<0,∴y随x的增大而减小,∵0≤x≤70,∴当x=70时,总费用最低,最低运费为:﹣30×70+37100=35000 (元),∴最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元.【点睛】本题主要考查了一次函数的实际应用问题,解决本题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解.23.(1)见解析;(2)①见解析;②或【分析】(1)首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.(2)①过点作于,连接,由,可得,再证明解析:(1)见解析;(2)①见解析;②或【分析】(1)首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.(2)①过点M作于G,连接BD,由,可得,再证明,利用三角形内角和定理即可得出答案;②设,则,设,则,根据勾股定理可得,即,从而得出,即可得到,根据P是线段AC上一点(不与点A、C重合),不存在,可得出当为等腰三角形时,仅有两种情形:或,分类讨论即可求得答案.【详解】解:(1)如图1,过点A作于E,于F,两条纸条宽度相同,.,//AD BC,∴四边形ABCD是平行四边形..,∴四边形ABCD是菱形;(2)①如图2,过点M作于G,连接BD,则,四边形ABCD是菱形,∴与BD互相垂直平分,AC经过点M,,,,,,,∴,,在和中,,,,,,,,,,,,,,,,,,;②,∴设,则,设,则,,,,,,,,,即,,,P是线段AC上一点(不与点A、C重合),不存在,∴当为等腰三角形时,仅有两种情形:或,Ⅰ.当时,则,如图3,,,,,,,∴;Ⅱ.当时,如图4,过点F作于点H,在中,,,,,∴;综上所述,当为等腰三角形时,的值为或.【点睛】本题是四边形综合题,考查了平行四边形的判定与性质,菱形的判定与性质,全等三角形判定和性质,三角形面积公式,菱形面积,等腰三角形性质,勾股定理等,运用分类讨论思想和方程思想思考解决问题是解题关键.24.(1);(2)存在点,点的纵坐标为0或4;(3)4或或47或.【解析】【分析】(1)根据非负性求出a、b的值,然后运用待定系数法解答即可;(2)根据平行和坐标以及SΔBPQ=SΔBPA确定Q解析:(1)122y x =-+;(2)存在点Q ,Q 点的纵坐标为0或4;(3)4或45或或4-.【解析】 【分析】(1)根据非负性求出a 、b 的值,然后运用待定系数法解答即可; (2)根据平行和坐标以及确定Q 坐标即可;(3)连接DM 、DN ,由题意可得M 、N 的坐标分别为(n ,),(n ,n ),MN=|32n-2|,然后再分MN=DM,MN=DN,DM=DN 三种情况解答即可.【详解】 解:(1)∵∴∴()4,0A ()0,2B把()4,0A 、()0,2B 代入1y kx b =+中,得:解得:∴122y x =-+ (2)存在点Q ,使.∵()0,2B ∴∴∵∴Q 点的纵坐标为0或4∴(3) ①当DM=MN 或DM=DN 时,如图:过M 做DM ∥x 轴交y 轴于D 点,连接DN∵C点坐标为(n,n),∴M、N的坐标分别为(n,),(n,n),D(0,n) MN=|32n-2|,∴|32n-2|=|n|,解得:n=4或n=45②当DM=DN或DM=DN时,如图∵C点坐标为(n,n),∴M、N的坐标分别为(n,),(n,n),D(0,n) MN=|32n-2|,又∵是等腰直角三角形∴D在MN的垂直平分线上,DF=12MN ∴,D(0, +1)F(n,|)∴|n| =12|32n-2|,解得:或4-综上,n的取值为4或45或或4-时,是等腰直角三角形.【点睛】本题属于一次函数综合题,考查了一次函数图像上点的坐标特点、一次函数的解析式、一次函数的动点问题以及等腰三角形等知识,考查知识点较多难度较大,解答的关键在于对所学知识的灵活应用以及较强的计算能力.25.(1)见解析;(2),;(3)①;②【分析】(1)利用直角三角形斜边中线的性质可得DO=DA,推出∠AEO=60°,进一步得出BC∥AE,CO∥AB,可得结论;(2)先计算出OA=,推出PB=解析:(1)见解析;(2)27PA=4217BH3)①(423,23)M+;2635【分析】(1)利用直角三角形斜边中线的性质可得DO=DA,推出∠AEO=60°,进一步得出BC∥AE,CO∥AB,可得结论;(2)先计算出OA=43PB=23AP=27BH即可;(3)①求出直线PM的解析式为3,再利用两点间的距离公式计算即可;②易得直线BC的解析式为y=3,联立直线BC和直线PM的解析式成方程组,求得点G的坐标,再利用三角形面积公式计算.【详解】(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=12OB,OD=BD=12OB,∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO ∥AB ,∴四边形ABCE 是平行四边形;(2)解:在Rt △AOB 中,∠AOB=30°,OB=8, ∴AB=4, ∴OA=∵四边形ABCE 是平行四边形, ∴PB=PE ,PC=PA , ∴PB=∴PC PA == ∴1122ABC S AC BH AB BE ∆=⋅⋅=⋅⋅,即11422BH ⨯=⨯⨯ ∴BH (3)①∵C (0,4), 设直线AC 的解析式为y=kx+4, ∵P (0),∴0=,解得,k=,∴y=, ∵∠APM=90°,∴直线PM 的解析式为, ∵P (0),∴, 解得,m=-3,∴直线PM 的解析式为,设M (x ), ∵AP=∴(x-2+)2=(2,化简得,x 2,解得,x 1=4,x 2=4(不合题意舍去),当x=234+时,y=3×(234+)-3=23,∴M(234+,23),故答案为:(234+,23);②∵(0,4),(43,0)C B∴直线BC的解析式为:34y x=-+,联立3334y xy x⎧=-⎪⎪⎨⎪=-+⎪⎩,解得143565xy⎧=⎪⎪⎨⎪=⎪⎩,∴146(3,)55G,16126=23234 3.2525PBG PBAS S S∆∆∴+=⨯⨯+⨯⨯=阴【点睛】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.26.(1)详见解析;(2),理由详见解析;(3),理由详见解析【分析】(1)根据,等量代换即可证明;(2)DE=EF,连接NE,在DA边上截取DN=EB,证出△DNE≌△EBF即可得出答案;(3)在解析:(1)详见解析;(2)DE EF=,理由详见解析;(3)DE EF=,理由详见解析【分析】(1)根据90,90AED FEB ADE AED∠+∠=︒∠+∠=︒,等量代换即可证明;(2)DE=EF,连接NE,在DA边上截取DN=EB,证出△DNE≌△EBF即可得出答案;(3)在DA边上截取DN EB=,连接NE,证出()DNE EBF ASA≌即可得出答案.【详解】(1)证明:∵90DAB DEF∠=∠=︒,∴90,90AED FEB ADE AED∠+∠=︒∠+∠=︒,∴ADE FEM∠=∠;(2) ;DE EF=理由如下:如图,取AD的中点N,连接NE,∵四边形ABCD 为正方形, ∴AD AB = ,∵,N E 分别为,AD AB 中点 ∴11,22AN DN AD AE EB AB ====, ∴,DN BE AN AE == 又∵90A ∠=︒ ∴45ANE ∠=︒∴180135DNE ANE ∠=︒-∠=︒, 又∵90CBM ∠=︒,BF 平分CBM ∠ ∴45,135CBF EBF ∠=︒∠=︒. ∴DNE EBF ∠=∠ 在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩()DNE EBF ASA ≌,∴DE EF =(3) DE EF =.理由如下:如图,在DA 边上截取DN EB =,连接NE ,∵四边形ABCD 是正方形, DN EB =, ∴AN AE =,∴AEN △为等腰直角三角形, ∵45ANE ∠=︒∴18045135DNE ∠=︒-︒=︒, ∵BF 平分CBM ∠, AN AE =, ∴9045135EBF ∠=︒+︒=︒, ∴DNE EBF ∠=∠, 在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()DNE EBF ASA ≌,∴DE EF.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE≌△EBF.。

八年级期末试卷测试卷(含答案解析)

八年级期末试卷测试卷(含答案解析)

八年级期末试卷测试卷(含答案解析)一、初二物理机械运动实验易错压轴题(难)1.如图所示是测量小车沿斜面下滑的平均速度的实验.(1)该实验目的是练习用___和_____测平均速度.(2)该实验原理是_______(3)实验时应保持斜面的倾角较小,这是为了减小测量_____(填“路程”或“时间”)时造成的误差.(4)斜面倾角不变时,小车由静止释放,小车通过的路程越长,其平均速度越_____(填“大”或“小”);小车由静止释放,通过相同路程,斜面的倾角越大,小车运动的平均速度越_____(填“大”或“小”).(5)实验时观察到,小车沿斜面顶端下滑到斜面底端的运动是____直线运动.(选填“匀速”或“变速”)(6)实验中测得路程s1上的平均速度为v1,路程s2上的平均速度为v2,路程s3上的平均速度为v3.那么,v1、v2、v3的大小关系是_______.(选填>、<、=)【来源】2019年广东省深圳市育才第二中学中考一模物理试题【答案】刻度尺秒表v=st时间大大变速<【解析】【分析】(1)公式v=st既能用于匀速直线运动求速度,又能用于变速直线运动求平均速度;实验中要用刻度尺测量路程,用秒表测量时间.(2)若要计时方便,应使所用的时间长些.(3)斜面倾角不变时,小车由静止释放,小车通过的路程越长,其平均速度越大.【详解】(1)平均速度是指某段时间内的路程与这段时间的比值,要测出速度,应测量出小车运动的距离和时间,所以要用到刻度尺和秒表;故实验的目的是练习用刻度尺和秒表测平均速度(2)实验原理为v=st;(3)斜面坡度越大,小车沿斜面向下加速运动越快,过某点的时间会越短,计时会越困难,所以为使计时方便,减小测量时间的误差,斜面坡度应小些;(4) 斜面倾角不变时,小车由静止释放,小车通过的路程越长,其平均速度越大;小车由静止释放,通过相同路程,斜面的倾角越大,小车运动的平均速度越大;(5)实验时观察到,小车沿斜面顶端下滑到斜面底端的速度越来越大,故是变速直线运动.(6)由于小车在下滑过程中做加速运动,所以上半段的平均速度最小,下半段的平均速度最大,全程的平均速度居中,因此v2<v3.2.小明利用如图所示的装置测量小车的平均速度。

八年级上册道德与法治期末试卷测试题(Word版含解析)

八年级上册道德与法治期末试卷测试题(Word版含解析)

八年级上册道德与法治期末试卷测试题(Word版含解析)一、选择题1.亚力士多德说:“人是政治的存在者,必定要过共同的生活。

”这深刻阐述了个人和社会的关系。

对此理解正确的是()①个人是社会的有机组成部分,社会由个人组成②为了社会的发展,我们必须舍弃个人利益③每个人都从社会中获得物质支持和精神滋养④个人的生存、发展离不开社会A.①②③B.①②④C.①③④D.②③④2.作为为新时代的青少年,我们要学习做一个积极的社会人,养成亲社会行为。

下列行为符合上述要求的是()①当同学们知道小梅因家境贫寒面临辍学时,都踊跃捐款资助②小亮的好朋友被小平欺负了,他挺身而出,和好朋友一起揍了小平一顿③小明积极参加无偿献血活动④小强游览泰山时在石壁上刻下“小强到此一游”A.③④B.②④C.①③D.①②3.人民日报载文:“人非孤立存在,而是存在于一定的社会中。

因此,人的发展人的素质提高,需要社会发展为之提供必需的物质和文化条件。

”从个人和社会的关系看,上述材料表明()A.个人与社会相互区别,不能等同B.社会离不开个人,个人是组成社会的细胞C.个人的生存、发展离不开社会D.个人的存在和发展会对社会产生巨大影响4.在网络交往中,我们要学会“信息节食”,“信息节食”是指()①在无关信息面前不停留②坚决拒绝网络,从不上网③在无聊信息上不浪费精力④只要是自己感兴趣的信息就可以长时间关注A.①②B.③④C.①③D.②④5.第四届世界互联网大会·乌镇峰会于2017年12月3日—5日在浙江省乌镇举行。

会议主题为“发展数字经济,促进开放共享——携手共建网络空间命运共同体”。

来自全球1500多名嘉宾参加大会。

全球各界人士广泛关注互联网,是因为()①互联网可以满足人们各个方面的需要②互联网使世界变成了“鸡犬之声相闻”的地球村③互联网的积极作用取代了其消极作用④互联网为人们的生活和工作带来极大便利A.①②B.②③C.②④D.③④6.小林非常喜欢在微信晒朋友圈,晒作业、晒美食、晒玩具、晒与家人的生活片段……。

八年级数学下册期末试卷(Word版含解析)

八年级数学下册期末试卷(Word版含解析)

八年级数学下册期末试卷(Word 版含解析) 一、选择题 1.二次根式2x -中x 的值不能是( )A .0B .1C .2D .32.下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( )A .4个B .3个C .2个D .1个3.四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的为( ) A .88︒,108︒,88︒ B .108︒,108︒,82︒ C .88︒,92︒,92︒D .108︒,72︒,108︒ 4.某单位招聘项目经理,考核项目为个人形象、专业知识、策划能力,三个项目权重之比为2:3:5,某应聘者三个项目的得分依次为80,90,80,则他最终得分为( ) A .79 B .83 C .85 D .875.如图,菱形ABCD 的边长为2,60BAD ∠=︒,点P 是边AD 的中点,点Q 是对角线AC 上一动点,则DPQ 周长的最小值是( )A .13+B .33+C .23+D .36.如图,将□ABCD 沿对角线AC 折叠,使点B 落在'B 处,若1240︒∠=∠=,则B =( )A .60︒B .100︒C .110︒D .120︒7.如图,已知AOBC 的顶点O (0,0),点B 在x 轴正半轴上,按以下步骤作图: ①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .若G 的坐标为(2,4),则点A 的坐标是( )A .(﹣3,4)B .(﹣2,4)C .(225,4)-D .(54,4)- 8.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(8,4),若直线经过点D (2,0),且将平行四边形OABC 分割成面积相等的两部分,则直线DE 的表达式是( )A .y=x-2B .y=2x-4C .y=x-1D .y=3x-6二、填空题9.若225b a a =-+--,则a b -=_______________________.10.菱形两条对角线长分别为2、6,则这个菱形的面积为_________.11.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,2AC =,斜边AB 的长为__________. 12.如图,在矩形ABCD 中,AD =10,AB =6,点E 为BC 上的点,ED 平分∠AEC ,则EC =___.13.已知一次函数y =kx ﹣b ,当自变量x 的取值范围是1≤x ≤3时,对应的因变量y 的取值范围是5≤y ≤10,那么k ﹣b 的值为_______.14.如图, 在矩形ABCD 中, 对角线AC , BD 交于点O , 已知∠AOD=120°, AB=1,则BC 的长为______15.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB //x轴.直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么AB 的长为___.16.如图所示,将矩形ABCD 沿直线AE 折叠(点E 在边CD 上),折叠后顶点D 恰好落在边BC 上的点F 处,若AD =5,AB =4,则EC 的长是_____.三、解答题17.(1)23317(2)21148--+--- (2)1(6215)36252-⨯-+- (3)148312242÷-⨯+ (4)205112(31)(31)35+-⨯++- 18.位于沈阳周边的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A 拉回点B 的位置(如图).在离水面高度为8m 的岸上点C ,工作人员用绳子拉船移动,开始时绳子AC 的长为17m ,工作人员以0.7米/秒的速度拉绳子,经过10秒后游船移动到点D 的位置,问此时游船移动的距离AD 的长是多少?19.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形或四边形.(绘图要求:①所绘图形不得超出正方形网格;②必须用直尺和中性笔绘图,确保所绘图形的顶点必须在格点上)(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图③中,画一个直角三角形,使它的三边长都是无理数;(4)在图④中,画一个正方形,使它的面积为10.20.如图,ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,垂足为点O .(1)求证:四边形AFCE 是菱形.(2)若2AE ED =,6AC =,4EF =,则ABCD 的面积为 . 21.先阅读下列材料,再解决问题: 阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:22232232121(2)212(12)+=+⨯⨯=++⨯⨯=+=|1+2|=1+2解决问题:①模仿上例的过程填空:146514235+=+⨯⨯=_________________=________________=_________________②根据上述思路,试将下列各式化简:(1)28103-; (2)312+. 22.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y (元)与所用的水(自来水)量x (吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当1730x ≤≤时,求y 与x 之间的函数关系式;(2)已知某户居民上月水费为91元,求这户居民上月的用水量;(3)当一户居民在某月用水为15吨时,求这户居民这个月的水费.23.如图1,四边形ACBD 中,AC =AD ,BC =BD .我们把这种两组邻边分别相等的四边形叫做“筝形”,如图2,在“筝形”ACBD 中,对角线AB =CD ,过点B 作BE ⊥AC 于E 点,F 为线段BE 上一点,连接FA 、FD ,FA =FB .(1)求证:△ABF ≌△CDA ;(2)如图3,FA 、FD 分别交CD 、AB 于点M 、N ,若AM =MF ,求证:BN =CM +MN .24.定义:对于平面直角坐标系xOy中的点P(a,b)和直线y=ax+b,我们称点P((a,b)是直线y=ax+b的关联点,直线y=ax+b是点P(a,b)的关联直线.特别地,当a=0时,直线y=b(b为常数)的关联点为P(0,b).如图,已知点A(-2,-2),B(4,-2),C(1,4).(1)点A的关联直线的解析式为______;直线AB的关联点的坐标为______;(2)设直线AC的关联点为点D,直线BC的关联点为点E,点P在y轴上,且S△DEP=2,求点P的坐标.(3)点M(m,n)是折线段AC→CB(包含端点A,B)上的一个动点.直线l是点M的关联直线,当直线l与△ABC恰有两个公共点时,直接写出m的取值范围.25.如图①,已知正方形ABCD的边长为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x.(1)BP+DP的最小值是_______,此时x的值是_______;(2)如图②,若QP的延长线交CD边于点M,并且∠CPD=90°.①求证:点M是CD的中点;②求x的值.(3)若点Q是射线AD上的一个动点,请直接写出当△CDP为等腰三角形时x的值.【参考答案】一、选择题1.D解析:D【分析】根据二次根式有意义的条件即可得出答案.【详解】 2x -∴20x -≥,解得:2x ≤,故选项中符合条件的x 的值有0,12,, ∴x 不能为3,故选:D .【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解本题的关键.2.C解析:C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论.【详解】解:①222b c a =-即222+=a b c ,△ABC 是直角三角形,故①符合题意;②∵∠A +∠B +∠C =180°,∠C =∠A −∠B ,∴∠A +∠B +∠A −∠B =180°,即∠A =90°,∴△ABC 是直角三角形,故②符合题意;③∵111::::345a b c =, 设a =3k ,b =4k ,c =5k , 则222543k k k ⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴△ABC 不是直角三角形,故③不合题意;④∵::3:4:5A B C ∠∠∠=,∴∠C =5345++×180°=75°,故不是直角三角形;故④不合题意. 综上,符合题意的有①②,共2个,故选:C .【点睛】本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.3.D解析:D【解析】【分析】两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.【详解】A 、第四个角是76°,有一组对角不相等,不是平行四边形;B 、第四个角是72°,两组对角都不相等,不是平行四边形;C 、第四个角是88°,而C 中相等的两个角不是对角,不是平行四边形;D 、第四个角是72°,满足两组对角分别相等,因而是平行四边形.故选:D .【点睛】本题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角的对应的位置关系,并不是有两组角相等的四边形就是平行四边形.4.B解析:B【解析】【分析】根据加权平均数的定义列式计算即可.【详解】 解:他最终得分为802903805235⨯+⨯+⨯++=83(分). 故选:B .【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义. 5.A解析:A【分析】连接BQ ,BD ,当P ,Q ,B 在同一直线上时,DQ +PQ 的最小值等于线段BP 的长,依据勾股定理求得BP的长,即可得出DQ+PQ的最小值,进而得出△DPQ周长的最小值.【详解】解:如图所示,连接BQ,BD,∵点Q是菱形对角线AC上一动点,∴BQ=DQ,∴DQ+PQ=BQ+PQ,当P,Q,B在同一直线上时,BQ+PQ的最小值等于线段BP的长,∵四边形ABCD是菱形,∠BAD=60°,∴△BAD是等边三角形,又∵P是AD的中点,∴BP⊥AD,AP=DP=1,∴Rt△ABP中,∠ABP=30°,∴AP=1AB=1,2∴BP22413--AB AP∴DQ+PQ3又∵DP=1,∴△DPQ3+1,故选:A.【点睛】本题主要考查了菱形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.6.D解析:D【解析】【分析】由平行线的性质可得∠DAC=∠B'AB=40°,由折叠的性质可得∠BAC=∠B'AC=20°,由三角形内角和定理即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠B'AB=40°,同理,∠2=∠DAC=40°,∵将□ABCD沿对角线AC折叠,∴∠BAC =∠B 'AC =20°,∴∠B =180°﹣∠2﹣∠BAC =120°,故选:D .【点睛】本题考查了翻折变换的性质、平行四边形的性质以及三角形内角和定理;熟练掌握折叠的性质是解题的关键.7.A解析:A【解析】【分析】首先证明AO AG =,设AO AG x ==,则2AT x =-,在Rt AOT △中,2224(2)x x =+-,求出x ,可得结论.【详解】解:如图,设AC 交y 轴于T .(2,4)G ,2TG ∴=.4OT =,四边形AOBC 是平行四边形,//AC OB ∴,AGO GOB ∴∠=∠,AOG GOB ∠=∠,AOG AGO ∴∠=∠,AO AG ∴=,设AO AG x ==,则2AT x =-,在Rt AOT △中,2224(2)x x =+-,5x ∴=,523AT ∴=-=,(3,4)A ∴-,故选:A .【点睛】本题考查作图-基本作图,平行四边形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是证明AO AG =,学会利用参数解决问题.8.A解析:A【分析】过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】解:∵点B 的坐标为(8,4),∴平行四边形的对称中心坐标为(4,2),设直线DE 的函数解析式为y=kx+b ,则4220k b k b +=⎧⎨+=⎩, 解得12k b =⎧⎨=-⎩, ∴直线DE 的解析式为y=x-2.故选:A .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.二、填空题9.7【解析】【分析】先由二次根式有意义可得20,20a a -≥⎧⎨-≥⎩从而依次求解,a b 的值,可得答案. 【详解】解: 5b =20,20a a -≥⎧∴⎨-≥⎩解得:2,a =5,b ∴=-()257.a b ∴-=--=故答案为:7.【点睛】本题考查的是二次根式有意义的条件,一元一次不等式组的解法,掌握二次根式有意义的条件是解题的关键.10【解析】【分析】根据菱形的面积等于两对角线乘积的一半求出其面积即可.【详解】解:∵一个菱形的两条对角线长分别为2和6, ∴这个菱形的面积12632=⨯⨯=, 故答案为:3.【点睛】本题考查的是菱形的面积计算,熟知菱形的面积等于两对角线乘积的一半是解题的关键. 11.B解析:433【解析】【分析】由90C ∠=︒,30A ∠=︒得到2,AB BC = 利用勾股定理可得答案.【详解】解:设BC ,x =90C ∠=︒,30A ∠=︒, 2,AB x ∴=2AC =,222(2)2,x x ∴=+122323,33x x ∴==-(舍去), 42 3.3AB x ∴==4 3.3【点睛】 本题考查的是含30角的直角三角形的性质与勾股定理的应用,掌握相关知识点是解题的关键.12.A解析:2【分析】根据平行线的性质以及角平分线的定义证明∠ADE=∠AED,根据等角对等边,即可求得AE 的长,在直角△ABE中,利用勾股定理求得BE的长,进而得出EC.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE8=.∴EC=BC-BE=10-8=2,故答案为:2.【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的判定,解决本题的关键是灵活运用矩形的性质,等腰三角形的判定和勾股定理.13.5或10【分析】本题分情况讨论①k>0时,x=1时对应y=5;②k>0时,x=1时对应y=10.【详解】解:①k>0时,由题意得:x=1时,y=5,∴k-b=5;②k<0时,由题意得:x=1时,y=10,∴k-b=10;综上,k-b的值为5或10.故答案为:5或10.【点睛】本题考查了待定系数法求函数解析式,注意本题需分两种情况,不要漏解.14.A【分析】根据矩形的性质可得∠ACB的度数,从而利用勾股定理可求出BC的长度.【详解】解:由题意得:∠ACB=30°,∠ABC=90°,在Rt△ABC中,AC=2AB=2,由勾股定理得,【点睛】本题考查了矩形的性质,比较简单,解答本题的关键是求出∠ACB的度数.15.4【分析】由图1,当直线在DE 的左下方时,由图2可得AE 长度;由图1,当直线在DE 和BF 之间时,长度不变,由图2可得EB 的长度,从而AB=AE+EB ,即求得AB .【详解】如图1,当直线在DE解析:4【分析】由图1,当直线在DE 的左下方时,由图2可得AE 长度;由图1,当直线在DE 和BF 之间时,长度不变,由图2可得EB 的长度,从而AB =AE +EB ,即求得AB .【详解】如图1,当直线在DE 的左下方时,由图2得:AE =7-4=3;由图1,当直线在DE 和BF 之间时,由图2可得:EB=8-7=1,所以AB =AE +EB =3+1=4.故答案为:4.【点睛】本题考查一次函数的图象与图形的平移,平行四边形的性质,关键是明确题意,读懂函数图象,利用数形结合的思想.16.5【分析】由折叠可得,.再由矩形性质结合勾股定理即可求出BF 的长,从而求出CF 的长.设,则,在中,利用勾股定理列出关于x 的等式,解出x 即可.【详解】解:由折叠可知,,∵四边形ABCD 是矩形解析:5【分析】由折叠可得5AD AF ==,DE EF =.再由矩形性质结合勾股定理即可求出BF 的长,从而求出CF 的长.设EC x =,则4DE EF x ==-,在Rt CEF 中,利用勾股定理列出关于x 的等式,解出x 即可.【详解】解:由折叠可知5AD AF ==,DE EF =,∵四边形ABCD 是矩形,∴在Rt ABF 中,3BF ==,∴532CF BC BF =-=-=.设EC x =,则4DE EF x ==-,∴在Rt CEF 中,222+=CF CE EF ,即2222(4)x x +=-,解得: 1.5x =.故EC 的长为1.5.故答案为1.5.【点睛】本题考查折叠的性质,矩形的性质和勾股定理.利用数形结合的思想是解答本题的关键.三、解答题17.(1)1;(2);(3);(4).【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)直接利用二次根式的乘法运算法则以及结合绝对值的性质解析:(1)1;(2)2-;(3)44)3.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)直接利用二次根式的乘法运算法则以及结合绝对值的性质化简,先算乘法,再化简二次根式,去绝对值,最后利用二次根式的加减运算法则计算得出答案;(3)直接利用二次根式的乘除运算法则化简,先算乘除,再利用二次根式的加减运算法则计算得出答案;(4)直接利用二次根式的乘法运算法则化简,先算乘除,再利用有理数的加减运算法则计算得出答案.【详解】解:(13212=- 312122=--+ =1;(2)2=62=2=2-;(3==4=4(41)=-13121231=+-+-=.3【点睛】本题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键.18.游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在中,在中,,即可求出最终结果.【详解】解:工作人员以0.7米/秒的速度拉绳子,经过10秒解析:游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在Rt BCD中BD Rt ABC中,AB=【详解】解:工作人员以0.7米/秒的速度拉绳子,∴经过10秒拉回绳子100.7=7⨯米,开始时绳子AC的长为17m,∴拉了10秒后,绳子CD的长为17-7=10米,∴在Rt BCD中,6BD===米,在Rt ABC中,222217815AB AC BC =-=-=米, ∴AD =15-6=9米,答:游船移动的距离AD 的长是9米.【点睛】本题主要考查勾股定理的运用,属于综合题,难度一般,熟练掌握勾股定理解三角形是解决本题的关键.19.(1)见解析;(2)见解析;(3)见解析;(4)见解析;【解析】【分析】根据勾股定理即可得.【详解】解:(1)如图①所示,三边分别为:3,4,5;(2)如图②所示,三边分别为:,,2或解析:(1)见解析;(2)见解析;(3)见解析;(4)见解析;【解析】【分析】根据勾股定理即可得.【详解】解:(1)如图①所示,三边分别为:3,4,5;(2)如图②所示,三边分别为:2,2,2或22,22,4 ;(3如图③所示,三边分别为:5,5,10或2,22,10或10,10,25;(4)如图④所示,正方形的边长为:10,则面积:(10)2=10.【点睛】本题考查了勾股定理,解题的关键是掌握勾股定理.20.(1)见解析;(2)18【分析】(1)由四边形ABCD 是平行四边形易证△AOE ≌△COF ,从而可得OE=OF ,所以四边形AFCE 是平行四边形,又EF ⊥AC ,根据菱形的判定定理即可得证; (2)由解析:(1)见解析;(2)18【分析】(1)由四边形ABCD 是平行四边形易证△AOE ≌△COF ,从而可得OE =OF ,所以四边形AFCE 是平行四边形,又EF ⊥AC ,根据菱形的判定定理即可得证;(2)由(1)可求三角形ACE 的面积,又2AE ED =,从而可得三角形CED 的面积,则ABCD 的面积即可求解.【详解】(1)∵四边形ABCD 是平行四边形,∴AE //FC .∴∠EAO =∠FCO ,∠AEO =∠CFO .∵EF 平分AC ,∴OA =OC .∴△AOE ≌△COF .∴OE =OF .∴四边形AFCE 是平行四边形.又∵EF ⊥AC ,∴四边形AFCE 是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形AFCE 是菱形,6AC =,4EF =,∴三角形ACE 的面积为16262⨯⨯=, ∵2AE ED =,∴三角形CED 的面积等于三角形ACE 的面积的一半,即三角形CED 的面积为1632⨯=, ∴三角形ACD 的面积为639+=,∴ABCD 的面积等于三角形ACD 的面积的2倍,即ABCD 的面积为1892=⨯. 故答案为:18.【点睛】本题考查了菱形的判定及平行四边形面积的求法,解题的关键是熟练掌握菱形的判定定理.21.①,,3+;②(1)5-;(2) .【解析】【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】①===3+,故答案为,,3+;②(1)解析:3+②(1)5(2) 12 【解析】【分析】 ①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】3+3=5=12+=12. 【点睛】本题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.22.(1);(2)25吨;(3)45元【分析】(1)利用待定系数法求解函数关系式的方法即可;(2)将y=91代入(1)中解析式中求得x 值即可;(3)将x=17代入(1)中解析式中求得y 值,再求得解析:(1)534y x =-;(2)25吨;(3)45元【分析】(1)利用待定系数法求解函数关系式的方法即可;(2)将y =91代入(1)中解析式中求得x 值即可;(3)将x =17代入(1)中解析式中求得y 值,再求得当017x ≤<时,y 与x 之间的函数关系式,将x =15代入求解y 值即可.【详解】解:(1)设y 与x 之间的函数关系式为:y kx b =+,由题意得:116306620k b k b=+⎧⎨=+⎩,∴534k b =⎧⎨=-⎩, ∴y 与x 之间的函数关系式为:534y x =-.(2)∵91元66>元,∴由91534x =-得:25x =. 答:这户居民上月用水量25吨.(3)当17x =吨时,5173451y =⨯-=元,∴当017x ≤<时,y 与x 之间的函数关系式为:3y x =,当15x =时,45y =元,答:这户居民这个月的水费45元.【点睛】本题考查一次函数的应用,理解题意,能从函数图象中获取有效信息,会利用待定系数法求解函数关系式是解答的关键.23.(1)证明见解析;(2)证明见解析【分析】(1)根据已知条件可得△ABC ≌△ABD ,再根据∠AOC+∠AOD=180°,进而可证得AB ⊥CD ,进而得到∠ACO=∠ABE ,进而证得△ABF ≌△CD解析:(1)证明见解析;(2)证明见解析【分析】(1)根据已知条件可得△ABC ≌△ABD ,再根据∠AOC+∠AOD=180°,进而可证得AB ⊥CD ,进而得到∠ACO=∠ABE ,进而证得△ABF ≌△CDA ;(2)取AB 中点H ,根据已知条件可知MO 为△AFH 的中位线,进而可证得△AFH ≌△DAO ,进一步得到△AFD 为等腰直角三角形,然后过点F 作FI ⊥AF 交AB 于点I ,取CD 上点G 使MG=MN ,连接AG ,先证△AFI ≌△DAM ,而后△FMN ≌△FIN ,得到∠FIN =∠FMN ,进而可证△AMG ≌△FMN ,得到∠AGM=∠FNM ,进而证得△ACG ≌△FBN ,得到BN=CG ,再根据CG=CM+MG ,得到BN=CM+MG ,又MG=MN ,继而得到BN=CM+MN .【详解】证明:(1)∵AC=AD ,BC=BD ,AB=AB ,∴△ABC≌△ABD,∴∠CAO=∠DAO,又∵∠ACO=∠ADO,∴∠AOC=∠AOD,又∵∠AOC+∠AOD=180°,∴∠AOC=∠AOD=90°,∴AB⊥CD,在Rt△AOC中,∠ACO+∠CAO=90°,在Rt△AEB中,∠ABE+∠CAO=90°,∴∠ACO=∠ABE,又∵AC=AD,FA=FB,∴∠ACO=∠ADO=∠ABF=∠FAB,∵,∴△ABF≌△CDA;(2)如图,取AB中点H,∵△ABF是等腰三角形,∴FH⊥AB,∵AM=MF且MO⊥AB,∴MO为△AFH的中位线,∴AO=OH=,又∵AH===DO,由△ABF≌△CDA,可知:AF=BF=AC=AD,∴△AFH≌△DAO,∴∠AFH=∠DAO,∵∠FAH+∠AFH=90°,∴∠FAH+∠DAO=90°,∴∠FAD=90°,∴△AFD为等腰直角三角形,过点F作FI⊥AF交AB于点I,取CD上点G使MG=MN,连接AG,由△AFH≌△DAO可得∠FAI=∠ADM,又∵AD=AF,∴△AFI≌△DAM,∴FI=AM,又∵AM=MF,∴FI=MF,由FI⊥AF可知∠AFI=90°,∠AFN=45°,∴∠NFI=∠AFI-∠AFN=90°-45°=45°,∴∠MFN=∠NFI,又∵FI=FM,∴△FMN≌△FIN,∴∠FIN =∠FMN,又∵∠AMD=∠FIA,∴∠AMD=∠FMN,又∵AM=FM,MG=MN,∴△AMG≌△FMN,∴∠AGM=∠FNM,又∵∠FNM=∠FNB,∴∠AGM=∠FNB,又∵∠ACG=∠FBN,AC=FB,∴△ACG≌△FBN,∴BN=CG,又∵CG=CM++MG,∴BN=CM+MG,又∵MG=MN,∴BN=CM+MN.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质、中位线等知识,解题的关键是综合运用相关知识解题.24.(1)y=-2x-2,(0,-2);(2)P(0,5)或P(0,3);(3)-2≤m<,或2<m≤4【解析】【分析】(1)利用待定系数法求得直线AB的解析式,根据关联点和关联直线的定义可得结论解析:(1)y=-2x-2,(0,-2);(2)P (0,5)或P (0,3);(3)-2≤m <23,或2<m≤4【解析】【分析】 (1)利用待定系数法求得直线AB 的解析式,根据关联点和关联直线的定义可得结论; (2)先根据关联点求D 和E 的坐标,根据面积和列式可得P 的坐标;(3)点M 分别在线段AC→CB 上讨论,根据直线l 与△ABC 恰有两个公共点时,可得m 的取值范围.【详解】解:(1)设直线AB 的解析式为:y=kx+b ,把点A (-2,-2),B (4,-2)代入得:2242k b k b -+=-⎧⎨+=-⎩, 解得:02k b =⎧⎨=-⎩, ∴直线AB 的解析式为:y=-2,∴点A 的关联直线的解析式为y=-2x-2;直线AB 的关联点的坐标为:(0,-2);故答案为:y=-2x-2,(0,-2);(2)∵点A (-2,-2),B (4,-2),C (1,4).∴直线AC 的解析式为y=2x+2,直线BC 的解析式为y=-2x+6,∴D (2,2),E (-2,6).∴直线DE 的解析式为y=-x+4,∴直线DE 与y 轴交于点F (0,4),如图1,设点P (0,y ),∵S △DEP =2,∴S △DEP =S △EFP +S △DFP=142y ⨯-×|-2|+1422y ⨯-⨯=2,解得:y=5或y=3,∴P(0,5)或P(0,3).(3)①当M在线段AC上时,如图3,∵AC:y=2x+2,∴设M(m,2m+2)(-2≤m≤1),则关联直线l:y=mx+2m+2,把C(1,4)代入y=mx+2m+2得:m+2m+2=4,m=23,∴-2≤m<23;②当M在线段BC上时,如图3,∵BC:y=-2x+6,∴设M(m,-2m+6)(1≤m≤4),则关联直线l:y=mx-2m+6,把A(-2,-2)代入y=mx-2m+6得:-2m-2m+6=-2,m=2,∴2<m≤4;综合上述,-2≤m<23或2<m≤4.【点睛】本题是一次函数的综合题,也是有关关联点和关联直线的新定义问题,考查了一次函数图象上点的坐标特征、理解新定义、利用待定系数法求一次函数的解析式,本题中理解关联点和关联直线的定义,正确进行分类讨论是解题的关键.25.(1);;(2)①见详解;②x=1;(3)△CDP为等腰三角形时x的值为:或或.【分析】(1)BP+DP为点B到D两段折线的和.由两点间线段最短可知,连接DB,若P点落在BD上,此时和最短,且为解析:(1)32;323-;(2)①见详解;②x=1;(3)△CDP为等腰三角形时x的值为:633-或3或633+.【分析】(1)BP+DP为点B到D两段折线的和.由两点间线段最短可知,连接DB,若P点落在BD 上,此时和最短,且为32.考虑动点运动,这种情形是存在的,由AQ=x,则QD=3-x,PQ=x.又PDQ=45°,所以QD=2PQ,即3-x=2x.求解可得答案;(2)由已知条件对称分析,AB=BP=BC,则∠BCP=∠BPC,由∠BPM=∠BCM=90°,可得∠MPC=∠MCP.那么若有MP=MD,则结论可证.再分析新条件∠CPD=90°,易得①结论.②求x的值,通常都是考虑勾股定理,选择直角三角形QDM,发现QM,DM,QD都可用x来表示,进而易得方程,求解即可.(3)若△CDP为等腰三角形,则边CD比为改等腰三角形的一腰或者底边.又P点为A点关于QB的对称点,则AB=PB,以点B为圆心,以AB的长为半径画弧,则P点只能在弧AB上.若CD为腰,以点C为圆心,以CD的长为半径画弧,两弧交点即为使得△CDP为等腰三角形(CD为腰)的P点.若CD为底边,则作CD的垂直平分线,其与弧AC的交点即为使得△CDP为等腰三角形(CD为底)的P点.则如图所示共有三个P点,那么也共有3个Q点.作辅助线,利用直角三角形性质求之即可.【详解】解:(1)连接DB,若P点落在BD上,此时BP+DP最短,如图:由题意,∵正方形ABCD的边长为3,∴223332BD+=∴BP +DP 的最小值是32; 由折叠的性质,PQ AQ x ==,则3QD x =-,∵∠PDQ=45°,∠QPD=90°,∴△QPD 是等腰直角三角形,∴22QD QP x ==,∴32x x -=,解得:323x =-;故答案为:32;323-;(2)如图所示:①证明:在正方形ABCD 中,有AB=BC ,∠A=∠BCD=90°.∵P 点为A 点关于BQ 的对称点,∴AB=PB ,∠A=∠QPB=90°,∴PB=BC ,∠BPM=∠BCM , ∴∠BPC=∠BCP ,∴∠MPC=∠MPB-∠CPB=∠MCB-∠PCB=∠MCP ,∴MP=MC .在Rt △PDC 中,∵∠PDM=90°-∠PCM ,∠DPM=90°-∠MPC ,∴∠PDM=∠DPM ,∴MP=MD ,∴CM=MP=MD ,即M 为CD 的中点.②解:∵AQ=x ,AD=3,∴QD=3-x ,PQ=x ,CD=3.在Rt △DPC 中,∵M 为CD 的中点,∴DM=QM=CM=32, ∴QM=PQ+PM=x+32,∴(x+32)2=(3−x)2+(32)2,解得:x=1.(3)如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于P1,P3.此时△CDP1,△CDP3都为以CD为腰的等腰三角形.作CD的垂直平分线交弧AC于点P2,此时△CDP2以CD为底的等腰三角形.;①讨论P1,如图作辅助线,连接BP1、CP1,作QP1⊥BP1交AD于Q,过点P1,作EF⊥AD 于E,交BC于F.∵△BCP1为等边三角形,正方形ABCD边长为3,∴P1F33P1E=333在四边形ABP1Q中,∵∠ABP1=30°,∴∠AQP1=150°,∴△QEP1为含30°的直角三角形,∴31=9332.∵AE=3,2∴x=AQ=AE-QE=39(33)633--=-.22②讨论P2,如图作辅助线,连接BP2,AP2,过点P2作QG⊥BP2,交AD于Q,连接BQ,过点P2作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AP2=BP2.∵AB=BP2,∴△ABP2为等边三角形.在四边形ABP2Q中,∵∠BAD=∠BP2Q=90°,∠ABP2=60°,∴∠AQG=120°∴∠EP2G=∠DQG=180°-120°=60°,∴P2E=333∴EG=933,2∴DG=DE+GE=39+=,3333322∴QD=33∴3③对P3,如图作辅助线,连接BP1,CP1,BP3,CP3,过点P3作BP3⊥QP3,交AD的延长线于Q,连接BQ,过点P1,作EF⊥AD于E,此时P3在EF上,不妨记P3与F重合.∵△BCP1为等边三角形,△BCP3为等边三角形,BC=3,∴P1P3=33P1E=333∴EF=333+在四边形ABP3Q中∵∠ABF=∠ABC+∠CBP3=150°,∴∠EQF=30°,∴39332.∵AE=32,∴x=AQ=AE+QE=32+9333362=.综合上述,△CDP为等腰三角形时x的值为:633-3633+.【点睛】本题第一问非常基础,难度较低.第二问因为动点的原因,思路不易找到,这里就需要做题时充分分析已知条件,尤其是新给出的条件.其中求边长是勾股定理的重要应用,是很重要的考点.第三问是一个难度非常高的题目,可以利用尺规作图的思想将满足要求的点P找全.另外求解各个Q点也是考察三角函数及勾股定理的综合应用,有着极高的难度.。

八年级上册期末试卷试卷(word版含答案)

八年级上册期末试卷试卷(word版含答案)

八年级上册期末试卷试卷(word版含答案)一、初二物理机械运动实验易错压轴题(难)1.如图,在斜面上测量小车运动的平均速度,让小车从斜面的A点由静止开始下滑,分别测出小车到达B点和C点的时间,即可测出不同阶段的平均速度.(1)该实验原理是_____.(2)如果测得小车从A滑到C的时间t AC=2.4s,小车从A滑到B的时间t AB=1.6s,则AB段的平均速度v AB=_____cm/s,则BC段的平均速度v BC=_____cm/s;(3)由实验看出,下车下滑过程中速度越来越_____(选填“慢”“快”).(4)在测量小车到达B点的时间时,如果小车过了B点才停止计时,测得AB段的平均速度v AB会偏_____(选填“大”或“小”).(5)为测量小车运动过程中下半程的平均速度,某同学让小车从B点由静止释放,测出小车到达C点的时间,从而计算出小车运动过程中下半程的平均速度v=s AB/t BC,他的做法正确吗?_____.(6)聪明的小杜发现AB段和BC段路程的特点,算出了AC段平均速度v,AB段的平均速度v1,觉得还可以用公式直接算出BC段的平均速度v2,则v2=_____(用v、v1).【来源】重庆八中2017-2018学年八年级(上)期中物理试题【答案】 v=s/t 25 50 快小不正确112vvv v-【解析】(1)该实验原理是:vst= .(2)s ABBCs==40.00cm,t AC=2.4s,t AB=1.6s,tBC 2.4s 1.6s0.8sAC ABt t=-=-=,则AB段的平均速度v AB4025cm/s1.6ABABs cmt===,则BC段的平均速度v BC4050/0.8BCBCs cmcm st s===.(3)由BC ABv v>可以看出,小车下滑过程中速度越来越快。

(4)在测量小车到达B点的时间时,如果小车过了B点才停止计时,则测量时间偏大,故AB段的平均速度v AB会偏小。

八年级下册数学期末试卷达标检测卷(Word版含解析)

八年级下册数学期末试卷达标检测卷(Word版含解析)

八年级下册数学期末试卷达标检测卷(Word 版含解析)一、选择题1.下列二次根式有意义的范围为x ≥﹣4的是( )A .4x -B .14x -C .14x +D .4x + 2.下列给出的四组数中,能构成直角三角形三边的一组是( )A .3,4,5B .5,12,14C .6,8,9D .8,13,153.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线互相垂直平分的四边形是菱形;④对角线互相垂直的矩形是正方形.其中真命题的个数是( )A .1B .2C .3D .44.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( )A .中位数B .平均数C .众数D .方差 5.ABC ∆的周长为60,三条边之比为13:12:5,则这个三角形的面积为( )A .30B .90C .60D .120 6.在菱形ABCD 中,80ABC ∠=︒,BA BE =,则DAE =∠( )A .20︒B .30C .40︒D .50︒7.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,则DE 的长为( )A .3B .4C .5D .68.如图,在平面直角坐标系中,已知A (5,0)点P 为线段OA 上任意一点.在直线y =34x 上取点E ,使PO =PE ,延长PE 到点F ,使PA =PF ,分别取OE 、AF 中点M 、N ,连结MN ,则MN 的最小值是( )A .2.5B .2.4C .2.8D .3二、填空题9.函数01(1)2y x x =+-+中x 的取值范围是______. 10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11.如图,每个小正方形的边长都为1,则ABC ∆的三边长a ,b ,c 的大小关系是________(用“>”连接).12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E 、F ,连接PB 、PD ,若AE =2,PF =9,则图中阴影面积为______;13.某一次函数的图象经过点(2,-3),且函数y 随x 的增大而增大,请你写出一个符合条件的函数解析式_____________________.14.在矩形ABCD 中,3AB =,ABC ∠的平分线BE 交AD 所在的直线于点E ,若2DE =,则AD 的长为__________.15.如图,在平面直角坐标系中,点A ,A 1,A 2,…在x 轴上,点P ,P 1,P 2,…在直线l :y=kx +34(k >0)上,∠OPA =90°,点P (1,1),A (2,0),且AP 1,A 1P 2,…均与OP 平行,A 1P 1,A 2P 2,…均与AP 平行,则有下列结论:①直线AP 1的函数解析式为y =x ﹣2;②点P 2的纵坐标是259;③点P 2021的纵坐标为(53)2021.其中正确的是_____(填序号).16.如图,在平面直角坐标系xOy 中,一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,则正方形OABC 的面积为____.三、解答题17.计算: ①33118(3)2⨯+-; ②2(32)24-+.18.笔直的河流一侧有一旅游地C ,河边有两个漂流点A ,B .其中AB =AC ,由于某种原因,由C 到A 的路现在已经不通,为方便游客决定在河边新建一个漂流点H (A ,H ,B 在同一直线上),并新修一条路CH ,测得BC =5千米,CH =4千米,BH =3千米. (1)判断△BCH 的形状,并说明理由;(2)求原路线AC 的长.19.阅读理解:我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:__________,__________.(2)如图,已知格点(小正方形的顶点)()0,0O ,()3,0A ,()0,4B ,请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的两个勾股四边形OAMB .20.如图,矩形ABCD 的对角线AC 与BD 交于点,作CF ∥BD ,DF ∥AC .求证:四边形DECF 为菱形.21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印制费,另收1500元制版费;乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费. (1)分别写出两厂的收费y (元)与印制数量x (份)之间的关系式;(2)印制800份宣传材料时,选择哪一家印刷厂比较合算?商场计划花费3000元用于印刷上述宣传材料,选择哪一家印刷厂能多印制一些宣传材料?23.在正方形ABCD 中,点E 是CD 边上任意一点,连接过点B 作于F ,交AD 于.如图1,过点D 作于G .求证:;如图2,点E 为CD 的中点,连接DF ,试判断存在什么数量关系并说明理由;如图3,,连接,点为的中点,在点E 从点D 运动到点C 的过程中,点随之运动,请直接写出点运动的路径长.24.如图,已知点()4,0A 、()0,2B ,线段OA OC =且点C 在y 轴负半轴上,连接AC .(1)如图1,求直线AB 的解析式;(2)如图1,点P 是直线CA 上一点,若3ABC ABP SS =,求满足条件的点P 坐标; (3)如图2,点M 为直线5:2l x =上一点,将点M 水平向右平移6个单位至点N ,连接BM 、MN 、NC ,求BM MN NC ++的最小值及此时点N 的坐标.25.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.【参考答案】一、选择题1.D解析:D【分析】根据二次根式中的被开方数是非负数,分式的分母不为0列出不等式,分别计算即可.【详解】解:A 、x ﹣4≥0,解得x ≥4,故此选项不符合题意;B 、x ﹣4>0,解得x >4,故此选项不符合题意;C 、x +4>0,解得x >﹣4,故此选项不符合题意;D 、x +4≥0,解得x ≥﹣4,故此选项符合题意.故选:D .【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,解题关键是熟记二次根式和分式有意义的条件,列出不等式求解.2.A解析:A【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【详解】解:A.∵32+42=52,∴能构成直角三角形三边;B.∵52+122≠142,∴不能构成直角三角形三边;C.∵62+82≠92,∴不能构成直角三角形三边;D.∵82+132≠152,∴不能构成直角三角形三边.故选A.【点睛】本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.B解析:B【解析】【分析】根据平行四边形、矩形、菱形和正方形的判定直接进行判断即可.【详解】解:①一组对边平行且相等的四边形是平行四边形,原命题是假命题;②对角线相等的平行四边形是矩形,原命题是假命题;③对角线互相垂直平分的四边形是菱形,是真命题;④对角线互相垂直的矩形是正方形,是真命题;故选:B.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.A解析:A【解析】【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可.【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:A.【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.5.D解析:D根据已知条件可求得三边的长,再判断这个三角形是直角三角形,即可求得面积.【详解】∵三条边之比为13:12:5,∴122+52=132,∴△ABC 是直角三角形,∵△ABC 的周长为60,∴三边长分别是:26,24,10,∴这个三角形的面积是:24×10÷2=120,故选D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.B解析:B【解析】【分析】利用菱形的性质和等腰三角形的性质即可求解.【详解】解:在菱形ABCD 中,80ABC ∠=︒,∴18080100BAD ∠=︒-︒=︒,40ABE ∠=︒,∵BA BE =, ∴18040702BAE BEA ︒-︒∠=∠==︒, ∴1007030DAE BAD BAE ∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了菱形的性质和等腰三角形的性质,运用知识准确计算是解题的关键. 7.C解析:C【解析】【分析】根据折叠前后角相等可知△ABE ≌△C'ED ,利用勾股定理可求出.【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,∠C =∠A =90°由折叠的性质可得:C'D =CD =AB ;∠C'=∠C =∠A在△ABE 与△C'ED 中''C ED AEB C A ⎪∠=∠⎨⎪∠=∠⎩∴△ABE ≌△C'ED (AAS )∴DE=BE设DE =BE =x ,则AE =8-x ,AB =4,在直角三角形ABE 中,()22816x x =-+ 解得x =5故选C .【点睛】本题考查勾股定理在折叠问题中的应用,找到合适的直角三角形构建等量关系是本题关键.8.B解析:B【分析】如图,连接PM ,PN ,设AF 交EM 于J ,连接PJ .证明四边形PMJN 是矩形,推出MN=PJ ,求出PJ 的最小值即可解决问题.【详解】解:如图,连接PM ,PN ,设AF 交EM 于J ,连接PJ .∵PO=PE ,OM=ME ,∴PM ⊥OE ,∠OPM=∠EPM ,∵PF=PA ,NF=NA ,∴PN ⊥AF ,∠APN=∠FPN ,∴∠MPN=∠EPM+∠FPN=12(∠OPF+∠FPA )=90°,∠PMJ=∠PNJ=90°,∴四边形PMJN 是矩形,∴MN=PJ ,∴当JP ⊥OA 时,PJ 的值最小此时MN 的值最小, ∵AF ⊥OM ,A (5,0),直线OM 的解析式为y=34x ∴设直线AF 的解析式为y=4-3x+b ∵直线AF 过A (5,0), ∴4-5+b 3⨯=0,∴b=203, ∴y=420-x+33, 由3442033y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得165125x y ⎧=⎪⎪⎨⎪=⎪⎩∴16(,)5125J ∴PJ 的最小值为125=2.4 即MN 的最小值为2.4故选:B .【点睛】本题考查一次函数的应用,矩形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.二、填空题9.x >﹣2且x ≠1.【解析】【分析】从二次根式,分式,零指数幂三个角度去思考求解即可.【详解】由题意得,x +2>0,且x ﹣1≠0,解得x >﹣2且x ≠1,所以x 的取值范围是x >﹣2且x ≠1.故答案为:x >﹣2且x ≠1.【点睛】本题考查了分式有意义的条件,二次根式有意义的条件,零指数幂有意义的条件,熟练上述基本条件是解题的关键.10.2【解析】【分析】利用菱形的面积等于对角线乘积的一半求解.【详解】解:菱形的面积=12×1×4=2. 故答案为2.【点睛】本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=12ab (a 、b 是两条对角线的长度). 11.c a b >>;【解析】【分析】观察图形根据勾股定理分别计算出a 、b 、c ,根据二次根式的性质即可比较a 、b 、c 的大小.【详解】解:在图中,每个小正方形的边长都为1,由勾股定理可得:22242025=+==a ,22331832=+==b ,221526=+=c ,∵262018>>,即262532>>,∴c a b >>,故答案为:c a b >>.【点睛】本题考查了勾股定理和比较二次根式的大小,本题中正确求出a 、b 、c 的值是解题的关键.12.A解析:18【分析】作PM ⊥AD 于M ,交BC 于N ,根据矩形的性质可得S △PEB =S △PFD 即可求解.【详解】解:作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,,,,,ADC ABC AMP AEP PBE PBN PFD PDM PFC PCN S S S S S S S S S S ∴=====,∴DFPM BEPN S S 矩矩=,12442DFP PBE S S ∴==⨯⨯=, ∴S 阴=9+9=18,故答案为:18.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明DFP PBE S S =.13.5y x =-(答案不唯一)【分析】根据题意,写出一个0k >且经过(2,3)-的解析式即可【详解】函数y 随x 的增大而增大0k ∴>图象经过点(2,-3)例如:5y x =-(答案不唯一)【点睛】本题考查了一次函数的性质,一次函数的定义,理解一次函数的性质是解题的关键. 14.5或1【分析】当点E 在AD 上时,根据平行线的性质和角平分线的定义可得3AE AB ==,可得AD 的长;当点E 在AD 的延长线上时,同理可求出AD 的长.【详解】解:如图1,当点E 在AD 上时,四边形ABCD 是矩形,90A ∴∠=︒,//AD BC ,AEB CBE ∴∠=∠, BE 平分ABC ∠,ABE CBE ∴∠=∠,ABE AEB ∴∠=∠,3AE AB ∴==,2DE =,325AD AE DE ∴=+=+=;如图2,当点E 在AD 的延长线上时,同理3AE =,321AD AE DE ∴=-=-=.故答案为:5或1.【点睛】本题主要考查了矩形的性质,等腰直角三角形的性质等知识,解题的关键是正确画出两种图形.15.①②③【分析】由已知易求得直线的解析式为:,直线为:,进而根据待定系数法可求得 的解析式为:即可判断①;解析式联立构成方程组可求得 的坐标,同理求得 的坐标,即可判断②;由、的坐标得出规律即可得解析:①②③【分析】由已知易求得直线OP 的解析式为:y x =,直线l 为:1344y x =+,进而根据待定系数法可求得 1AP 的解析式为:2y x =-即可判断①;解析式联立构成方程组可求得 1P 的坐标,同理求得 2P 的坐标,即可判断②;由1P 、2P 的坐标得出规律即可得出点 2021P 的纵坐标为202153⎛⎫ ⎪⎝⎭,即可判断③.【详解】解:设1AP 的解析式为y kx b =+,∵P (1,1),∴直线OP 为y x =,∵AP 1∥OP ,∴k =1,即y x b =+,∵A (2,0),∴2+b =0,解得b =﹣2,∴AP 1的解析式为2y x =-,故①正确;∵点P ,P 1,P 2,…在直线l :34y kx =+(k >0)上, ∴1=k +34,解得k =14,∴直线l 为:1344y x =+, 解21344y x y x =-⎧⎪⎨=+⎪⎩得11353x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴115133P ⎛⎫ ⎪⎝⎭,, 设11A P 的解析式为y x b =-+, 代入111533P ⎛⎫ ⎪⎝⎭,可得,11A P 的解析式为:163y x =-+, ∴A 1的坐标为(163,0), 同理求得A 1P 2的解析式为:163y x =-, 解1631344y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得739259x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P 2纵坐标为259,故②正确; ∵P 1纵坐标为53,P 2纵坐标为259=(53)2, 以此类推,点P 2021的纵坐标为(53)2021.故③正确. 故答案为:①②③.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,总结出点的纵坐标的规律是解题的关键.16.【分析】过点作轴于点,过点作轴于点,由正方形的性质就可以得出,就可以得出,,由一次函数的图象经过正方形的顶点和,设点,就可以得出代入解析式就可以求出的值,由正方形的面积等于就可以求出结论.【详 解析:325【分析】过点C 作CD x ⊥轴于点D ,过点A 作AE y ⊥轴于点E ,由正方形的性质就可以得出CDO AEO ∆≅∆,就可以得出CD AE =,OD OE =,由一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,设点(,24)C a a -,就可以得出(24,)A a a --代入解析式就可以求出a 的值,由正方形的面积等于2OC 就可以求出结论.【详解】解:过点C 作CD x ⊥轴于点D ,过点A 作AE y ⊥轴于点E ,90CDO AEO ∴∠=∠=︒.四边形OABC 是正方形,90AOC ∴∠=︒,OC OA =.90DOE ∠=︒,AOC DOE ∴∠=∠,AOC AOD DOE AOD ∴∠-∠=∠-∠,COD AOE ∴∠=∠.在CDO ∆和AEO ∆中,CDO AEO COD AOE OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()CDO AEO AAS ∴∆≅∆CD AE ∴=,OD OE =.一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,设点(,24)C a a -, OD a ∴=,24CD a =-,OE a ∴=,24AE a =-,(24,)A a a ∴--,2(24)4a a ∴-=--,125a ∴=. 125OD ∴=,45CD =, 在Rt CDO ∆中,由勾股定理,得2222212432555OC OD CD ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 2OABC S CO =正方形,325OABC S ∴=正方形. 故答案为:325. 【点睛】 本题考查了正方形的性质及面积公式的运用,垂直的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,一次函数图象上点的坐标的特征的运用,构造K 字形全等,得出AC 两点坐标关系是解题的关键.三、解答题17.①0;②5【分析】(1)先运用二次根式或立方根的性质化简各个根式,再计算即可;(2)先运用完全平方公式计算,再合并同类二次根式计算即可.【详解】解:①原式=0;②原式=5.【解析:①0;②5【分析】(1)先运用二次根式或立方根的性质化简各个根式,再计算即可;(2)先运用完全平方公式计算,再合并同类二次根式计算即可.【详解】解:原式3=-=-33=0;②2原式32=+-=5.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则和运算顺序是解题的关键.18.(1)直角三角形,理由见解析;(2)原来的路线AC的长为千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△解析:(1)直角三角形,理由见解析;(2)原来的路线AC的长为256千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△HBC是直角三角形,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2,∴△HBC是直角三角形且∠CHB=90°;(2)设AC=AB=x千米,则AH=AB-BH=(x-3)千米,在Rt△ACH中,由已知得AC=x,AH=x-3,CH=4,由勾股定理得:AC2=AH2+CH2,∴x2=(x-3)2+42,解这个方程,得x=256,答:原来的路线AC的长为256千米.【点睛】本题考查勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理.19.(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方解析:(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形OAMB对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方形都满足一组相邻两边的平方和等于一条对角线的平方,故答案为:矩形,正方形;(2)如图,证明:∵∠AOB=90°,∴222OA OB AB+=,∴四边形OAMB为勾股四边形,由勾股定理得,22345OM+∴AB=OM,∴四边形OAMB都是勾股四边形,符合题意.【点睛】本题为新定义问题,考查了勾股定理等知识,矩形、正方形的性质,熟知勾股定理,理解勾股四边形的定义是解题关键.20.见解析【分析】根据DF∥AC,CF∥BD,即可证出四边形EDFC是平行四边形,又知四边形ABCD是矩形,故可得ED=BD=AC=EC,即可证出四边形EDFC是菱形.【详解】证明:∵DF∥AC解析:见解析【分析】根据DF∥AC,CF∥BD,即可证出四边形EDFC是平行四边形,又知四边形ABCD是矩形,故可得ED=12BD=12AC=EC,即可证出四边形EDFC是菱形.【详解】证明:∵DF∥AC,CF∥BD∴四边形EDFC是平行四边形,∵四边形ABCD是矩形,∴ED=12BD=12AC=EC,∴四边形EDFC是菱形.【点睛】本题主要考查矩形性质和菱形的判定的知识点,解答本题的关键是熟练掌握菱形的判定定理,此题比较简单.21.(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.试题解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【详解】试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案.,试题解析:(1)∵∴4a2-8a+1)2-8×)+1=5;×(2)原式=12×)=12×10=12=5.点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键.22.(1)y甲=x+1500,y乙=2.5x;(2)印制800份宣传材料时,选择乙厂比较合算;商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料【分析】(1)根据“甲印刷厂的收解析:(1)y甲=x+1500,y乙=2.5x;(2)印制800份宣传材料时,选择乙厂比较合算;商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料【分析】(1)根据“甲印刷厂的收费标准是:每份材料收1元印制费,另收1500元制版费”可得甲厂关系式,根据“乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费”可得乙厂关系式;(2)把x=800代入两厂关系式进行计算即可得哪厂比较合算;把y=3000代入两厂关系式进行计算可得哪厂能多印制一些宣传材料.【详解】解:(1)根据题意得:y甲=x+1500,y乙=2.5x;(2)当x=800时,y甲=800+1500=2300,y乙=2.5×800=2000,∵2300>2000,∴印制800份宣传材料时,选择乙厂比较合算;当y=3000时,甲厂:3000=x+1500,解得x=1500,乙厂:3000=2.5x,解得x=1200,∵1500>1200,∴商场计划花费3000元用于印刷上述宣传材料,选择甲厂能多印制一些宣传材料.【点睛】本题考查了一次函数的应用,理解题意是解题的关键.23.(1)见解析;(2)FH+FE=DF,理由见解析;(3)【分析】(1)如图1中,证明△AFB≌△DGA(AAS)可得结论.(2)结论:FH+FE=DF.如图2中,过点D作DK⊥AE于K,DJ⊥解析:(1)见解析;(2),理由见解析;(3)【分析】(1)如图1中,证明△AFB≌△DGA(AAS)可得结论.(2)结论:.如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,证明四边形DKFJ是正方形,可得结论.(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.证明△KPJ是等腰直角三角形,推出点P在线段JR上运动,求出JR即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵DG⊥AE,AE⊥BH,∴∠AFB=∠DGH=90°,∴∠FAB+∠DAG=90°,∠DAG+∠ADG=90°,∴∠BAF=∠ADG,∴△AFB≌△DGA(AAS),∴AF=DG,BF=AG,∴BF-DG=AG-AF=FG.(2)结论:FH+FE=2DF.理由:如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,∵四边形ABCD是正方形,∴∠BAD=∠ADE=90°,AB=AD,∵AE⊥BH,∴∠AFB=90°,∴∠DAE+∠EAB=90°,∠EAB+∠ABH=90°,∴∠DAE=∠ABH,∴△ABH≌△DAE(ASA),∴AH=AE,∵DE=EC=1CD,CD=AD,2∴AH=DH,∴DE=DH,∵DJ⊥BJ,DK⊥AE,∴∠J=∠DKE=∠KFJ=90°,∴四边形DKFJ是矩形,∴∠JDK=∠ADC=90°,∴∠JDH=∠KDE,∵∠J=∠DKE=90°,∴△DJH≌△DKE(AAS),∴DJ=DK,JH=EK,∴四边形DKFJ是正方形,∴FK=FJ=DK=DJ,∴DF=2FJ,∴FH+FE=FJ-HJ+FK+KE=2FJ=2DF;(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.∵△ABH≌△DAE,∴AH=DE,∵∠EDH=90°,HP=PE,∴PD=PH=PE,∵PK⊥DH,PT⊥DE,∴∠PKD=∠KDT=∠PTD=90°,∴四边形PTDK是矩形,∴PT=DK=b,PK=DT,∵PH=PD=PE,PK⊥DH,PT⊥DE,∴DH=2DK=2b,DE=2DT,∴AH=DE=1-2b,∴PK=12DE=12-b,JK=DJ-DK=12-b,∴PK=KJ,∵∠PKJ=90°,∴∠KJP=45°,∴点P在线段JR上运动,∵2DJ=,∴点P 的运动轨迹的长为.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轨迹等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题. 24.(1);(2)点P 的坐标为(,)或(,);(3)的最小值为;点N 的坐标为(,).【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线解析:(1)122y x =-+;(2)点P 的坐标为(163,43)或(83,43-);(3)BM MN NC ++的最小值为6N 的坐标为(172,711). 【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线AC 的解析式,由3ABC ABP S S =,得到3AC AP =,再分别求出AC 和AP 的长度,即可求出点P 的坐标;(3)根据题意,6MN =为定值,在图中找出一点B ',使得B N BM '=,即点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,此时求出B C B N NC BM NC ''=+=+,即可得到答案.【详解】解:(1)设直线AB 为y kx b =+,把点()4,0A 、()0,2B ,代入,则402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴122y x =-+; (2)∵线段4OA OC ==,且点C 在y 轴负半轴上,∴点C 的坐标为(0,-4),∵点A 为(4,0),∴直线AC 的解析式为:4y x =-;∵点B 到直线AC 的距离就是△ABC 和△ABP 的高,∴△ABC 和△ABP 的高相同,∵3ABC ABP SS =, ∴11322AC h AP h ••=⨯••,∴3AC AP =, ∵224442AC =+=, ∴1424233AP =⨯=, ∵点P 在直线AC 上,则设点P 为(x ,x -4),∴2242(4)(4)243AP x x x =-+-=•-=, ∴443x -=, ∴163x =或83x =, ∴点P 的坐标为(163,43)或(83,43-); (3)根据题意,∵点B 与点M 的水平距离为52, ∴在点N 的右边水平距离为52处作直线11x =,如图:令点B '为(11,2),此时有B N BM '=,∵6MN =,∴66BM MN NC BM NC B N NC '++=++=++,∴当点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,最小值为:66BM MN NC B N NC B C ''++=++=+;∵点B '(11,2),点C 为(0,-4),∴直线B C '的解析式为:6411y x =-,B C '∴BM MN NC ++有最小值为:66B C '+=+∵点N 的横坐标为:517622+=, ∴点N 的纵坐标为:6177411211y =⨯-=, ∴点N 的坐标为:(172,711). 【点睛】 本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题.25.(1)15,8;(2),见解析;(3);(4)4【分析】解决问题(1)只需运用面积法:,即可解决问题;(2)解法同(1);(3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的解析:(1)15,8;(2)PE PF CG +=,见解析;(3)4)4【分析】解决问题(1)只需运用面积法:ABC ABP ACP S S S ∆∆∆=+,即可解决问题;(2)解法同(1);(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,由等边三角形的性质得出152BM BC ==,由勾股定理得出AM =ABC ∆的面积12BC AM =⨯=ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积1111()2222BC PE AC PF AB PG AB PE PF PG =⨯+⨯+⨯=++= (4)过点E 作EQ BC ⊥,垂足为Q ,易证BE BF =,过点E 作EQ BF ⊥,垂足为Q ,由解决问题(1)可得PG PH EQ +=,易证EQ DC =,BF DF =,只需求出BF 即可.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =,∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴358CG PE PF =+=+=.故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===,∴ABC ∆是等边三角形,∵AM BC ⊥, ∴152BM BC ==, ∴222210553AM AB BM =-=-=,∴ABC ∆的面积11105325322BC AM =⨯=⨯⨯=, ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++ 253=,∴22535310PE PF PG ⨯++==. (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒,∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠,∵90C ∠=︒, ∴4DC =,∵EQ BC ⊥,90C ADC ∠=∠=︒,∴90EQC C ADC ∠=︒=∠=∠,∴四边形EQCD 是矩形,∴4EQ DC ==,∵//AD BC ,∴DEF EFB ∠=∠,∵BEF DEF ∠=∠,∴BEF EFB ∠=∠,∴BE BF =,由解决问题(1)可得:PG PH EQ +=,∴4PG PH +=,即PG PH +的值为4.【点睛】本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.。

八年级期末试卷测试卷 (word版,含解析)

八年级期末试卷测试卷 (word版,含解析)

八年级期末试卷测试卷(word版,含解析)一、初二物理声现象实验易错压轴题(难)1.噪声是一种严重的环境污染,李明想制作一个防噪声的耳罩,他通过比较几种材料(衣服、锡箔纸、泡沫塑料)的隔音性能,来选择一种隔音性能好的材料做耳罩的填充物。

实验器材除了待检测的材料外,还有:音叉、机械闹钟、鞋盒。

(1)在本实验中适合作声源的是_____,另一个仪器不适合作声源的理由是___(2)李明将声源放入鞋盒内,在其四周塞满待测填充材料,他设想了以下A、B两种实验方案.你认为最佳的是________方案。

A.让人站在距鞋盒一定的距离处,比较所听见声音的响度B.让人一边听声音,一边向后退,直至听不见声音为止,比较此处距鞋盒的距离实验中测得的数据如下表所示,则待测材料中隔音性能最好的是____________。

(3)实验过程中应将声源响度________(选填“调大”或“调小”),因为铃声响度越大时,人要听不到声音时与声源的距离将越_____(选填大或小),导致实验在教室中难以进行.同时在比较不同材料时铃声响度应____(选填“随材料而改变”或“保持不变”),这种物理方法叫_______。

(4)小红从家中也找出下列一些材料开始探究:一张报纸、一件羽绒服、一个薄塑料袋、一些泡沫板,李明认为小红选择这些材料直接进行实验存在一个明显问题,不能有效地说明这些材料的隔声性能,请指出这个明显的问题:_______。

(5)对材料进行科学调整后,他们通过探究得到如下实验数据:由此数据可将这些材料隔声性能最好的是____________。

【答案】机械闹钟音叉发出的声音不稳定,不能持续发声B泡沫塑料调小大保持不变控制变量法没有控制材料厚度相同羽绒服【解析】【分析】【详解】(1)[1][2]机械闹钟,发出的声音稳定,能持续发声,所以选用机械闹钟,而音叉发出的声音不稳定,不能持续发声,所以不选用音叉。

(2)[3]A方案中,由于人耳听到的响度无法测量,只能凭感觉判断,没有可靠的实验数据;在B方案中,通过比较到鞋盒的距离判断隔音效果,因为距离可以测量,有可靠地实验数据,能够较好的判断隔音效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级期末试卷测试卷(word版,含解析)一、初二物理声现象实验易错压轴题(难)1.噪声是一种严重的环境污染,李明想制作一个防噪声的耳罩,他通过比较几种材料(衣服、锡箔纸、泡沫塑料)的隔音性能,来选择一种隔音性能好的材料做耳罩的填充物。

实验器材除了待检测的材料外,还有:音叉、机械闹钟、鞋盒。

(1)在本实验中适合作声源的是_____,另一个仪器不适合作声源的理由是___(2)李明将声源放入鞋盒内,在其四周塞满待测填充材料,他设想了以下A、B两种实验方案.你认为最佳的是________方案。

A.让人站在距鞋盒一定的距离处,比较所听见声音的响度B.让人一边听声音,一边向后退,直至听不见声音为止,比较此处距鞋盒的距离实验中测得的数据如下表所示,则待测材料中隔音性能最好的是____________。

(3)实验过程中应将声源响度________(选填“调大”或“调小”),因为铃声响度越大时,人要听不到声音时与声源的距离将越_____(选填大或小),导致实验在教室中难以进行.同时在比较不同材料时铃声响度应____(选填“随材料而改变”或“保持不变”),这种物理方法叫_______。

(4)小红从家中也找出下列一些材料开始探究:一张报纸、一件羽绒服、一个薄塑料袋、一些泡沫板,李明认为小红选择这些材料直接进行实验存在一个明显问题,不能有效地说明这些材料的隔声性能,请指出这个明显的问题:_______。

(5)对材料进行科学调整后,他们通过探究得到如下实验数据:由此数据可将这些材料隔声性能最好的是____________。

【答案】机械闹钟音叉发出的声音不稳定,不能持续发声B泡沫塑料调小大保持不变控制变量法没有控制材料厚度相同羽绒服【解析】【分析】【详解】(1)[1][2]机械闹钟,发出的声音稳定,能持续发声,所以选用机械闹钟,而音叉发出的声音不稳定,不能持续发声,所以不选用音叉。

(2)[3]A方案中,由于人耳听到的响度无法测量,只能凭感觉判断,没有可靠的实验数据;在B方案中,通过比较到鞋盒的距离判断隔音效果,因为距离可以测量,有可靠地实验数据,能够较好的判断隔音效果。

故选B。

[4]由实验数据可知,利用泡沫塑料作为填充物时,在很短的距离时就听不到声音了,所以其隔音效果最好。

(3)[5][6]声音的响度与距离有关,铃声响度越大时,人要听不到声音时与声源的距离将越大,所以要实验在教室中进行需要适当调小声源响度。

[7]比较不同材料时,铃声响度应当控制不变,通过听不到声音时与声源的距离,反映不同材料的隔音性能。

[8]在探究不同材料隔音性能时,控制铃声响度不变的方法是控制变量法。

(4)[9]材料的厚度对隔音效果有影响,实验中没有控制隔音材料的厚度相同。

(5)[10]由表中实验数据可知,用羽绒服做隔音材料时,听不到声音的距离最小,因此,羽绒服的隔音性能最好。

2.如图为一声速测量仪器的使用说明书和实验装置图,阅读并回答问题.(1)若把铜铃放在甲、乙的中点,则液晶显示屏的示数为 ms.(2)一同学将铜铃放到甲的左边,并与甲、乙均在一条直线上,则铜铃离甲越远,液晶显示屏的数值(填“变大”、“变小”或“不变”).(3)一同学猜想“温度越高,声速越小”.他把铜铃固定放在甲的左边,然后加热甲乙之间的空气,如果的确是“温度越高,声速越小”,则液晶显示屏的数值将.(填“变大”、“变小”或“不变”)【答案】(1)0;(2)不变;(3)变大【解析】试题分析:(1)因为铜铃在甲、乙中点,则铜铃与甲、乙距离相等,时间相等;(2)由于乙和甲的距离是不变的,所以乙接收到的时间总是比甲晚一定的时间;(3)声速与温度有关,温度越高,声速越大.所以在相同距离内,时间减少;解:(1)如果铜铃在甲、乙中点,则铜铃与甲的距离和与乙的距离是相等的,且由于声速相同,所以声音从铜铃到达甲、乙的时间相同.故液晶屏的示数为0;(2)因为铜铃与甲、乙在一条直线上,由于乙比甲远的距离是一定的,所以声音传到乙和甲的时间差是不变的;(3)甲和乙之间的距离一定,由于温度越高,声速越小,所以声音传播到甲和乙的时间都会减增加,故时间差也会变大;故答案为:(1)0;(2)不变;(3)变大.【点评】本题考查了速度有关方面的内容,计算时要注意时间单位和路程单位的统一.3.为了探究声音的反射与吸收特点,章杰同学进行了实验研究:(1)在玻璃筒内垫上一层棉花,棉花上放一个小闹钟,耳朵靠近玻璃筒口正上方l0cm处,能清晰地听见闹钟声,闹钟声是通过________传播的。

(2)当耳朵水平移动离开玻璃筒口一段距离后,如图甲所示位置,恰好听不见闹钟声。

(3)在玻璃筒口正上方10 cm处安放一块平面镜,调整平面镜的角度直到眼睛能从镜面里看到小闹钟,如图乙所示,此时耳朵又能清晰地听见闹钟声了,说明声音________(选填“能”或“不能”)像光一样反射。

(4)用海绵板代替平面镜,听见的声音明显减弱,说明海绵板吸收声音的能力________(选填“强”或“弱”)于玻璃板。

【答案】空气能强【解析】【详解】(1)[1]耳朵在玻璃圆筒口上方清晰地听到的声音是通过空气传播的;(3)[2]人看见闹钟,是闹钟的光经平面镜反射后进入眼睛形成的,参照光的反射规律可知声音也可以发生反射;(4)[3]因为海绵板代替平面镜后,听见的声音明显减弱,所以海绵板吸收声音的能力强于玻璃板。

4.小明在吉他演奏中发现,琴弦发出的音调与弦线的长度、粗细和张力有关.于是他想(1)利用弦音计做研究,如图所示,其中a、b、c、d四根弦线的张力相同.①若他选择b、d两弦线做实验,则研究的目的是探究音调与弦线_____的关系.②若他要研究音调与弦线粗细的关系,则应选择_____和_____两弦线做实验.③小明研究后得出结论:在其他条件相同的情况下,弦线越长,发出的音调越低;弦线越粗,发出的音调越低.(2)请你据如图判断,在张力相同的情况下,分别按住A点、B点、C点后拨动琴弦,发出的音调最高的是按住_____点,最低的是按住_____点.【答案】长度 a b A B【解析】【分析】【详解】(1)弦乐器的音调与弦的长短粗细和张力有关,在研究弦乐器的音调与哪些因素有关时,用到的实验方法为控制变量法,若他选择b、d两弦线做实验,两者的粗细和张力相同,所以研究的目的是探究音调与弦线长度的关系.若他要研究音调与弦线粗细的关系,应该控制他们的长度和张力相同,满足该条件的是a和b两弦线.(2)按住AC两点比较,按住A点时弦较短,所以发出的音调较高的是按住A,发出的音调较低的是按住C按住BC两点比较,按住B点时弦较粗,所以发出的音调较高的是按住C,发出的音调较低的是按住B,所以分别按住A点、B点、C点后拨动琴弦,发出的音调最高的是按住A点,最低的是按住B点.5.很多同学有过疑问“声音具有能量吗?它具有的能量与声音的响度和频率是不是有关呢?”某同学对其中两个问题进行探究,实验装置如图所示.A为一个圆筒,它的一端用剪成圆片的挺直的纸(纸的中间剪一圆孔)粘牢,另一端用塑料薄膜包住并绷紧,用橡皮筋扎牢.B为一只点燃的蜡烛.(1)完成表中的内容__________.(2)为保证每次实验声音的频率相同,你的做法是________.【答案】拍一次或每次拍的快慢相同【解析】(1)拍塑料膜发出较强的声音时,可以看到烛焰在跳动;烛焰的跳动是由喇叭声引起空气的振动产生的,说明了声音可以传递能量;(2)声音的响度与声源振动的幅度有关,振动幅度越大,响度越大.轻拍塑料膜和重拍塑料膜,使塑料膜振幅不同,观察烛焰摆动幅度;(3)音调的高低与发声体振动快慢有关,物体振动越快,音调就越高,物体振动越慢,音调就越低.(4)为保证每次实验声音的频率相同,你的做法是:拍一次或每次拍的快慢相同.【点睛】:此题是开放题型,主要考查学生对基础实验的掌握情况.在描述实验过程时,语言一定要准确,对于涉及多变量的,还需要按照控制变量的思想来进行描述.用钢锯条可设计很多与声现象有关的实验,如声音是物体振动产生的、音调与频率的关系等.二、初二物理光现象实验易错压轴题(难)6.如图所示,某同学做“平面镜成像的特点”实验.他将一块玻璃板垂直架在桌面上,再取两段等长的蜡烛A和B一前一后竖放在玻璃两侧,点燃玻璃板前的蜡烛A.(1)在实验中用平板玻璃代替平面镜,这是为了________ ;如果有3mm厚和2mm厚的两块玻璃板,应选择________ mm厚的玻璃板做实验.(2)实验中,小华同学用左手将放在玻璃板前的蜡烛点燃,发现玻璃板中的“自己”是用________(填“左”或“右”)手点燃蜡烛的.他又将玻璃板绕其底边转向自己,发现镜中的像________ (选填“转向自己”、“转离自己”或“不动”).(3)实验中,玻璃板后的蜡烛和玻璃板前的蜡烛产生的像无法完全重合,原因是________.(4)小琳将图甲中的玻璃板换成平面镜,垂直于纸板放置(如图乙所示),探究“光反射时的规律”.他用激光笔沿硬纸板EO照射到平面镜上的O点.反射光线沿OF射出,则∠NOF________∠EON(选填“>”、”<”或“=”).如果纸板没有与平面镜垂直放置那么实验出现的现象是:________.(5)小琳又让入射光线沿着FO入射到O点看到反射光线沿着OE射出,这说明光反射时:________.【答案】确定像的位置2右转向自己玻璃板没有竖直放置=纸板上看不到反射光线光路是可逆的【解析】【分析】【详解】(1)用透明的玻璃板代替平面镜,在物体一侧能看到物体的像,同时还能看到代替物体的另一个物体,便于确定像的位置;因为厚玻璃板的两个面都可以当作反射面,会出现两个像,影响到实验效果,所以应选用薄玻璃板,用2mm厚的;(2)镜中的左手的像与左手在同一直线上,相对于小华是左边,但是因为是在镜子里,人物就要左右颠倒,所以小华用左手将放在玻璃板前的蜡烛点燃,发现玻璃板中的“自己”是用右手点燃蜡烛的;由于像与物关于镜面是对称的,当镜子绕底边转向向人转动时,如图所示,所以像也向人的方向转动;(3)平面镜所成的像和物体关于平面镜对称,如果玻璃板没有放正,蜡烛的像与蜡烛不在同一水平面上,所以蜡烛成的像不与蜡烛重合;(4)用激光笔沿硬纸板EO照射到平面静上的O点.反射光线沿OF射出,则根据光的反射定律可知,∠NOF=∠EON;由于反射光线、入射光线和法线都在同一平面内,当纸板F 转过一定的角度后,两块纸板不在同一平面上,所以在纸板F上就无法呈现出反射光线了;(5)反射光路是可逆的,当让光线逆着OF的方向射向镜面,会发现反射光线沿着OE方向射出.7.小明用图甲的装置探究“平面镜成像的特点”,操作如下:①在竖立的玻璃板前点燃蜡烛A,可以看到蜡烛A在玻璃板中的像,取一支外形相同但不点燃的蜡烛B在玻璃板后面来回移动,直到看上去它跟蜡烛A的像完全重合;②移去蜡烛B,在其原来位置上放置一块光屏,观察光屏上是否有蜡烛的像;③将玻璃板倾斜,再次观察“蜡烛A的像”,如图乙所示。

相关文档
最新文档