纤维素酶的作用机理及进展的研究

纤维素酶的作用机理及进展的研究
纤维素酶的作用机理及进展的研究

纤维素酶的作用机理及进展的研究

摘要:纤维素酶广泛存在于自然界的生物体中,本文论述了纤维素酶的性质,重点介绍了纤维素酶的作用机理、应用及其研究进展,并对其研究前景做了展望。关键词:纤维素酶;纤维素;作用机理;

0引言

纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。

纤维素占植物干重的35%-50%[1],是世界上分布最广、含量最丰富的碳水化合物。对人类而言,它又是自然界中最大的可再生物质。纤维素的利用和转化对于解决目前世界能源危机、粮食短缺、环境污染等问题具有十分重要的意义[2]。

1 纤维素酶的性质

纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。纤维素酶是四级结构,,产生纤维素酶的菌种容易退化,导致产酶能力降低。由于纤维素酶难以提纯,实际应用时一般还含有半纤维素酶和其他相关的酶,如淀粉酶(amylase)、蛋白酶(Protease)等。

纤维素酶的断键机制与溶菌酶一样,遵循双置换机制。纤维素与酶相互作用中,是酶被底物分子所吸附,然后进行酶解催化,酶的活性较低,仅为淀粉酶的1/100[3] 纤维素酶对底物分子的分解,必须先发生吸附作用。纤维素酶的吸附不仅与自身性质有关,也与底物密切相关,但纤维素酶的吸附机制总体并未弄清,仍需进一步研究[4]。

2 纤维素酶的作用原理

(1)、纤维素酶在提高纤维素、半纤维素分解的同时,可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质有利于动物胃肠道的消化吸收。

(2)、纤维素酶制剂可激活内源酶的分泌,补充内源酶的不足,并对内源酶进行调整,保证动物正常的消化吸收功能,起到防病,促生长的作用。

(3)、消除抗营养因子,促进生物健康生长。半纤维素和果胶部分溶于水后会产生粘性溶液,增加消化物的粘度,对内源酶造成障碍,而添加纤维素酶可降低粘度,增加内源酶的扩散,提高酶与养分接触面积,促进饲料的良好消化。

(4)、纤维素酶制剂本身是一种由蛋白酶、淀粉酶、果胶酶和纤维素酶等组成的多酶复合物,在这种多酶复合体系中一种酶的产物可以成为另一种酶的底物,从而使消化道内的消化作用得以顺利进行。也就是说纤维素酶除直接降解纤维素,促进其分解为易被动物所消化吸收的低分子化合物外,还和其他酶共同作用提高奶牛对饲料营养物质的分解和消化。

(5)、纤维素酶还具有维持小肠绒毛形态完整,促进营养物质吸收的功能。

3 纤维素的应用及前景

纤维素酶可广泛用于食品、纺织、饲料、酿酒、石油勘探、中药成分提取等众多领域,特别是在纺织、洗涤、造纸和生物能源等工业应用上具有重要地位。自20世纪90年代开始,酸性纤维素酶用于牛仔布的水洗整理,从而开始了纤维素酶在工业上的大规模应用,这也是目前纤维素酶应用最成功、用量最大的领域。在牛仔布的水洗整理上酸性纤维素酶具有用量少、效果快的特点,但服装返染严重;中性纤维素酶反应条件温和而且不易返染,织物档次得到提高,已普遍代替酸性酶。但在棉织物的整理上,如去球脱毛以及增柔等,酸性纤维素酶特别是木霉产生的纤维素酶仍具有更多的优势。利用纤维素酶对棉织物的整理并不需要纤维素酶的所有组分,如进行棉织物的脱毛、去球等整理,仅有内切酶就可产生明显的效果,但是棉织物的减量也较严重,影响了织物的强度,通过基因工程改变内切酶和外切酶的比例,可以在一定程度上解决这个问题。

在进行酿酒发酵时添加纤维素酶可显著提高酒精和白酒的出酒率及原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂纯油含量低。用纤维素酶处理啤酒糟蛋白酶解率10%以上[5]。在白酒的应用出酒率可提高13%,而且不影响酒的感官品质[6]。

在酿造酱油过程中添加纤维素酶,可使大豆原料的细胞膜膨胀软化破坏,使包藏在细胞中的蛋白质和碳水化合物释放。

用纤维素酶添加日粮饲喂鸡,对蛋形指数、蛋壳厚度未产生明显影响,但添加0.1%和0.3%的纤维素酶降低了破蛋率[7]。

纤维素酶用于造纸工业,是利用外切纤维素酶只从末端切断纤维素的作用原理,提高纸张的光洁度。碱性纤维素酶用于洗涤剂工业,可以提高棉织物的洗净度,起主要作用的是内切酶(CMC酶),是近些年来洗涤剂工业竞相开发的新酶种之一。这两种工业应用涉及的纤维素酶只需要纤维素酶系中的单一组分,基因工程技术可以在其中得到广泛的应用。

纤维素酶将来最大的用途,或者可以使其产量得到巨大增长的工业需求将是纤维素乙醇的开发。自上世纪70年代石油危机以来,世界各国都致力于开发新的可再生能源,而生物乙醇是被普遍看好的新型燃料。进入21世纪,利用纤维素酶转化纤维素物质产生葡萄糖进而发酵获得生物乙醇,可以避免对粮食作物的大量损耗,引起了各国政府和研究机构的重视,这其中的关键是纤维素酶的成本问题。由于纤维素酶发酵活力较低,因此其应用成本也较高。同时纤维素酶相比其他糖苷水解酶类,比活力至少要低1-2个数量级,如滤纸酶的比活力为1IU/mg左右,CMC的比活力约为10IU/mg,从而造成酶的作用效率较低。这是两个限制纤维素酶应用的瓶颈问题,也是纤维素酶研究的热点与难点。目前通过传统的菌种诱变和基因工程技术可以较大幅度地提高目的蛋白的表达量,从而提高酶的发酵水平,如诺维信公司与美国能源部合作,将制造纤维素乙醇中的酶制剂成本由2001年的每加仑5美元降低到2004年的30美分,2005年又降低到每加仑18美分。还可以通过改善发酵条件和工艺,如采用固体发酵来大幅度降低发酵成本。但是提高酶降解天然纤维素的效率则需要深入研究纤维素酶的结构与功能以及作用方式,进而对其进行有效改造;或者通过筛选新的产酶菌种,发现具有开发潜力的新酶源。

总之,纤维素酶是目前糖苷酶类中惟一尚有大量亟待解决问题的酶,也是有着巨大工业和市场潜力的酶。进一步阐明纤维素酶的结构与功能,研究纤维素酶的基因表达与调控的关系;针对不同工业需要研制不同组分比例的纤维素酶;提高纤维素酶水解天然纤维素的比活力;开发适应不同温度(低温或高温纤维素酶)的纤维素酶是当前纤维素酶的主要研究趋势。

参考文献

[1]LYND LR,PAUL J W,VAN ZYL W H,et al.Micribial cellulose

utilization;Fundamentals and biotechnology [J].Microbiology and molecular biology reviews,2002,66(3):506-577.

[2]胡利勇,钟卫鸿.纤维素酶基因克隆及其功能性氨基酸研究进展[J].生物技术,2003,13(2):43-45.

[3]严岩,张全福.纤维素酶的性质、应用及其环保意义[J].农业环境与发展,1997(1):17-20.

[4]钟发刚,王新华.饲用纤维素酶研究进展[J].中国微生态学杂志,2002,14(5):308-309.

[5]邱雁临,纤维素酶的研究和应用前景[J].粮食与饲料工业。2001,8:30-31.

[6]尚维,刘群,纤维素酶在清纯型优质白酒中应用初探[J].酿酒科技,1996,2;20-21.

[7]井长伟,纤维素酶在畜牧业中的应用[J].中国饲料,2002,7;9-13.

纤维素酶的作用机理及进展的研究

纤维素酶的作用机理及进展的研究 摘要:纤维素酶广泛存在于自然界的生物体中,本文论述了纤维素酶的性质,重点介绍了纤维素酶的作用机理、应用及其研究进展,并对其研究前景做了展望。关键词:纤维素酶;纤维素;作用机理; 0引言 纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。 纤维素占植物干重的35%-50%[1],是世界上分布最广、含量最丰富的碳水化合物。对人类而言,它又是自然界中最大的可再生物质。纤维素的利用和转化对于解决目前世界能源危机、粮食短缺、环境污染等问题具有十分重要的意义[2]。 1 纤维素酶的性质 纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。纤维素酶是四级结构,,产生纤维素酶的菌种容易退化,导致产酶能力降低。由于纤维素酶难以提纯,实际应用时一般还含有半纤维素酶和其他相关的酶,如淀粉酶(amylase)、蛋白酶(Protease)等。 纤维素酶的断键机制与溶菌酶一样,遵循双置换机制。纤维素与酶相互作用中,是酶被底物分子所吸附,然后进行酶解催化,酶的活性较低,仅为淀粉酶的1/100[3] 纤维素酶对底物分子的分解,必须先发生吸附作用。纤维素酶的吸附不仅与自身性质有关,也与底物密切相关,但纤维素酶的吸附机制总体并未弄清,仍需进一步研究[4]。 2 纤维素酶的作用原理 (1)、纤维素酶在提高纤维素、半纤维素分解的同时,可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质有利于动物胃肠道的消化吸收。 (2)、纤维素酶制剂可激活内源酶的分泌,补充内源酶的不足,并对内源酶进行调整,保证动物正常的消化吸收功能,起到防病,促生长的作用。 (3)、消除抗营养因子,促进生物健康生长。半纤维素和果胶部分溶于水后会产生粘性溶液,增加消化物的粘度,对内源酶造成障碍,而添加纤维素酶可降低粘度,增加内源酶的扩散,提高酶与养分接触面积,促进饲料的良好消化。 (4)、纤维素酶制剂本身是一种由蛋白酶、淀粉酶、果胶酶和纤维素酶等组成的多酶复合物,在这种多酶复合体系中一种酶的产物可以成为另一种酶的底物,从而使消化道内的消化作用得以顺利进行。也就是说纤维素酶除直接降解纤维素,促进其分解为易被动物所消化吸收的低分子化合物外,还和其他酶共同作用提高奶牛对饲料营养物质的分解和消化。

酶的作用机理 模型

酶 山东省青岛市城阳第一高级中学高二(二)班 作者姓名:孙一丹王辉韩德琛 指导教师:杨永丰 摘要:大千世界,无奇不有,最奇莫过于生命:而生命,则是一大群化学反应的有机结合体。在这不计其数的反应中,酶,作为其中极重要的一员,无时无刻不控 制影响着生命体的新陈代谢。下面我们将探索神奇的酶世界。本文中将介绍一 种我们自主设想的模型——“带孔的橡皮球”,浅释酶的催化原理。 注:本文中图片均为借助画图板工具手工绘制。 关键词:酶催化原理酶工程 酶的神奇 氧分子是很挑食的,如果不同时给它四个电子,它就不吃。似乎这么慷慨大方的只有碱金属,要不然,谁愿意在常温下给那么多电子啊。但在生物体内却大不相同。是什么能让有机物在体内安静的与氧分子化合?是酶。纤维素是由D-葡萄糖以β1,4-糖苷键连接而成的,如果靠氢离子来分解,需要稀酸加压或浓酸才能催化,而一些以纤维素为碳源的细菌真菌,则可以通过纤维素酶在温和的条件下来分解它们,从而得到养分。 一且生物的几乎所有的生命活动都离不开酶,正是因为有酶协调有序参与才使生命新陈代谢有条不紊地进行着。 酶为什么有这么强大的功能? 下面我们来探讨这个问题。 关于酶 酶是一种高效的生物催化剂,其化学本质是蛋白质。当然也有少数酶是RNA,叫做核酶。所以要认清酶的真面目,首先要搞明白蛋白质的化学情况。 一、蛋白质档案 蛋白质的基本组成单位是氨基酸。在500余种天然氨基酸中,只有20种参与构成了绝大多数的蛋白质。由于除了甘氨酸之外的氨基酸都含有手性碳原子,所以氨基酸有L和D之分。构成生物体的氨基酸基本是L型。 根据其侧链集团的性质,这20种氨基酸可分为酸性氨基酸、碱性氨基酸和非极性氨基酸。 由氨基酸互相脱水缩合而形成的聚酰胺肽长链,叫做肽链。肽链的羧基端称为C-端,氨基端称为N-端。蛋白质是有一条或多条肽链构成的,有的还携有辅酶或辅基、金属离子。 蛋白质是有其构成层次的。1951年丹麦生物化学家Linderstrom-Lang第一次提出蛋白质的一、二、三级结构概念,1958年美国晶体学家Bernal提出蛋白质的四级结构概念。后经国际生物化学与分子生物学协会(IUBMB)的生化命名委员会采纳并作出定义。 一级结构是指蛋白质肽链中氨基酸的种类和排列顺序。如:

真菌与细菌纤维素酶研究进展_高凤菊 (1)

第27卷第2期 唐山师范学院学报 2005年3月 Vol. 27 No.2 Journal of Tangshan Teachers College Mar. 2005 ────────── 收稿日期:2004-10-20 作者简介:高凤菊(1978-),女,河北乐亭人,四川农业大学生命科学学院硕士研究生。 - 7 - 真菌与细菌纤维素酶研究进展 高凤菊1,李春香2 (1.四川农业大学 生命科学学院,四川 雅安 625014;2.唐山师范学院 生物系,河北 唐山 063000) 摘 要:对分解纤维素真菌及细菌的种类,纤维素酶的组成和分类,分子结构、作用机理,纤维素酶基因工程及研究展望进行了综述。 关键词:真菌;细菌;纤维素酶 中图分类号:Q556+.2 文献标识码:B 文章编号:1009-9115(2005)02-0007-04 资源和环境问题是人类在21世纪面临的最主要的挑战。生物资源是可再生性资源,地球上每年光合作用的产物高达1.5×1011~2.0×1011t ,是人类社会赖以生存的基本物质来源。其中90%以上为木质纤维素类物质,[1]其中的纤维素是地球上最丰富 的多糖物质, [2] 这类物质是植物细胞壁的主要成分,也是地球上最丰富、最廉价的可再生资源。我国的纤维素资源极为丰富,每年农作物秸秆的产量 达5.7×108t , 约相当于我国北方草原年打草量的50倍。目前这部分资源尚未得到充分的开发利用,主要用于燃料,畜牧饲料与积肥,不仅利用率低,还 对环境造成一定的污染。 [3] 随着世界人口迅速增长、粮食、矿产资源日渐枯竭,开发高效转化木质纤维素类可再生资源的微生物技术,利用工农业废弃物等发酵生产人类急需的燃料、饲料及化工产品,即化工原料的“绿色化”,具有极其重大的现实意义和光明的发展前景。 在自然界中,许多霉菌[4]和细菌[5]都能产生纤维素酶,但有关细菌纤维素酶的报道很少。由细菌所产生的纤维素酶一般最适中性至偏碱性,因为这类酶制剂对天然纤维素的水解作用较弱,长期以来没有得到足够的重视。近十几年来,随着中性纤维素酶和碱性纤维素酶在棉织品水洗整理工艺及洗涤剂工业中的成功应用,细菌纤维素酶制剂已显示出良好的使用性能和巨大的经济价值。[6][7][8] 1 纤维素分解微生物 1.1 纤维素分解性细菌 (cellulose decomposingbacteria ) 纤维素分解性细菌是能分解纤维素的细菌。由于纤维素酶等的作用,纤维素可一直被分解到葡萄糖为止,有时在分解过程中会积累纤维二糖。这类 细菌多见于腐植土中。好氧性细菌如纤维单胞菌属(Cellulomonas )、纤维弧菌属(Cellvibrio )、噬胞菌属(Cytophaga )等能分解纤维素;但在好氧条件下土壤中纤维素的分解,主要是纤维素分解真菌在起作用。而在厌氧条件下纤维素的分解,一些厌氧性的芽孢梭菌属(Clostridium )的细菌具有重要作用。纤维素分解细菌亦可栖息于草食动物的消化道、特别是反刍动物的瘤胃中。它们在其中进行分解纤维素的活动,这些细菌是厌氧性细菌,例如产琥珀酸拟杆菌(Bacteroides succinogenes )、牛黄瘤胃球菌(Ruminococcus flavefaciens )、白色瘤胃球菌(R.albus )、溶纤维丁酸弧菌(Butyrivibrio fibrisolvens )(程光胜 译)等。细菌纤维素酶多数结合在细胞膜上,菌体细胞需吸附在纤维素上才能起作用,使用很不方便,酶的分离提取也较困难。但是细菌主要产生中性纤维素酶和碱性纤维素酶。碱性纤维素酶由于在洗涤剂工业中有良好的应用价值,也成为研究热点,其产生菌主要集中在芽孢杆菌属[9]。由于酶的耐热性在生产中具有现实意义,所以耐热细菌也是研究的热点。 1.2 纤维素分解性真菌 真菌类有黑曲霉、血红栓菌、卧孔属、疣孢漆斑菌QM460、绳状青霉、变幻青霉、变色多空霉、乳齿耙菌、腐皮镰孢、绿色木霉、里氏木霉、康氏木霉、嗜热毛壳菌QM9381和嗜热子囊菌QM9383等[10];丝状真菌产生的纤维素酶一般在酸性或中性偏酸性条件下水解纤维素底物。真菌纤维素酶通常是胞外酶,酶被分泌到培养基中,用过滤和离心等方法就可较容易地得到无细胞酶制品。目前饲用纤

纤维素酶的介绍 应用 前景

纤维素酶的生产方法及在食品行业的应用 纤维素酶的生产方法及在食品行业的应用 纤维素酶(cellulase)是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。 纤维素酶在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。 纤维素酶的来源 纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。 目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(As pergillus)和青霉属(Penicillium),特别是绿色木霉(Trichoder mavirde)及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。 现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。另外,也可利用组织培养法获得所需要的微生物。 纤维素酶的生产方法 目前,纤维素酶的生产主要有固体发酵和液体发酵两种方法。 固体发酵法固体发酵法是以玉米等农作物秸秆为主要原料,其投资少,工艺简单,产品价格低廉,目前国内绝大部分纤维素生产

厂家均采用该技术生产纤维素酶。然而固体发酵法存在根本上的缺陷,以秸秆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前,我国纤维素酶生产厂家只能采用直接干燥法粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,其产品外观粗糙且质量不稳定,发酵水平不稳定,生产效率较低,易污染杂菌,不适于大规模生产。 液体发酵法液体发酵生产工艺过程是将玉米秸秆粉碎至20目以下进行灭菌处理,然后送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70h,温度低于60℃。采用除菌后的无菌空气从釜低通入进行通气搅拌,发酵完毕后的物料经压滤机板框过滤、超滤浓缩和喷雾干燥后制得纤维素酶产品。液态深层发酵由于具有培养条件容易控制,不易染杂菌,生产效率高等优点,已成为国内外重要的研究和开发方向。 纤维素酶的应用 制酒 在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出 酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。 将纤维素酶应用于啤酒工业的麦芽生产中可增加麦粒溶解性,

@@纤维素酶水解机理及影响因素

收稿日期:2007-04-13 作者简介:黄翊(1980-),男,广东广州人,助理工程师,现从事石油化工设计工作。 纤维素酶水解机理及影响因素 黄翊 (广东省石油化工设计院,广东广州 510130) 摘要:对纤维素酶水解的机理进行了阐述,并初步探讨了各类因素对水解的影响。关键词:纤维素酶;水解 中图分类号:Q55 文献标识码:A 文章编号:1008-021X (2007)05-0029-03 The HydrolysisM echan ics of Cellulose and I nfluenc i n g Factor HUAN G Yi (Guangdong Petr oche m ical Engineering Design I nstitute,Guangzhou 510130,China ) Abstract :This text expound the hydr olysis mechanics of cellul ose,and p reli m inary discuss s ome influencing fact ors on hydr olyzati on .Key words :cellulase;hydr olyzati on 纤维素是自然界中最丰富的可再生资源之一,如将其以工业规模转化成葡萄糖的技术开发成功,那么纤维素资源便可成为人类食粮、动物饲料、发酵工业原料以及能源的新来源。但目前有效利用纤维素生物量的主要障碍是纤维素酶的酶解效率低,与淀粉酶比较相差2个数量级以上,进而导致纤维素酶解过程中纤维素酶的成本过高,约占纤维素糖化工艺的40%以上,从而严重阻碍了纤维素酶在纤维素糖化中的广泛应用。酶的固定化技术为提高纤维素酶的使用效率,降低成本,提供了可能性。因为固定化酶比游离酶具有较好的稳定性,并且可以重复使用和回收,又便于连续化操作,因而可以大大降低成本。1 反应机理 1.1 纤维素酶的作用机制及理化性质 纤维素酶是降解纤维素生成葡萄糖的一组酶的总称。目前普遍认为:完全降解纤维素至少需要有3种功能不同但又互补的纤维素酶的3类组分:EG (内切葡聚糖酶)、CBH (外切葡聚糖纤维二糖水解 酶)和CB (纤维二糖酶或β-葡萄糖苷酶),在它们的协同作用下才能将纤维素水解至葡萄糖。纤维素的降解过程,首先是纤维素酶分子吸附到纤维素表面,然后,EG 在葡聚糖链的随机位点水解底物,产生寡聚糖;CBH 从葡聚糖链的非还原端进行水解,主要产物为纤维二糖;而CB 可水解纤维素二糖为葡 萄糖。需要这三类酶的"协同"才能完成对纤维素的降解。其中对结晶区的作用必须有EG 和CBH,对无定形区则仅EG 组分就可以。 纤维素酶分子由催化结构域(catalytic domain,CD )、纤维素结合结构域(cellul ose -binding domain,CBD )和一个连接桥(linker )三部分组成。不同来源 的纤维素酶分子其特征和催化的活性不尽相同。酶分子都被糖基化,糖基化与蛋白质之间以共价键或解离的络合状态存在。酶分子糖基化的程度决定了酶的多形性和相对分子质量的差别。近年来,纤维素酶分子结构与功能的研究取得了一定的进展。不同来源内、外切酶的CD 晶体结构分析结果表明:纤维素酶遵循溶菌酶的作用机制;真菌和细菌来源的纤维素酶的CBD 的三维结构也得到了解析。真菌和细菌产生的纤维素酶分子差别很大,但它们的催化区在一级结构上氨基酸数量和二维结构上的大小却基本一致,但它们的连接桥和CBD 却存在明显的差异。真菌纤维素酶的连接桥一般富含Glu,Ser 和Thr,而细菌纤维素酶的连接桥则完全是由Pr o -Thr 这样的重复顺序组成。另一方面,真菌的CBD 由33~36个氨基酸残基组成,且具有高度的同源;而细菌纤维素酶的CBD 由100~110个氨基酸组成,同源性也较低。在高级结构的分子形状上,真菌纤维素酶的CD 、连接桥和CBD 呈直线连接,CD 与CBD 间为180°,而细菌纤维素酶的连接桥CD 与CBD 之

纤维素酶在纺织品染整中的应用

纤维素酶在纺织品染整中的应用 摘要:介绍了纤维素酶的性质、纤维素酶对纤维素的作用机理及纤维素酶在纺织上的应用,对其在纺织上的应用前景进行了展望。 关键词:纤维素酶纤维素染整纺织应用 0前言 纤维素是世界上蕴藏量最丰富的天然高分子化合物,绝大多数由绿色植物通过光合作用合成。微生物对纤维素的降解、转化是自然界中碳素转化的主要环节。纤维素酶是降解纤维素生成葡萄糖的多组分酶的总称。目前,纤维素酶产品广泛应用于纺织、饲料、酿造、制药、造纸等行业,尤其是在纺织行业的应用范围目前正在不断扩大。 早在1906年,Seilliere就在蜗牛的消化液中发现了能分解纤维素的纤维素酶。纤维素酶是能水解纤维素B-1,4 -葡萄糖苷键,使纤维素变成纤维二糖和葡萄糖的一组酶的总称,它不是单一酶,而是起协同作用的多组分酶系。 纤维素酶的来源非常广泛,昆虫、软体动物、原生动物、细菌、放线菌和真菌等都能产生纤维素酶。主要的有:康氏木霉、里氏木霉、黑曲霉、斜卧青霉、芽孢杆菌等。丝状真菌产生的纤维素酶一般在酸性或中性偏酸性条件下水解纤维素底物,耐嗜碱细菌产生的纤维素酶在碱性范围起作用。 一、纤维素酶的组成和性质 纤维素酶是一种复合酶,是包括多种酶的一个体系,它可以从多种微生物、植物和动物制取。目前对纤维素酶的研究还不深,但就已

知的情况来说,纤维素酶至少含有三种成分的酶,即可任意切断纤维素分子中β-1,4-糖苷键的内切B-葡聚糖酶(EG);从没有还原基末端开始切断 β-1,4-糖苷键成纤维二糖剩基的外切β-葡聚糖酶(CHB)和将纤维素二糖分解成葡萄糖的β-葡萄糖苷酶(BG)。也有人将可以催化水解CMC那样水溶性底物的纤维素衍生物、但很难单独作用于结晶纤维素的酶称为C X酶,也即上述的EG酶。将从纤维素的非还原端开始分解成纤维素二糖、与C X酶共存时能破坏纤维素结晶部分的酶称为C1酶,也即上述的CBH酶。将可以使纤维素二糖分解成葡萄糖的酶称为纤维素二糖酶,即BG酶。 二、纤维素酶对纤维素的作用机理 目前,一种理论认为:纤维素酶水解纤维素是β-1,4 -内切葡聚糖(纤维二糖水解)酶(EG,Endo-β-Glucanase),β-1,4 -外切葡聚糖(纤维二糖水解)酶(CBH,Cellobiohydrolase)和β-葡萄糖苷酶(BG,β-Glucosidase)协同作用下进行的。首先,EG酶随机水解切断无定型区的纤维素分子链,使结晶纤维素出现更多的纤维素分子基端,为CBH酶水解纤维素创造条件,CBH酶的水解产物纤维二糖则由BG酶水解成葡萄糖,因而纤维素酶水解纤维素的过程可以简单表示为:EG→CBH→BG。目前的研究表明,EG酶实际上至少包括EG?、EGП、EGШ和EGV四种,CBH至少包括CBH?和CBHП两种。 另外一种理论认为:纤维素酶是由葡聚糖内切酶(C x酶)、葡聚糖外切酶(C1酶)、β-葡萄糖苷酶三个主要成分所组成的诱导型复合酶

纤维素酶的水解机制和作用条件

纤维素酶的水解机制和作用条件 纤维素酶对大家来说已经不陌生,现在已经广泛应用在工业生产过程中,纤维素酶在植物提取和饲料中的功能是其他产品所无法替代的。然而纤维素酶在其发展过程中经历了漫长的过程,随着越来越多的生物学家对其进行研究,纤维素酶的水解过程才逐渐被人们掌握。下面详细介绍纤维素酶的研究过程和其水解机制。 1 纤维素酶的研究过程 在自然界中,绝大多数的纤维素是由微生物通过分泌纤维素酶来进行降解的。早在l850年,Mifscherlich己经观察到微生物分解纤维素现象。但纤维素酶的研究则是从1906年Seilliere在蜗牛消化液中发现了分解天然纤维素的酶,以后才逐渐开始的。1912年 Pringsheim 从耐热性纤维素细菌中分离出纤维素酶。1933年Grassman分辨出了一种真菌纤维素酶的两个组分。1954年,美国陆军 Natick实验室开始研究军用纤维素材料微生物降解的防护问题,后来发现纤维素经微生物降解后,可产生经济、丰富的生产原料,并且有望解决自然界不断产生的固体废物问题,于是纤维素酶得到了广泛的关注。 2 纤维素酶的水解机制 关于纤维素酶水解的机制至今仍无完全统一的认识,目前普遍接受的理论主要为协同理论。该理论认为,纤维素的酶水解过程是由C1酶、Cx酶、β-葡萄糖苷酶系统作用的结果,水解过程为:先是Cx酶作用于纤维素分子非结晶区内部的β-1, 4糖苷键,形成短链的β-寡聚糖;C1酶作用于β-寡聚糖分子的非还原末端,以二糖为单位进行切割产生纤维二糖;接着,部分降解的纤维素进一步由C1酶和 Cx酶协同作用,分解生成纤维二糖、纤维三糖等低聚糖;最后由β-葡萄糖苷酶作用分解为葡萄糖。纤维二糖对CBH和EG有强烈抑制作用,β-葡萄糖苷酶 BG将纤维二糖和纤维三糖水解为葡萄糖,从反应混合物中除去抑制。

纤维素酶的研究进展及应用前景

纤维素酶的研究进展及应用前景 摘要 我国近年来在纤维素酶研究应用领域取得了很大进展。纤维素酶是一组能够分解纤维素产生葡萄糖的酶的总称,按照功能可以分为内切葡糖聚酶,外切葡糖聚酶和β-葡聚糖苷酶。它在纺织,酿酒,食品与饲料行业的市场潜力是巨大,受到国内外业内人士的看重。本文综述了纤维素酶的组成,结构,分类,理化性质与作用机理,阐明了生产纤维素酶的微生物种类,纤维素酶的发酵工艺及高效分解菌。介绍了纤维素酶的特性,重要意义,在各领域的应用,并对其未来研究趋势进行了展望。 关键字:纤维素酶研究应用 前言:因为资源枯竭、能源短缺及环境污染等问题日益加剧,世界各国都在寻找开发新能源。纤维素类物质是自然界中分布最广泛、含量最丰富、生成量最高的有机化合物,也是自然界中数量最多的可再生类质。但这些纤维素大部分没有被开发,造成巨大的资源浪费和环境污染。近年来关于纤维素酶的基础研究获得了显著的进展,主要包括酶的组成部分和结构、发生降解的机理、基因的克隆和表达、酶的发酵和生产、应用等方面。由此可见生产纤维素酶对人类生存环境的改善和可持续发展有着举足轻重的地位。 1,纤维素酶的来源和分类 纤维素酶的最主要来源是微生物,用其生产是最为有效和方便的。不同微生物合成的纤维素酶在组成上差异明显。对纤维素的降解能力也不尽相同。细菌与放线菌生产的纤维素酶产量均不高,在工业上很少应用。而真菌具有产酶的诸多优点:产酶能力强,产生的纤维素酶为胞外酶,便于酶的分离和提取,且产生纤维素酶的酶系结构较为合理;酶之间有强烈的协同作用,降解纤维素的效率高。纤维素酶是一类能够把纤维素降解为低聚葡萄糖、纤维二糖和葡萄糖的水解酶。根据纤维素酶的结构不同,可把纤维素酶分为两类:纤维素酶复合体和非复合体纤维素酶。纤维素酶复合体是一种超分子结构的多酶蛋白复合体,由多个亚基构成。由四个部分构成:脚手架蛋白、凝集蛋白和锚定蛋白结合体、底物结合区域和酶亚基。非复合体纤维素酶主要由好氧的丝状真菌产生,如子囊菌纲和担子菌纲等的一些种属。它是由不同的三种酶所构成的混合物,即内切葡聚糖酶、外切葡苷糖酶和B一葡萄糖苷酶。 2,纤维素酶的组成与结构 因为种类和来源的不同,纤维素酶的结构存在较大差异,但是通常均具有2

羧甲基纤维素酶测定原理

纤维素酶活力的测定 一、目的 学习和掌握3,5-二硝基水杨酸(DNS)法测定纤维素酶活力的原理和方法,了解纤维素酶的作用特性。 二、原理 纤维素酶是一种多组分酶,包括C1 酶、CX 酶和β-葡萄糖苷酶三种主要组分。其中C1酶的作用是将天然纤维素水解成无定形纤维素,CX 酶的作用是将无定形纤维素继续水解成纤维寡糖,β-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在540nm 波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。 三、实验材料、主要仪器和试剂 1.实验材料 (1)纤维素酶制剂 500mg (2)新华定量滤纸 50mg / 份× 4 (3)脱脂棉花 50mg / 份× 4 (4)羧甲基纤维素钠(CMC) 510mg (5)水杨酸苷 500mg 2.主要仪器 (1)722 型或其他型号的可见分光光度计 (2)恒温水浴2 台 (3)沸水浴锅 (4)电炉子 (5)剪刀 (6)万分之一分析天平 (7)恒温干燥箱 (8)冰箱 (9)试管架 (10)胶头滴管 (11)具塞刻度试管20mL×24 (12)移液管或加液器0.5 mL×3;2mL×7 (13)容量瓶100 mL×6;1000 mL×3 (14)量筒50 mL×2;100 mL×1;500 mL×1 (15)烧杯100 mL×6;500mL×3;1 000 mL×1 3.试剂(均为分析纯)

(1)浓度为1mg/mL 的葡萄糖标准液 将葡萄糖在恒温干燥箱中105℃下干燥至恒重,准确称取100mg 于100mL 小烧杯中,用少量蒸馏水溶解后,移入100mL 容量瓶中用蒸馏水定容至100mL,充分混匀。4℃冰箱中保存(可用12~15 天)。(2)3,5-二硝基水杨酸(DNS)溶液 准确称取DNS 6.3g 于500mL 大烧杯中,用少量蒸馏水溶解后,加入2mol/L NaOH 溶液262mL,再加到500mL 含有185g 酒石酸钾钠(C4H4O6KNa · 4H2O,MW=282.22)的热水溶液中,再加5g结晶酚(C6H5OH,MW=94.11)和5g无水亚硫酸钠(Na2SO3,MW=126.04),搅拌溶解,冷却后移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。贮于棕色瓶中,室温放置一周后使用。 (3)0.05 mol/L pH4.5 的柠檬酸缓冲液A 液(0.1 mol/L 柠檬酸溶液):准确称取C6H8O7 · H2O (MW=210.14)21.014g 于500mL大烧杯中,用少量蒸馏水溶解后,移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。4℃冰箱中保存备用。

生物技术生产纤维素酶及其应用研究进展

Vol.15,No.18精细与专用化学品第15卷第18期 Fine and Specialty Che m icals2007年9月21日技术进展 生物技术生产纤维素酶 及其应用研究进展 刘 颖3 张玮玮 (哈尔滨商业大学食品工程学院,黑龙江哈尔滨150076) 摘 要:简要介绍纤维素酶的酶学性质、降解机制、生产工程菌的选育、纤维素酶的应用情况,以及对纤维素酶生产与应用方面存在的问题和未来发展趋势进行了分析与探讨。纤维素酶在食品、酿造行业、农副产品深加工、饲料、医药、环境保护和化工等领域有着非常广阔的应用前景和应用潜力。我国纤维素酶的生产及应用研究近年来取得了很大进展,今后必将在应用深度和广度上进一步扩展。 关键词:纤维素酶;发酵;克隆;生物技术 Cellul a se Produced by B i otechnology and Its Appli ca ti on Progress L I U Ying,ZHAN G W ei2w ei (College of Food Engineering,Harbin University of Commerce,Harbin150076,China) Abstract:The enzy mol ogical p r operties of cellulase,degradati on mechanis m,the selecting culture of engineering m i2 cr oorganis m and the app licati on p r os pect of bi otechnol ogy in cellulase industry are intr oduced briefly.The existing p r oble m s in cellulase p r oducti on and app licati on and the devel opment trend in the future are analyzed and discussed.The p r os pect and potential of app licati ons of cellulase are wide,es pecially in the fields of f ood industry,fer mentati on industry,deep2p r o2 cessing of far m ing p r oducts,f orage,medicine,envir on mental p r otecti on and che m ical industry.A great p r ogress has been made in the cellulase devel opment and app licati on recently in China,and in the future it will be certainly expanded deep ly and comp rehensively. Key words:cellulase;fer mentati on;cl one;bi otechnol ogy 纤维素是地球上数量最大的可再生资源,微生物对它的降解、转化是自然界中碳素转化的主要环节。纤维素酶(Cellulase)是降解纤维素生成葡萄糖的一组酶的总称。纤维素的生物转化与利用对当前世界能源危机、粮食短缺和环境污染等问题具有重要的意义。近年来,我国纤维素酶的应用研究十分活跃,已筛选到一批高产菌株。随着分子生物学、遗传工程的迅猛发展,国内外均在尝试应用基因工程技术来改造和构建高效纤维素降解菌。这些菌具有独特的酶学性质,扩大了纤维素酶的应用范围。根据纤维素酶遗传特性而构建的高效纤维素分解菌开辟了纤维素酶生产的新途径。 1 维素酶的性质及其降解机制 纤维素酶是一种糖蛋白,它是一个多组分的诱导酶系,采用层析分离和电泳技术等可将纤维素酶分成不同的组分。目前普遍认为,完全降解纤维素至少需要由3种功能不同但又互补的纤维素酶协同作用才能将纤维素水解至葡萄糖,它们是EG(内切葡聚糖酶)、CBH(外切葡聚糖酶)和CB(纤维二糖酶或β2葡萄糖苷酶)。纤维素的降解过程,首先是纤维素酶分子吸附到纤维素表面,然后,EG(内切 ? 8 ? 3收稿日期:2007207212  作者简介:刘颖(19682),女,副教授,研究方向为食品生物技术。

纤维素酶的结构与功能综述

研究生课程作业(综述)题目:纤维素酶的结构与功能 食品学院食品工程专业 学号 学生姓名 课程食品酶学 指导教师 二〇一三年十二月

纤维素酶的结构与功能 摘要:人类的生命活动离不开酶,生物体的一切新陈代谢活动都离不开酶,并且工业酶产业正在迅速发展。本文简单阐述了酶的结构与功能,重点以纤维素酶为例子,阐述它的来源、结构、分类、催化机制以及在各行业的应用,并对纤维素酶的发展前景作了一定展望。 关键词:纤维素酶结构家族功能 The structure and function of cellulase Abstract:Human's life activities is dependent on the enzyme,and all the metabolic activity of organisms cannot leave the enzyme, and industrial enzyme industry is developing rapidly.This article simply expounds the structure and function of enzymes.The key to cellulose enzyme as an example,expounds its source,structure, classification,catalytic mechanism and application in various industries,and lastly expect the development prospect of cellulase. Keywords: cellulase structure family function 1

纤维素酶的检测方法新

纤维素酶的检测方法 摘要:本文主要介绍了纤维素酶的降解原理,通过实验比较了四种常用纤维素酶的检测方法的稳定性,以及纤维素酶的发展前景,为纤维素酶的应用提供了进一步的参考价值。 关键词:纤维素酶酶活测定葡萄糖回归方程 一、纤维素酶及其降解原理 纤维素是高等植物细胞壁的主要成分,占植物总干重的30%-50%,是地球上分布最广,含量最丰富的可再生性碳源化合物,占地球总生物量的40%。据报道,我国每年光作物秸秆,稻梗等含纤维素较丰富的物质就有5亿吨之多,全球每年通过光合作用产生的植物物质高达1.55X109吨,其中尚有89%未被人们利用,而大量的秸秆,稻梗等含纤维素丰富的物质的利用率也很低。大多采用燃烧的方式来处理,这样就造成了环境污染,破坏了土壤的理化性质和丧失了有机质成分。所以,纤维素的充分利用与有效的转化对于解决当前的能源危机,粮食短缺,环境污染等有重大意义。 纤维素酶是分解纤维素的一类酶,它能将纤维素分解为葡萄糖,充分的利用了纤维素。自1906年Sellieres 在蜗牛消化液中发现纤维素酶以来,纤维素酶的研究和应用受到了国内外学者的极大关注,取得了很大进展。目前,国内外学者通过筛选产酶菌株来发酵产酶,再应用纤维素酶到食品,医药,饲料,洗涤等工业中,不仅解决了纤维素的再利用问题还取得了很可观的经济效益。 纤维素酶是由许多具有高协同作用的水解酶组成的。习惯上将纤维素酶分成三种主要成分:内切酶(内切β-1,4-葡萄糖酶,也称Cx酶)、外切酶(外切β-1,4葡萄糖酶,也称C1酶)、β -1,4葡萄糖酶(即为纤维二糖酶)[1]。C1酶主要作用于天然纤维素,使之转变为非结晶的纤维素。Cx酶又分为Cx1酶和Cx2酶。Cx1酶是一种内断型纤维素酶,它从水合非结晶纤维素分子内部作用于β-(1,4)糖苷键,生成纤维糊精和纤维二塘。Cx2酶是一种外断型纤维素酶,它从水合性纤维素分子的非还原端作用于β-(1,4)糖背键,逐步切断β-(1,4)糖节键生成葡萄糖。纤维二糖酶则作用于纤维二糖,生成葡萄糖。 纤维素酶在降解纤维素过程中的作用机理至今还不是很清楚。目前关于Cx酶、C1酶和β -1,4葡萄糖酶这3种酶的作用机理的假说比较公认的是以下3种,其中协同理论最为广泛接受。(1)C1-Cx假说。该理论认为首先由C1酶作用于纤维素酶的结晶区,再由外切酶和β-葡萄糖苷酶联合作用产生二糖和葡萄糖。其水解模式如图1所示。

纤维素酶的应用现状与前景

纤维素酶的应用现状与前景 【摘要】:本文阐述了纤维素酶的理化性质及其作用机理, 在此基础上重点讨论纤维素酶在食品业、农牧业、纺织业、造纸业等领域的应用, 对纤维素酶的来源及潜在应用价值作了展望。 【关键词】:纤维素酶; 固体发酵; 液体发酵;应用 The Application And Prospects of Cellulase [Abstract]: The physical and chemical properties of cellulase are elaborated in this thesis. On this basis, focusing on the Application of cellulose in the food industry, agriculture, textiles, paper, and other fields .In the same time looking in the future of The source and potential value of cellulase. [Keywords]: cellulase, Solid fermentation, Fermentation, Applications 纤维素类物质是地球上产量巨大而又未得到充分利用的可再生资源。纤维素酶是一组能够降解纤维素生成葡萄糖的酶的总称, 在食品、饲料、医药、纺织、洗涤剂和造纸等众多的工业领域有广泛的应用价值。从酶的作用特性出发可分成两大类: 碱性纤维素酶和酸性纤维素酶。纤维素酶的组成比较复杂,通常所说的碱性纤维素酶是具有3~10 种或更多组分构成的多组分酶。根据其作用方式一般又可将纤维素酶分为3 类: 外切β- 1, 4-葡聚糖苷酶( 简称CBH) 、内切β- 1, 4- 葡聚糖苷酶( 简称EG)和β- 1, 4- 葡萄糖苷酶( 简称BG) 。在这3 种酶的协同作用下,纤维素最终被分解成葡萄糖。到目前为止, 还没有能够在碱性条件下分解天然纤维素的纤维素酶。碱性纤维素酶是一种单组分或多组分的酶,

纤维素酶在反刍动物饲料中的应用研究进展

纤维素酶在反刍动物饲料中的应用研究进展 摘要:纤维素酶(Cellulase)作为一种绿色饲料添加剂,能提高饲料的转化率以及动物的生产性能,从而为养殖业提供相当数量的饲料来源。本文章主要从纤维素酶的分类、作用机理、在反刍动物饲料生产中的应用及其应用前景等方面作了论述,以期为生产实践提供理论依据。 关键词:纤维素酶;反刍动物;应用 纤维素在植物体中的含量最多,约占植物干重的1/2,是自然界数量最大的可再生自然资源。纤维素是由2000~10000个葡萄糖分子组成的长链大分子,除反刍动物借瘤胃微生物可以利用纤维素外,其他高等动物几乎不能消化和利用纤维素,饲料资源匮乏阻碍了我国畜牧业的发展,因此,成功开发这一潜在饲料资源显得尤为迫切和重要。纤维素酶作为一种绿色饲料添加剂,能将饲料中的纤维素降解成可消化吸收的还原糖(如:二糖或葡萄糖),提高饲料的营养价值。目前,纤维素酶在反刍动物生产应用中取得了良好的生产效益和巨大的经济效益。 本文从纤维素酶的分类、作用机理和在反刍动物中的应用现状等方面进行了论述,以期为生产实践提供理论基础。 1 纤维素酶的分类和来源 1.1 纤维素酶的种类 纤维素酶包括多种水解酶,纤维素酶是指能降解纤维素的一类酶的总称。是由多种水解酶组成的复杂酶系,主要来自于真菌和细菌。根据纤维素酶的不同功能,可分为三大类:内切纤维素酶、外切纤维素酶和β-葡萄糖苷酶。还有分解纤维素的其他酶类,如木聚糖酶(Xylase)和果胶酶。 1.1.1 葡聚糖内切酶 又称为Cl酶,这类酶作用于纤维素内部的非结晶区,随机水解β-1,4-糖苷键,将长链纤维素分子截短,产生大量带非还原性末端的小分子纤维素。葡聚糖内切酶相对分子质量介于23~146ku,如真菌的异构酶ECI为54ku,EGIII约为49.8ku,而纤维粘菌EG有两种菌的内切酶相对分子质量只有6.3ku。 1.1.2 葡聚糖外切酶 这类酶作用于纤维素线状分子末端,水解l,4-β-D糖苷键,每次切下1个纤维二糖分子,故又称为纤维二糖水解酶(Cellobio-hydrolase,CBH),外切酶的

纤维素酶在乙醇工业中的生产应用及其生产现状

纤维素酶在乙醇工业中的生产应用及其生产现状 摘要:纤维素是世界上最丰富的生物资源,纤维素经过转化为乙醇,可以从根本上解决目前的能源危机,而纤维素酶在这一转化过程中起着关键的作用。本文论述了纤维素酶的分类、结构及作用机制,纤维素酶的研究现状、工业生产及展望。 关键词:纤维素酶;纤维素;乙醇工业;生物能源 中图分类号:TQ925.9 X382 1.引言 植物通过光合作用,生产地球上最丰富、最廉价的纤维素资源,有资料表明,全世界每年的植物体生成1500亿吨干物质,其中纤维素及半纤维素的总量为850亿吨[1]。随着能源危机的加剧,各国政府都在寻找石油等不可再生能源的替代物,而研究发现,纤维素转化成糖类,在转化清洁能源乙醇是可行的,其前景十分诱人。但当前实现这一转化的技术瓶颈是纤维素酶的工业化生产成本过高。因此降低纤维素酶工业化生产成本就成了世界各国科学家研究的重要课题之一。 2. 纤维素酶的分类及作用机理 2.2.纤维素酶的分类 纤维素结构的复杂性决定了任何单一种酶都难以有效地降解它,需要一个复杂的酶体系共同作用。早在1950年,Reese 等人就提出了C1-Cx概念, 经过30多年来的研究,特别是近年来蛋白质分离及纯化技术的不断改进,分离得到的纤维素酶越来越多,每种酶作用的机理越来越明确。现已确认纤维素酶主要分为3大类:内切-1,4葡聚糖酶,即 endoglucanase,EC 3.2.1.4,简称内切酶,又称 Cx 酶,来自真菌中的简称EG ,来自细菌的简称Cen;外切β-1,4 葡聚糖水解酶,即exo-1,4-D -glucanase,EC3.2.1.9l, 即外切型葡聚糖酶,也称C1酶、外切酶,来自真菌的简称CBH ,来自细菌的简称Cex;β-葡萄糖苷酶,即 1,4-glucosidase,EC 3.2.1.21,简称βG ,也称纤维二糖酶。 2.3.作用机理 虽然对纤维素酶的作用机制没有完全搞清,但就目前研究所得其大致过程为:C1酶主要作用于天然纤维素,使之转变为非结晶的纤维素。CX酶又分为CX1酶和CX2酶两种。C X1酶是一种内断型纤维素酶,它从水合非结晶纤维素分子内部作用于β-(1,4)糖苷键,生成纤维糊精与纤维二糖。CX2酶是一种外断型纤维素酶,它从水合性纤维素分子的非还原端作用于β-(1,4)糖背键,逐步切断β-(1,4)糖节键生成葡萄糖。纤维二糖酶则作用于

纤维素酶在纺织行业的应用

纤维素酶在纺织行业的应用 1 引言 纤维素是世界上蕴藏量最丰富的天然高分子化合物,绝大多数由绿色植物通过光合作用合成。微生物对纤维素的降解、转化是自然界中碳素转化的主要环节。 纤维素酶是降解纤维素生成葡萄糖的多组分酶的总称。目前,纤维素酶产品广泛应用于纺织、饲料、酿造、制药、造纸等行业,尤其是在纺织行业的应用范围目前正在不断扩大。 2 纤维素酶 纤维素酶的研究最早是1906年Seilliere在蜗牛的消化液中发现了分解纤维素的纤维素酶。纤维素酶是能水解纤维素β-1,4-葡萄糖苷键,使纤维素变成纤维二糖和葡萄糖的一组酶的总称,它不是单一酶,而是起协同作用的多组分酶系。 纤维素酶的来源非常广泛,昆虫、软体动物、原生动物、细菌、放线菌和真菌等都能产生纤维素酶。主要的有:康氏木霉、里氏木霉、黑曲霉、斜卧青霉、芽孢杆菌等。丝状真菌产生的纤维素酶一般在酸性或中性偏酸性条件下水解纤维素底物,而嗜碱细菌产生的纤维素酶在碱性范围起作用。 纤维素酶分子是由球状的催化结构域(CD)通过一个富含脯氨酸或羟基氨基酸的连接桥(Linker)和纤维素结合结构域(CBD)三部分组成。连接桥的作用可能是保持CD和CBD之间的距离。纤维素结合结构域执行着调节酶对可溶和非可溶性底物专一性活力的作用,对酶的催化活力是非常必需的。催化作用域的三维结构极其复杂,对酶的催化活力起决定作用。[1,4] 3 纤维素酶对纤维素的作用机理 目前,一种理论认为:纤维素酶水解纤维素是β-1,4-内切葡聚糖(纤维二糖水解)酶(EG,Endo-β-Glucanase),β-1,4-外切葡聚糖(纤维二糖水解)酶(CBH,Cellobiohydrolase)和β-葡萄糖苷酶(BG, β-Glucosidase)协同作用下进行的。首先,EG酶随机水解切断无定型区的纤维素分子链,使结晶纤维素出现更多的纤维素分子基端,为CBH酶水解纤维素创造条件,CBH酶的水解产物纤维二糖则由BG酶水解成葡萄糖,因而纤维素酶水解纤维素的过程可以简单表示为:EG→CBH→BG。 目前的研究表明,EG酶实际上至少包括EGⅠ、 EGⅡ、 EGⅢ和 EGⅤ四种,CBH 至少包括CBHⅠ和CBHⅡ两种。 另外一种理论认为:纤维素酶是由葡聚糖内切酶(Cx酶)、葡聚糖外切酶(C1酶)、β-葡萄糖苷酶三个主要成分所组成的诱导型复合酶系。其中C1酶起水化作用,它作用于不溶性的固体表面,使形成结晶结构的纤维素链开裂,长链分子的末端部分游离,从而使纤维素链易于水化。Cx酶随机水解非结晶纤维素、可溶性纤维素衍生物和葡萄糖的β-1,4-寡聚物,葡萄糖苷酶将纤维二糖和纤维三糖水解成葡萄糖。该假说的基本降解模式如下:

相关文档
最新文档