郑州市2017—2018学年上期九年级期末考试(一模)数学试题及答案
2017届河南省郑州市中考一模数学试卷(带解析)

绝密★启用前2017届河南省郑州市中考一模数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:71分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,并且关于x 的一元二次方程ax 2+bx+c ﹣m=0有两个不相等的实数根,下列结论: ①b 2﹣4ac <0;②abc >0;③a ﹣b+c <0;④m >﹣2, 其中,正确的个数有( )A .1B .2C .3D .4【答案】B【解析】试题分析:如图所示:图象与x 轴有两个交点,则b 2﹣4ac >0,故①错误;∵图象开口向上,∴a >0,∵对称轴在y 轴右侧,∴a ,b 异号,∴b <0,∵图象与y 轴交于x 轴下方,∴c <0,∴abc >0,故②正确;当x=﹣1时,a ﹣b+c >0,故此选项错误;试卷第2页,共20页∵二次函数y=ax 2+bx+c 的顶点坐标纵坐标为:﹣2,∴关于x 的一元二次方程ax 2+bx+c ﹣m=0有两个不相等的实数根,则m >﹣2,故④正确.故选B . 考点:二次函数图象与系数的关系.2、如图,⊙O 的半径为2,点O 到直线l 距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为( )A .B .C .2D .3【答案】A . 【解析】试题分析:过点O 作直线l 的垂线,垂足为P ,过P 作⊙O 的切线PQ ,切点为Q ,连接OQ ,此时PQ 为最小,∴OP=3,OQ=2,∵PQ 切⊙O 于点Q ,∴∠OQP=90°,由勾股定理得:PQ==,则PQ 的最小值为,故选A .考点:切线的性质.3、如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【答案】D . 【解析】试题分析:选项A 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;选项B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;选项C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;选项D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.故选D .考点:相似三角形的判定. 4、下列说法正确的是( )A .投掷一枚均匀的硬币,正面朝上的概率是B .投掷一枚图钉,钉尖朝上、朝下的概率一样C .投掷一枚均匀的骰子,每一种点数出现的概率都是,所以每投6次,一定会出现一次“l 点”D .投掷一枚均匀的骰子前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大【答案】A . 【解析】试题分析:选项A 、投掷一枚均匀的硬币,正、背面朝上的几率相等,都是,故本选项正确;选项B 、投掷一枚图钉,钉尖朝上、朝下的概率不一样,故本选项错误;选项C 、根据概率的定义,可知本选项错误;选项D 、投掷结果出现6点的概率一定,不会受主观原因改变,故本选项错误;故选A . 考点:概率的意义.5、如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .πcmB .2πcmC .3πcmD .5πcm【答案】C.试卷第4页,共20页【解析】试题分析:根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式得:l==3πcm ,则重物上升了3πcm ,故选C.考点:旋转的性质.6、如图,点F 在平行四边形ABCD 的边AB 上,射线CF 交DA 的延长线于点E ,在不添加辅助线的情况下,与△AEF 相似的三角形有( )A .0个B .1个C .2个D .3个【答案】C . 【解析】试题分析:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥DC ,∴△AEF ∽△CBF ,△AEF ∽△DEC ,∴与△AEF 相似的三角形有2个.故选C . 考点:相似三角形的判定;平行四边形的性质. 7、解一元二次方程x 2﹣8x ﹣5=0,用配方法可变形为( ) A .(x+4)2="11"B .(x ﹣4)2="11"C .(x+4)2="21"D .(x ﹣4)2=21【答案】D . 【解析】试题分析:移项得x 2﹣8x=5,两边都加上一次项系数一半的平方可得x 2﹣8x+16=5+16,即(x ﹣4)2=21,故选D . 考点:解一元二次方程-配方法.8、下列图形中是中心对称图形的有( )个.A .1B .2C .3D .4【答案】B .【解析】试题分析:根据中心对称图形的概念可得第2个、第4个图形是中心对称图形,共2个.故选B.考点:中心对称图形.试卷第6页,共20页第II 卷(非选择题)二、填空题(题型注释)9、如图,在Rt △ABC 中,∠ACB =90°,AB =5,AC =3,点D 是BC 边上一动点,连结AD ,将△ACD 沿AD 折叠,点C 落在点C′,连结C′D 交AB 于点E ,连结BC′.当△BC′D是直角三角形时,DE 的长为_____.【答案】.【解析】试题分析:如图1所示;点E 与点C′重合时.在Rt △ABC 中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE .则EB=2.设DC=ED=x ,则BD=4﹣x .在Rt △DBE 中,DE 2+BE 2=DB 2,即x 2+22=(4﹣x )2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC ﹣DC=4﹣3=1.∵DE ∥AC ,∴△BDE ∽△BCA .∴,即.解得:DE=.点D 在CB 上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题).10、如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为 m .【答案】3m . 【解析】试题分析:如图,∵CD ∥AB ∥MN , ∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴,即,解得:AB=3m , 答:路灯的高为3m .考点:中心投影.11、如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是 .【答案】.【解析】试题分析:画树状图得:试卷第8页,共20页∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:.考点:列表法与树状图法.12、将抛物线y=x 2﹣4x ﹣4向左平移4个单位,再向上平移3个单位,得到抛物线的函数表达式是 .【答案】y=(x+2)2﹣5. 【解析】试题分析:由“左加右减”的原则可知,将抛物线y=x 2﹣4x ﹣4向左平移4个单位所得直线的解析式为:y=(x ﹣2+4)2﹣8=(x+2)2﹣8;由“上加下减”的原则可知,将抛物线y=(x+2)2﹣8向上平移3个单位所得抛物线的解析式为:y=(x+2)2﹣5. 考点:二次函数图象与几何变换.13、已知P 1(x 1,y 1),P 2(x 2,y 2)两点都在反比例函数的图象上,且x 1<x 2<0,则y l y 2(填“>”或“<”).【答案】<. 【解析】试题分析:由题意,得比例函数的图象上,且x 1<x 2<0,则y l <y 2,考点:反比例函数图象上点的坐标特征.14、已知关于x 的一元二次方程x 2﹣(k+2)x+2k=0,若x=l 是这个方程的一个根,则求k= .【答案】1. 【解析】试题分析:把x=1代入x 2﹣(k+2)x+2k=0得1﹣(k+2)+2k=0,解得k=1. 考点:一元二次方程的解.三、解答题(题型注释)15、如图1,地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y=x 2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3米的位置处用一根立柱MN 撑起绳子(如图2),使左边抛物线F 1的最低点距MN 为1米,离地面1.8米,求MN 的长;(3)将立柱MN 的长度提升为3米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为,设MN 离AB 的距离为m ,抛物线F 2的顶点离地面距离为k ,当2≤k≤2.5时,求m 的取值范围.【答案】(1)m ;(2)MN 的长度为2.1m ;(3)m 的取值范围是4≤m≤8﹣2.【解析】试题分析:(1)直接利用配方法求出二次函数最值得出答案;(2)利用顶点式求出抛物线F 1的解析式,进而得出x=3时,y 的值,进而得出MN 的长;(3)根据题意得出抛物线F 2的解析式,得出k 的值,进而得出m 的取值范围.试题解析:(1)∵a=>0,∴抛物线顶点为最低点,∵y=x 2﹣x+3=(x ﹣4)2+,∴绳子最低点离地面的距离为:m ;试卷第10页,共20页(2)由(1)可知,对称轴为x=4,则BD=8, 令x=0得y=3,∴A (0,3),C (8,3),由题意可得:抛物线F 1的顶点坐标为:(2,1.8), 设F 1的解析式为:y=a (x ﹣2)2+1.8, 将(0,3)代入得:4a+1.8=3, 解得:a=0.3,∴抛物线F 1为:y=0.3(x ﹣2)2+1.8, 当x=3时,y=0.3×1+1.8=2.1, ∴MN 的长度为:2.1m ; (3)∵MN=DC=3,∴根据抛物线的对称性可知抛物线F 2的顶点在ND 的垂直平分线上,∴抛物线F 2的顶点坐标为:(m+4,k ),∴抛物线F 2的解析式为:y=(x ﹣m ﹣4)2+k ,把C (8,3)代入得:(8﹣m ﹣4)2+k=3,解得:k=﹣(4﹣m )2+3,∴k=﹣(m ﹣8)2+3,∴k 是关于m 的二次函数,又∵由已知m <8,在对称轴的左侧, ∴k 随m 的增大而增大,∴当k=2时,﹣(m ﹣8)2+3=2,解得:m 1=4,m 2=12(不符合题意,舍去),当k=2.5时,﹣(m ﹣8)2+3=2.5, 解得:m 1=8﹣2,m 2=8+2(不符合题意,舍去),试卷第11页,共20页∴m 的取值范围是:4≤m≤8﹣2.考点:二次函数的应用.16、如图,在矩形ABCD 中,E 为CD 的中点,F 为BE 上的一点,连结CF 并延长交AB 于点M ,MN ⊥CM 交射线AD 于点N . (1)当F 为BE 中点时,求证:AM=CE ;(2)若 =2,求的值;(3)若=n ,当n 为何值时,MN ∥BE ?【答案】(1)详见解析;(2)3;(3)n=4. 【解析】试题分析:(1)如图1,易证△BMF ≌△ECF ,则有BM=EC ,然后根据E 为CD 的中点及AB=DC 就可得到AM=EC ;(2)如图2,设MB=a ,易证△ECF ∽△BMF ,根据相似三角形的性质可得EC=2a ,由此可得AB=4a ,AM=3a ,BC=AD=2a .易证△AMN ∽△BCM ,根据相似三角形的性质即可得到AN= a ,从而可得ND=AD ﹣AN=a ,就可求出的值;(3)如图3,设MB=a ,同(2)可得BC=2a ,CE=na .由MN ∥BE ,MN ⊥MC 可得∠EFC=∠HMC=90°,从而可证到△MBC ∽△BCE ,然后根据相似三角形的性质即可求出n 的值.试题解析:(1)当F 为BE 中点时,如图1, 则有BF=EF .∵四边形ABCD 是矩形, ∴AB=DC ,AB ∥DC ,∴∠MBF=∠CEF ,∠BMF=∠ECF . 在△BMF 和△ECF 中,试卷第12页,共20页,∴△BMF ≌△ECF , ∴BM=EC . ∵E 为CD 的中点,∴EC=DC ,∴BM=EC=DC=AB ,∴AM=BM=EC ; (2)如图2, 设MB=a ,∵四边形ABCD 是矩形,∴AD=BC ,AB=DC ,∠A=∠ABC=∠BCD=90°,AB ∥DC , ∴△ECF ∽△BMF ,∴=2,∴EC=2a ,∴AB=CD=2CE=4a ,AM=AB ﹣MB=3a .∵=2,∴BC=AD=2a . ∵MN ⊥MC , ∴∠CMN=90°, ∴∠AMN+∠BMC=90°. ∵∠A=90°,∴∠ANM+∠AMN=90°, ∴∠BMC=∠ANM , ∴△AMN ∽△BCM ,∴,试卷第13页,共20页∴,∴AN=a ,ND=AD ﹣AN=2a ﹣a=a ,∴=3;(3)当=n 时,如图3,设MB=a ,同(2)可得BC=2a ,CE=na . ∵MN ∥BE ,MN ⊥MC , ∴∠EFC=∠HMC=90°, ∴∠FCB+∠FBC=90°. ∵∠MBC=90°, ∴∠BMC+∠FCB=90°, ∴∠BMC=∠FBC . ∵∠MBC=∠BCE=90°, ∴△MBC ∽△BCE ,∴,∴,∴n=4.考点:相似形综合题;全等三角形的判定与性质;矩形的性质.试卷第14页,共20页17、巩义长寿山景区门票价格为50元,在今年红叶节期问,为吸引游客,推出了如下优惠活动:如果人数不超过25人,门票按原价销售,如果人数超过25人,每超过1人,所购买的门票均降低1元,但人均门票不低于35元,某单位组织员工去长寿山看红叶,共支付门票费用1350元,请问该单位这次共有多少名员工去长寿山看红叶?【答案】该单位这次共有30名员工去长寿山看红叶. 【解析】试题分析:设该单位这次共有x 名员工去长寿山看红叶,根据每超过1人,人均旅游费用降低1元,且共支付给旅行社旅游费用1350元,可列出方程求解,根据人均旅游费用不得低于35元,判断解是否合理.试题解析:设该单位这次共有x 名员工去长寿山看红叶,则人均费用是[50﹣(x ﹣25)]元由题意得[50﹣(x ﹣25)]x=1350, 整理得x 2﹣75x+1350=0, 解得x 1=45,x 2=30.当x=45时,人均门票价格为50﹣(x ﹣25)=30<35,不合题意,应舍去. 当x=30时,人均旅游费用为50﹣(x ﹣25)=45>35,符合题意. 答:该单位这次共有30名员工去长寿山看红叶. 考点:一元二次方程的应用. 18、阅读对话,解答问题:(1)分别用a 、b 表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a ,b )的所有取值;(2)求在(a ,b )中使关于x 的一元二次方程x 2﹣ax+2b=0有实数根的概率.试卷第15页,共20页【答案】(1)详见解析;(2) .【解析】试题分析:(1)用列表法易得(a ,b )所有情况;(2)看使关于x 的一元二次方程x 2﹣ax+2b=0有实数根的情况占总情况的多少即可. 试题解析:(1)(a ,b )对应的表格为:(2)∵方程x 2﹣ax+2b=0有实数根, ∴△=a 2﹣8b≥0.∴使a 2﹣8b≥0的(a ,b )有(3,1),(4,1),(4,2),∴P(△≥0)=.考点:列表法与树状图法;根的判别式.19、如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C . (1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标; (2)求在旋转过程中,△ABC 所扫过的面积.【答案】(1)图见解析,A 1的坐标为(﹣1,4),点B 1的坐标为(1,4);(2)+3.试卷第16页,共20页【解析】试题分析:(1)根据旋转中心方向及角度找出点A 、B 的对应点A 1、B 1的位置,然后顺次连接即可,根据A 、B 的坐标建立坐标系,据此写出点A 1、B 1的坐标;(2)利用勾股定理求出AC 的长,根据△ABC 扫过的面积等于扇形CAA 1的面积与△ABC 的面积和,然后列式进行计算即可.试题解析:(1)所求作△A 1B 1C 如图所示:由A (4,3)、B (4,1)可建立如图所示坐标系, 则点A 1的坐标为(﹣1,4),点B 1的坐标为(1,4); (2)∵AC=,∠ACA 1=90°∴在旋转过程中,△ABC 所扫过的面积为: S 扇形CAA1+S △ABC= +×3×2= +3.考点:作图-旋转变换;扇形面积的计算.20、杜甫实验学校准备在操场边建一个面积为600平方米的长方形劳动实践基地. (1)求实践基地的长y (米)关于宽x (米)的函数表达式;(2)由于受场地限制,实践基地的宽不能超过20米,请结合实际画出函数的图象;试卷第17页,共20页(3)当实践基地的宽是l5米时,实践基地的长是多少米?【答案】(1) y=;(2)图见解析;(3)当实践基地的宽是15米时,实践基地的长为40米. 【解析】试题分析:(1)根据矩形的面积=长×宽,列出y 与x 的函数表达式即可;(2)根据自变量的取值范围作出图象即可;(3)把x=15代入计算求出y 的值,即可得到结果.试题解析:(1)由长方形面积为2000平方米,得到xy=600,即y=;(2)图象如图所示:(3)当x=15(米)时,y= =40(米),则当实践基地的宽是15米时,实践基地的长为40米. 考点:反比例函数的应用.试卷第18页,共20页21、如图,⊙O 的直径为AB ,点C 在圆周上(异于A ,B ),AD ⊥CD . (1)若BC=3,AB=5,求AC 的值;(2)若AC 是∠DAB 的平分线,求证:直线CD 是⊙O 的切线.【答案】(1) AC=4;(2)详见解析. 【解析】试题分析:(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC 的长即可;(2)连接OC ,证OC ⊥CD 即可;利用角平分线的性质和等边对等角,可证得∠OCA=∠CAD ,即可得到OC ∥AD ,由于AD ⊥CD ,那么OC ⊥CD ,由此得证.试题解析:(1)解:∵AB 是⊙O 直径,C 在⊙O 上, ∴∠ACB=90°, 又∵BC=3,AB=5, ∴由勾股定理得AC=4; (2)证明:连接OC ∵AC 是∠DAB 的角平分线, ∴∠DAC=∠BAC , 又∵AD ⊥DC , ∴∠ADC=∠ACB=90°, ∴△ADC ∽△ACB , ∴∠DCA=∠CBA , 又∵OA=OC , ∴∠OAC=∠OCA , ∵∠OAC+∠OBC=90°, ∴∠OCA+∠ACD=∠OCD=90°, ∴DC 是⊙O 的切线.试卷第19页,共20页考点:切线的判定.22、先化简,再求值:(a ﹣)÷(),其中a 满足a 2﹣3a+2=0.【答案】原式=a ,由a 2﹣3a+2=0,得a=1或a=2,当a=1时,a ﹣1=0,使得原分式无意义,当a=2,原式=2. 【解析】试题分析:先化简题目中的式子,然后根据a 2﹣3a+2=0可得a 的值,注意a 的值要使得原分式有意义,本题得以解决.试题解析:(a ﹣)÷()====a ,由a 2﹣3a+2=0,得a=1或a=2,∵当a=1时,a ﹣1=0,使得原分式无意义, ∴a=2,原式=2. 考点:分式的化简求值.23、如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是 .试卷第20页,共20页【答案】 .【解析】试题分析:如图,连接OM 交AB 于点C ,连接OA 、OB ,由题意知,OM ⊥AB ,且OC=MC=,在RT △AOC 中,∵OA=1,OC=,∴cos ∠AOC==,AC= =∴∠AOC=60°,AB=2AC=,∴∠AOB=2∠AOC=120°,则S 弓形ABM =S 扇形OAB ﹣S △AOB =﹣××=,S 阴影=S 半圆﹣2S 弓形ABM =π×12﹣2()=.考点:扇形面积的计算;翻折变换(折叠问题).。
2017年河南省郑州市中考数学一模试卷

1
4
(1)求绳子最低点离地面的距离; (2)因实际需要,在离������������为3米的位置处用一根立柱������������撑起绳子(如图2) ,使左边抛物线������1 的最低 点距������������为1米,离地面1.8米,求������������的长; (3)将立柱������������ 的长度提升为3米,通过调整������������ 的位置,使抛物线������2 对应函数的二次项系数始终为4, 设������������离������������的距离为������,抛物线������2 的顶点离地面距离为������,当2 ≤ ������ ≤ 2.5时,求������的取值范围.
15.如图,在������������ △ ������������������中,∠������������������ = 90∘,������������ = 5,������������ = 3,点������是������������上一动点,连结������������,将 △ ������������������沿������������折叠,点������ 落在点������′,连结������′������交������������于点������ ,连结������������′.当△ ������������′������是直角三角形时, ������������ 的长为____�����
5.下列说法正确的是() A.投掷一枚均匀的硬币,正面朝上的概率是2 B.投掷一枚图钉,钉尖朝上、朝下的概率一样 C.投掷一枚均匀的骰子,每一种点数出现的概率都是 ,所以每投6次,一定会出现一次“������点” 6 D.投掷一枚均匀的骰子前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大
2017-2018上学期九年级数学期末试卷

2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。
2017-2018学年九年级(上)期末数学模拟试卷(解析版)

2017-2018学年九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+33.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=1084.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.245.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.210.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是(填写正确结论的序号).16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2017-2018学年九年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形,轴对称图形的定义进行判断.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21= [(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.【点评】此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键.3.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=108【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.【点评】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.【分析】过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,再求得DE,BC的长,根据三角形的面积公式即可得出△DEF和△ABC的面积.【解答】解:过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,∵∠ODM=∠OBN=30°,∴OB=4,DM=,DE=2,BN=2,BC=4,=×4×6=12,∴S△ABC=×2×3=3,∴S△DEF∴==4.故选:A.【点评】本题考查了正多边形和圆,以及勾股定理、垂径定理,直角三角形的性质,明确边心距半径边长的一半正好组成直角三角形是解题的关键.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°【分析】连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由内角和定理知∠AOB=80°,根据圆周角定理可得答案.【解答】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.2【分析】首先解方程求得方程的两个解,根据已知条件可以得到:x1*x2的值是两个根中的最大的一个.【解答】解:由方程x2+x﹣2=0得到(x+2)(x﹣1)=0,解得x1=﹣2,x2=1,∵,∴x1*x2=1.故选:A.【点评】本题主要考查了一元二次方程的解法,关键是理解a*b=a(a≥b)或者a*b=b (a<b).10.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】分三段来考虑点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.【解答】解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.【点评】本题主要考查了动点问题的函数图象.注意分段考虑.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=﹣2.【分析】把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,然后解方程后利用一元二次方程的定义确定m的值.【解答】解:把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是40°.【分析】根据旋转前后的两个图形全等,则:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,所以∠A=∠AA'B=70°,根据三角形的内角和定理可得∠ABA'=40°.【解答】解:由旋转得:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,∵AC∥BC',∴∠AA'B=∠A'BC'=70°,∴∠A=∠AA'B=70°,∴∠ABA'=180°﹣70°﹣70°=40°,即旋转角是40°,故答案为:40°.【点评】本题考查了旋转的性质:旋转前后两图形全等,明确对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等腰三角形的性质和三角形内角和定理.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.【分析】分析题干知,贴纸的面积等于大扇形的面积﹣小扇形的面积.【解答】解:∵弧BC的长为20πcm,∴L=αr=20π,解得r=30,∴AB=30cm,贴纸的面积=大扇形的面积﹣小扇形的面积,==cm2.【点评】本题主要考查扇形面积的计算,知道扇形面积计算公式S=.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是①②④(填写正确结论的序号).【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.【解答】解:①由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;②∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故②正确;③直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故③错误;④∵x=﹣1时,函数值最大,∴a﹣b+c≥m2a﹣mb+c,∴a﹣b≥m(am﹣b),所以④正确;⑤∵b=2a,a+b+c<0,∴b+b+c=0,即3b+2c<0,故⑤错误;故答案是:①②④.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,=OD•AB=OA•OB,∵S△ABO∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.【点评】此题主要考查直线与圆的关系,关键是根据待定系数法、勾股定理、直线与圆的位置关系等知识解答.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).【分析】(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=,∴x=﹣2;(2)∵(x﹣1)(x+1)﹣(x+1)=0,∴(x+1)(x﹣2)=0,则x+1=0或x﹣2=0,解得:x=﹣1或x=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)分别作出点A、B绕点C逆时针旋转90°得到其对应点,再顺次连接可得,绕后利用弧长公式计算可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)如图所示,△A2B2C2即为所求,∵CA==、∠ACA2=90°,∴点A到A2的路径长为=π.【点评】本题主要考查作图﹣轴对称变换、旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义和性质及弧长公式.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【分析】(1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一性质,即可得出结论;(2)证明OE是△ABC的中位线,得出OE∥AC,再由已知条件得出FE⊥OE,即可得出结论;(3)由切割线定理求出直径,得出半径的长,由平行线得出三角形相似,得出比例式,即可得出结果.【解答】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.【点评】本题考查了切线的判定、等腰三角形的性质、三角形中位线的判定、切割线定理、相似三角形的判定与性质;熟练掌握切线的判定,由三角形中位线定理得出OE ∥AC是解决问题的关键.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值.【解答】解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.【点评】本题考查了函数关系式以及其最大值的求解问题.23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.【分析】(1)先利用勾股定理得出CE,再判断出△CEF∽△CAE,得出比例式即可得出结论;(2)先判断出∠ECA=∠ABF,进而得出△CEA∽△BFA,即可得出结论;(3)由(2)得出△CEA∽△BFA,即可表示出AB,最后利用锐角三角函数建立方程求出x,即可得出结论.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.【点评】此题是四边形综合题,主要考查了相似三角形的判定和性质,勾股定理,锐角三角函数,解(1)的关键是判断出△CEF∽△CAE,解(2)(3)的关键是判断出△CEA∽△BFA.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF是解题的关键.。
2017年河南省郑州市中考数学一模

一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列各数中,最小的数是()A.﹣2018B.2018C.﹣D .2.(3分)下列计算正确的是()A.2a•a2=2a2B.a8÷a2=a4C.(﹣2a)2=4a2D.(a3)2=a5 3.(3分)将一副三角板的直角顶点重合按如图所示方式放置,其中BC∥AE,则∠ACD的度数为()A.20°B.25°C.30°D.35°4.(3分)第十一届中国(郑州)国际园林博览会于2017年9月29日在郑州航空港经济综合实验区开幕,共有园博园、双鹤湖中央公园、苑陵故城遗址公园三个园区,“三园”作为我市新的热门旅游胜地,吸引了众多游客的目光.据统计,开园后的首个“十一”黄金周期间,园博园入园人数累计约280000人次,把280000用科学记数法表示为()A.2.8×104B.2.8×105C.0.28×108D.28×104 5.(3分)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC.则下列四种不同方法的作图中准确的是()A .2017年河南省郑州市中考数学一模试卷B.C.D.6.(3分)若干盒奶粉放在桌子上,如图是一盒奶粉的实物以及这若干盒奶粉所组成的几何体从正面、左面、上面所看到的图形,则这些奶粉共有()盒.A.3B.4C.5D.不能确定7.(3分)班级元旦晚会上,主持人给大家带来了一个有奖竞猜题,他在一个不透明的袋子中放了若干个形状大小完全相同的白球,想请大家想办法估计出袋中白球的个数.数学课代表小明是这样来估计的:他先往袋中放入10个形状大小与白球相同的红球,混匀后再从袋子中随机摸出20个球,发现其中有4个红球.如果设袋中有白球x个,根据小明的方法用来估计袋中白球个数的方程是()A.=B.=C.=D.=8.(3分)如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k﹣m)x+b<0的解集为()A.x<1B.x>1C.x<3D.x>39.(3分)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.10.(3分)如图一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x 轴于A3,如此进行下去,直至得到C10,若点P(28,m)在第10段抛物线C10上,则m 的值为()A.1B.﹣1C.2D.﹣2二、填空题(每小题3分,共15分)11.(3分)计算(π﹣1)0+=.12.(3分)2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为.13.(3分)已知三个边长分别为1,2,3的正三角形从左到右如图排列,则图中阴影部分面积为.14.(3分)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y 个,则果园里增种棵橘子树,橘子总个数最多.15.(3分)如图,BC⊥y轴,BC<OA,点A,点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BD=OA=,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两动点,且始终保持∠DEF=45°.将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(+)÷.其中x的值从不等式组的整数解中选取.17.(9分)郑州市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是;(2)补全条形统计图;(3)在扇形统计图中,求表示A组(t≤10分)的扇形圆心角的度数;(4)如果骑共享单车的平均速度为12km/h,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.18.(9分)如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)当∠BOD=°时,四边形BECD是菱形;(3)当∠A=50°,则当∠BOD=°时,四边形BECD是矩形.19.(9分)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时办公楼在建筑物的墙上留下高1米的影子CE,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F与墙角C有20米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(精确到1米)(参考数据:sin22°≈,cos22°≈,tan22°≈)20.(9分)直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B (6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.21.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长23.(11分)如图,已知抛物线y=ax2+bx+3过点A(﹣1,0),B(3,0),点M,N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.(1)求抛物线的表达式;(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若∠DMN=90°,MD=MN,直接写出点M的坐标.2017-2018学年河南省郑州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】利用正数大于一切负数和两个负数,绝对值大的其值反而小可得到四个数的大小关系.【解答】解:﹣2018<﹣<<2018.故选:A.2.【分析】直接利用单项式乘以单项式以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解答】解:A、2a•a2=2a3,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(﹣2a)2=4a2,正确D、(a3)2=a6,故此选项错误;故选:C.3.【分析】依据平行线的性质,即可得到∠BCE=∠E=30°,再根据∠BCD=90°=∠ACE,即可得出∠ACD=∠BCE=30°.【解答】解:∵BC∥AE,∴∠BCE=∠E=30°,又∵∠BCD=90°=∠ACE,∴∠ACD=∠BCE=30°,故选:C.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将280000用科学记数法表示为:2.8×105.故选:B.5.【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.【解答】解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.6.【分析】结合三视图知第1列的后面一行有2个盒子、前面一行有1个盒子,第2列只有后面一行,有1个盒子,据此可得.【解答】解:如图所示,这些奶粉盒的分布情况如下:共有4盒,故选:B.7.【分析】混匀后再从袋子中随机摸出20个球,发现其中有4个红球,即红球所占的比例是,则放入的10个球所占的总球数的,列方程即可求解.【解答】解:混匀后从口袋中随机摸出40个球,发现其中有3个红球,即红球所占的比例是,则方程为:=.故选:D.8.【分析】写出直线y=mx在直线y=kx+b上方所对应的自变量的范围即可.【解答】解:当x>1时,kx+b<mx,所以关于x的不等式(k﹣m)x+b<0的解集为x>1.故选:B.9.【分析】根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围,将其表示在数轴上即可得出结论.【解答】解:∵关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,∴,解得:k>﹣1.故选:A.10.【分析】求出抛物线C1与x轴的交点坐标,观察图形可知第偶数号抛物线都在x轴下方,然后求出到抛物线平移的距离,再根据向右平移以及沿x轴翻折,表示出抛物线C10的解析式,然后把点P的坐标代入计算即可得解.【解答】解:令y=0,则﹣x(x﹣3)=0,解得x1=0,x2=3,∴A1(3,0),由图可知,抛物线C10在x轴下方,相当于抛物线C1向右平移3×9=27个单位,再沿x轴翻折得到,∴抛物线C10的解析式为y=(x﹣27)(x﹣27﹣3)=(x﹣27)(x﹣30),∵P(28,m)在第10段抛物线C10上,∴m=(28﹣27)(28﹣30)=﹣2.故选:D.二、填空题(每小题3分,共15分)11.【分析】根据非零数的零次幂都等于1和算式平方根计算可得.【解答】解:原式=1+3=4,故答案为:4.12.【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果,最后用概率公式求解即可求得答案.【解答】解:树状图如图所示,∴一共有9种等可能的结果;根据树状图知,两人选择同一种交通工具前往观看演出的有3种情况,∴选择同一种交通工具前往观看演出的概率:=,故答案为:.13.【分析】先证明△ACE为等腰三角形,然后再证明△BHG和△FCE为含30°的直角三角形,从而可得到两个三角形的底边长和高长,最后,依据三角形的面积公式求解即可.【解答】解:如图所示:由题意得:AC=CE=3,∴∠EAC=∠AEC=30°.∴∠HGB=30°.又∵∠HBG=∠FCE=60°,∴∠BHG=∠CFE=90°.∴HB=AB=,GH=BH=,FE=CE=,FC=CE=.=×=,S△CFE=××=.∴S△HGB∴阴影部分的面积=.14.【分析】根据题意设多种x棵树,就可求出每棵树的产量,然后求出总产量y与x之间的关系式,进而求出x=﹣时,y最大.【解答】解:假设果园增种x棵橘子树,那么果园共有(x+100)棵橘子树,∵每多种一棵树,平均每棵树就会少结5个橘子,∴这时平均每棵树就会少结5x个橘子,则平均每棵树结(600﹣5x)个橘子.∵果园橘子的总产量为y,∴则y=(x+100)(600﹣5x)=﹣5x2+100x+60000,∴当x=﹣=﹣=10(棵)时,橘子总个数最多.故答案为:10.15.【分析】依据BD=OA=,AB=3,∠OAB=45°,得到∠DOE=∠EAF,∠OED =∠AFE,即可判定△DOE∽△EAF,分情况进行讨论:①当EF=AF时,△AEF沿AE 翻折,所得四边形为菱形,进而得到OE的长;②当AE=AF时,△AEF沿EF翻折,所得四边形为菱形,进而得到OE的长;③当AE=EF时,△AEF沿AF翻折,所得四边形为菱形,进而得到OE的长.【解答】解:∵∠DEF=45°,∠OAB=45°,∴∠OED=∠AFE,∵BD=OA=,AB=3,∴AO=4,BC=4﹣cos45°×AB=,∴CD=﹣=,又∵OC=sin45°×AB=,∴△OCD是等腰直角三角形,OD==3,∴∠DOE=90°﹣45°=45°,∴∠DOE=∠EAF,∴△DOE∽△EAF,分三种情况:①如图所示,当EF=AF时,△AEF沿AE翻折,所得四边形为菱形,此时,∠FEA=45°,即△AEF是等腰直角三角形,∴△DOE是等腰直角三角形,∴∠DEO=90°,∴OE=CD=;②如图所示,当AE=AF时,△AEF沿EF翻折,所得四边形为菱形,此时,△AEF为顶角为45°的等腰三角形,∴△ODE为顶角为45°的等腰三角形,∴OE=OD=3;③如图所示,当AE=EF时,△AEF沿AF翻折,所得四边形为菱形,此时,∠AFE=45°,即△AEF是等腰直角三角形,∴△ODE是以OE为底边的等腰直角三角形,∴OE=OD=×3=3;故答案为:或3或3.三、解答题(本大题共8个小题,满分75分)16.【分析】根据分式的运算法则即可求出答案.【解答】解:由不等式组可解得:﹣1<x≤2∵x是整数,∴x=0或1或2∴原式=÷=(x+2)•=当x=1时,原式=17.【分析】(1)根据B类人数是19,所占的百分比是38%,据此即可求得调查的总人数;(2)总人数减去A、B、D三组人数求得C组的人数,据此可补全条形图;(3)利用360°乘以对应的百分比即可求解;(4)求得路程是6km时所用的时间,根据百分比的意义可求得路程不超过6km的人数所占的百分比.【解答】解:(1)这次被调查的总人数是19÷38%=50(人),故答案为:50;(2)C组人数为50﹣(15+19+4)=12(人),补全条形图如下:(3)表示A组的扇形圆心角的度数为360°×=108°;(4)路程是6km时所用的时间是:6÷12=0.5(小时)=30(分钟),则骑车路程不超过6km的人数所占的百分比是:×100%=92%.18.【分析】(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;(2)对角线互相垂直平分的平行四边形是菱形;(3)由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:当∠BOD=90°时,四边形BECD是菱形;理由:∵四边形BECD是平行四边形,∴当∠BOD=90°时,四边形BECD是菱形;(3)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案是:(2)90°;(3)100°.19.【分析】(1)过点E作EM⊥AB于点M,设AB=x,在Rt△ABF中,由∠AFB=45°可知BF=AB=x,在Rt△AEM中,利用锐角三角函数的定义求出x的值即可;(2)在Rt△AME中,根据cos22°=可得出结论.【解答】解:(1)过点E作EM⊥AB于点M,设AB=x,在Rt△ABF中,∵∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+20.在Rt△AEM中,∵∠AEM=22°,AM=AB﹣CE=x﹣1,tan22°=,即=,解得,x=15.∴办公楼AB的高度为15米;(2)在Rt△AME中,∵cos22°=,∴AE==37米.∴A,E之间的距离为37米.20.【分析】(1)首先确定A、B两点坐标,再利用待定系数法即可解决问题;(2)分两种情形讨论求解即可.【解答】解:(1)∵y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),∴m=2,n=1,∴A(2,3),B(6,1),则有,解得,∴直线AB的解析式为y=﹣x+4(2)如图①当PA⊥OD时,∵PA∥OC,∴△ADP∽△CDO,此时p(2,0).②当AP′⊥CD时,易知△P′DA∽△CDO,∵直线AB的解析式为y=﹣x+4,∴直线P′A的解析式为y=2x﹣1,令y=0,解得x=,∴P′(,0),综上所述,满足条件的点P坐标为(2,0)或(,0).21.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.∴w=1.5×+2.8×总额=0.1x+×2.8=0.1x+1680﹣0.14x=﹣0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=﹣0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.22.【分析】(1)结论:BQ=CP.如图1中,作PH∥AB交CO于H,可得△PCH是等边三角形,只要证明△POH≌△QPB即可;(2)成立:PC=BQ.作PH∥AB交CO的延长线于H.证明方法类似(1);(3)如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.设CE=EO=a,则FC=FP=2a,EF=a,在Rt△PCE中,PC===(+)a,根据PC+CB=4,可得方程(+)a+a=4,求出a即可解决问题;【解答】解:(1)结论:BQ=CP.理由:如图1中,作PH∥AB交CO于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠OPB=∠OPQ+∠QPB=∠OCB+∠COP,∵∠OPQ=∠OCP=60°,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ.(2)成立:PC=BQ.理由:作PH∥AB交CO的延长线于H.在Rt△ABC中,∵∠ACB=90°,∠A=30°,点O为AB中点,∴CO=AO=BO,∠CBO=60°,∴△CBO是等边三角形,∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,∴∠CHP=∠CPH=60°,∴△CPH是等边三角形,∴PC=PH=CH,∴OH=PB,∵∠POH=60°+∠CPO,∠QPO=60°+∠CPO,∴∠POH=∠QPB,∵PO=PQ,∴△POH≌△QPB,∴PH=QB,∴PC=BQ.(3)如图3中,作CE⊥OP于E,在PE上取一点F,使得FP=FC,连接CF.∵∠OPC=15°,∠OCB=∠OCP+∠POC,∴∠POC=45°,∴CE=EO,设CE=EO=a,则FC=FP=2a,EF=a,在Rt△PCE中,PC===(+)a,∵PC+CB=4,∴(+)a+a=4,解得a=4﹣2,∴PC=4﹣4,由(2)可知BQ=PC,∴BQ=4﹣4.23.【分析】(1)利用待定系数法求解可得抛物线的表达式;(2)设点M坐标为(m,﹣m2+2m+3),分别表示出ME=|﹣m2+2m+3|、MN=2m﹣2,由四边形MNFE为正方形知ME=MN,据此列出方程,分类讨论求解可得;(3)先求出直线BC解析式,设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3)、点D(a,﹣a+3),由MD=MN列出方程,根据点M的位置分类讨论求解可得.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣1,0),B(3,0),∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)由(1)知,抛物线的对称轴为x=﹣=1,如图,设点M坐标为(m,﹣m2+2m+3),∴ME=|﹣m2+2m+3|,∵M、N关于x=1对称,且点M在对称轴右侧,∴点N的横坐标为2﹣m,∴MN=2m﹣2,∵四边形MNFE为正方形,∴ME=MN,∴|﹣m2+2m+3|=2m﹣2,分两种情况:①当﹣m2+2m+3=2m﹣2时,解得:m1=、m2=﹣(不符合题意,舍去),当m=时,正方形的面积为(2﹣2)2=24﹣8;②当﹣m2+2m+3=2﹣2m时,解得:m3=2+,m4=2﹣(不符合题意,舍去),当m=2+时,正方形的面积为[2(2+)﹣2]2=24+8;综上所述,正方形的面积为24+8或24﹣8.(3)设BC所在直线解析式为y=kx+b,把点B(3,0)、C(0,3)代入表达式,得:,解得:,∴直线BC的函数表达式为y=﹣x+3,设点M的坐标为(a,﹣a2+2a+3),则点N(2﹣a,﹣a2+2a+3),点D(a,﹣a+3),①点M在对称轴右侧,即a>1,则|﹣a+3﹣(﹣a2+2a+3)|=a﹣(2﹣a),即|a2﹣3a|=2a﹣2,若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2a﹣2,解得:a=或a=<1(舍去);若a2﹣3a<0,即0<a<3,a2﹣3a=2﹣2a,解得:a=﹣1(舍去)或a=2;②点M在对称轴左侧,即a<1,则|﹣a+3﹣(﹣a2+2a+3)|=2﹣a﹣a,即|a2﹣3a|=2﹣2a,若a2﹣3a≥0,即a≤0或a≥3,a2﹣3a=2﹣2a,解得:a=﹣1或a=2(舍);若a2﹣3a<0,即0<a<3,a2﹣3a=2a﹣2,解得:a=(舍去)或a=;综上,点M的坐标为(,)或(2,3)或(﹣1,0)或(,).。
郑州市2017—2018学年上期九年级期末考试(一模)数学试题及答案

郑州市2017—2018学年上期九年级期末考试(一模)数学试题及答案河南省郑州市2017—2018学年上期九年级期末考试数学试题卷注意事项:本试卷分试题卷和答题卡两部分.考试试卷100分钟,满分120分.考生应首先阅读试题卷及答题卡上的相关信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,最小的数是()A .-2018B .2018C .12018-D .120182.下列计算正确的是()A .2222a a a=B .824a a a÷=C .22(2)4a a -=D .325()a a =3.将一副三角板的直角顶点重合按如图所示方式放置,其中BC ∥AE ,则∠ACD 的度数为()A .20°B .25°C .30°D .35°4.第十一届中国(郑州)国际园林博览会于2017年9月29日在郑州航空港经济综合实验区开幕,共有园博园、双鹤湖中央公园、苑陵故城遗址公园三个园区,“三园”作为我市新的热门旅游胜地,吸引了众多游客的目光.据统计,开园后的首个“十一”黄金周期间,园博园入园人数累计约280000人次,把280000用科学记数法表示为()A .2.8×104B .2.8×105C .0.28×108D .28×1045.如图,已知△ABC (AC <BC ),用尺规在BC 边上确定一点P ,使得PA +PC =BC ,则下列四种不同的作图方法中正确的是()A .B .C .D .6.若干盒奶粉放在桌子上,如图是一盒奶粉的实物以及这若干盒奶粉所组成的几何体从正面、左面、上面所看到的图形,则这些奶粉共有(A .3B .4C .5D .不能确定7.班级元旦晚会上,主持人给大家带来了一个有奖竞猜题,他在一个不透明的袋子中放了若干个形状大小完全相同的白球,想请大家想办法估计出袋中白球的个数.数学课代表小明是这样来估计的:他先往袋中放入10个形状大小与白球相同的红球,混匀后再从袋子中随机摸出20个球,发现其中有4个红球.如果设袋中有白球x 个,根据小明的方法用来估计袋中白球个数的方程是()A .10420x =B .10120x =C .1014x =D .104x =+8.如图,已知一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象与x 轴交于点A (3,0),若正比例函数y =mx (m 为常数,且m ≠0)的图象与一次函数的图象相交于点P ,且点P 的横坐标为1,则关于x 的不等式(k -m )x +b <0的解集为()A .x <1B .x >1C .x <3D .x >39.若关于x 的一元二次方程(k +1)x 2+2(k +1)x +k -2=0有实数根,则k 的取值范围在数轴上表示正确的是()A .B .C .D .10.如图一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O 和A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3,如此进行下去,直至得到C 10,若点P (28,m )在第10段抛物线C 10上,则m 的值为()A .1B .-1C .2D .-2二、填空题(每小题3分,共15分)11.计算(1)9π-+=_____________.12.2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为_____________.13.已知三个边长分别为1,2,3的正三角形从左到右如图排列,则图中阴影部分面积为_____________.第13题图第15题图14.某果园有100颗橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵橘子树,平均每棵橘子树就会少结5个橘子.设该果园增种x 棵橘子树,果园橘子总个数为y 个,则果园增种__________棵橘子树,橘子的总个数最多.15.如图,BC ⊥y 轴,BC <OA ,点A ,点C 分别在x 轴、y 轴的正半轴上,D 是线段BC上一点,124BD OA ==AB =3,∠OAB =45°,E ,F 分别是线段OA ,AB 上的两动点,且始终保持∠DEF =45°.将△AEF 沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE 的值为___________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:22444(22x x x x x x +++÷--.其中x 的值从不等式组1213x x -<??-?≤的整数解中选取.17.(9分)郑州市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是__________;(2)补全条形统计图;(3)在扇形统计图中,求表示A 组(t ≤10分)的扇形圆心角的度数;(4)如果骑共享单车的平均速度为12km/h ,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.18.(9分)如图,在□ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 的延长线于点E ,连接BD ,EC .(1)求证:四边形BECD 是平行四边形;(2)当∠BOD =______°时,四边形BECD 是菱形;(3)当∠A =50°,则当∠BOD =_____°时,四边形BECD是矩形.19.(9分)如图,某办公楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时办公楼在建筑物的墙上留下高1米的影子CE ,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F 与墙角C 有20米的距离(B ,F ,C 在一条直线上).(1)求办公楼AB 的高度;(2)若要在A ,E 之间挂一些彩旗,请你求出A ,E 之间的距离.(精确到1米)(参考数据:3sin 228?≈,15cos 2216?≈,2tan 225?≈)20.(9分)直线y =kx +b 与反比例函数6y x =(x >0)的图象分别交于点A (m ,3)和点B (6,n ),与坐标轴分别交于点C 和点D .(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P 的坐标.21.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O 为AB的中点,点P为直线BC上的动点(不与点B、点C重合),连接OC,OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP 的数量关系:________________;(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长.图1图2图323.(11分)如图,已知抛物线y=ax2+bx+3过点A(-1,0),B(3,0),点M,N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.(1)求抛物线的表达式;(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M 在对称轴的右侧),求该正方形的面积;(3)若∠DMN=90°,MD=MN,直接写出点M的坐标.备用图【参考答案】一、选择题1.A2.C3.C4.B5.D6.B7.D8.B9.A 10.D二、填空题11.412.1313.3414.1015.3,32322三、解答题16.原式=2x x +,当x =1时,原式=13.17.(1)50;(2)图略;(3)A 组(t ≤10分)的扇形圆心角的度数为108°;(4)骑车路程不超过6km 的人数所占的百分比为92%.18.(1)证明略;(2)90°;(3)100°.19.(1)办公楼AB 的高度为15米;(2)A ,E 之间的距离为37米.20.(1)直线AB 的解析式为142y x =-+;(2)点P 的坐标为(2,0)或(12,0).21.(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要15,20分钟;(2)小王该月收入最多是3544元,此时小王生产的甲、乙两种产品分别是60,555件.22.(1)BQ =CP ;(2)成立,理由略;(3)BQ 的长为434.23.(1)y =-x 2+2x +3;(2)该正方形的面积为245-或2485+(3)点M 的坐标为(2,3),(-1,0),5175317(22--,或517517()22-+,.。
河南省2017-2018学年九年级(上)期末数学试卷-含答案解析

河南省2017-2018学年九年级(上)期末数学试卷一、单选题(共10题;共30分)1.将抛物线y=5x2向下平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. y=5(x+2)2-3B. y=5(x+2)2+3C. y=5(x-2)2-3D. y=5(x-2)2+32.有长24m的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为x m,面积是s m2,则s与x的关系式是()A. s=﹣3x2+24xB. s=﹣2x2﹣24xC. s=﹣3x2﹣24xD. s=﹣2x2+24x3.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.4.一张长方形桌子的长是150cm,宽是100cm,现在要设计一块长方形桌布,面积是桌面的2倍,且使四周垂下的边宽是xcm.根据题意,得()A. (150+x)(100+x)=150×100×2B. (150+2x)(100+2x)=150×100×2C. (150+x)(100+x)=150×100D. 2(150x+100x)=150×1005.如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O的半径为5,AB=AC=8,DE=3,则EC长为()A. 4B.C.D.6.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A. AE=OEB. CE=DEC. OE=CED. ∠AOC=60°7.关于x的方程x2﹣4x+4a=0有两个实数根,则a的取值范围是()A. a<1B. a>1C. a≤1D. a≥18.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在().A. 25%B. 50%C. 75%D. 100%9.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数有()A. 2条B. 3条C. 4条D. 5条10.下列图形中,即是中心对称又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 梯形D. 矩形二、填空题(共8题;共24分)11.在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B 逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=________°.12.若最简二次根式与是同类二次根式,则a=________.13.要使代数式有意义,则x的取值范围是________.14.反比例函数y=中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x的增大而增大,则k=________15.二次函数y=x2﹣4x﹣3的顶点坐标是________.16.某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有________ 人.17.将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是________18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.三、解答题(共6题;共36分)19.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)20.如图,已知圆的半径为r,求外接正六边形的边长.21.已知直线L1∥L2,点A,B,C在直线L1上,点E,F,G在直线L2上,任取三个点连成一个三角形,求:(1)连成△ABE的概率;(2)连成的三角形的两个顶点在直线L2上的概率.22.一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?23.如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,求满足x的方程.24.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.四、综合题(共10分)25.已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.参考答案与试题解析一、单选题1.【答案】A【考点】二次函数图象与几何变换【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】∵抛物线y=5x2向下平移3个单位,向左平移2个单位,∴平移后的抛物线的顶点坐标为(-2,-3),∴平移得到的抛物线的解析式为y=5(x+2)2-3.故答案为:A.【点评】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减并确定出平移后的抛物线的顶点坐标是解题的关键2.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】S=(24﹣3x)x=24x﹣3x2.故选:A.【分析】AB为x m,则BC为(24﹣3x)m,利用长方体的面积公式,可求出关系式.3.【答案】B【考点】垂径定理【解析】【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得:x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=∴sin∠ECB=故选:B.【分析】根据垂径定理得到AC=BC=AB=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中根据勾股定理得到x2=42+(x﹣2)2,解得x=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.4.【答案】B【考点】一元二次方程的应用【解析】【解答】解:设四周垂下的边宽度为xcm,桌布的长为(150+2x),宽为(100+2x),根据桌布面积是桌面的2倍可得:(150+2x)(100+2x)=150×100×2,故选B.【分析】设四周垂下的边宽度为xcm,求得桌布的面积,根据桌布面积是桌面的2倍列方程解答时即可.5.【答案】B【考点】等腰三角形的性质,三角形的外接圆与外心【解析】【解答】解:∵⊙O的半径为5,DE=3,∴AE=10﹣3=7,∵AD是直径,∴∠ACD=90°,∴CD=6,∵AB=AC,∴∠ACE=∠D,又∠DAC=∠CAE,∴△AEC∽△ACD,∴= ,即= ,解得,EC= ,故选:B.【分析】根据勾股定理求出CD,证明△AEC∽△ACD,根据相似三角形的性质列出比例式,计算即可.6.【答案】B【考点】垂径定理【解析】【分析】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧。
郑州市2018年初三数学一模试题

郑州市2017-2018年九年级数学一模试卷4.中国(郑州)国际园林博览会在郑州航空港经济综合试验区开幕, 共有园博园、双鹤湖中央公园、苑陵故城遗址公园三个园区,“三园”作为我市新的热门旅游胜地,吸引了众多游客的目光,据统计,开园 后的首个“十一”黄金周期间,园博园人园人数累计约 280000人次, 把280000用科学计数法表示为() A. 2.8 104 B. 2.8 105 C. 0.28 104 D. 28 1045.如图,已知△ ABCAC k BC ),用尺规在BC 上确定一点P,使PA +PC=BC1. A.2. A. C.、选择题(每题3分,F 列各数中,最小的是-2018 B. 2018 F 列计算正确的是(22ag=■- 共 30 分) B. a 8 D. C. 12018 3 2 5 (a ) a 3.将一副三角形的直角顶点重合按如图所示放置,其中BC / AE 则 / ACD 勺度数为(A. 20°B. 25°C. 30D. 35 E BD C 第3题D.丄 2018干盒奶粉组成的几何体从正面、左面、上面所看到的图形,则这些奶粉共有多少盒(出出出7.班级元旦晚会上,主持人给大家带来了一个有奖竞猜题,他在一 个不透明的袋子中放了若干个形状大小完全相同的白球, 想请大家想办法估算出袋子中白球的个数。
数学课代表小明是这样估计的,他先 往袋子中放入10个形状大小与白球相同的红球,混匀后再从袋子中 随机摸出了 20个球,发现其中有4个红球。
如果设袋中白球x 个,则根据小明的方法来估计袋中白球个数的方程是() A. 10 A B . 10 丄C 10 1 D.旦幺 x 20 x 20 x 4x 10 20 8如图,已知一闪函数y kx b (k , b 为常数且k M 0)的图象与x 6.若干盒奶粉摆放在桌子上, 如图是其中一盒奶粉的实物以及这若从正面看 从左边看 从上面看A. 3B.C. D.不确定轴相交于点A (3, 0),若正比例函数y =mx (m 为常数,且 m^0)的 图象与一次函数的图象相交于点 P,且点P 的横坐标为1,则关于x 的不等式(k - m x +b >0的解集为() A. x <1 B. x >1 C. x <3 D. x >39.若关于x 的一元二次方程(k +1) x 2+2 (k +1) x +k -2=0有实数根,则k 的取值范围在数轴上表示正确的是( )___ a I 、 ________ 芒 * 丨 、 A . ' B. *-1 0 -1 010.如图,一段抛物线: y =-x (x -2)记为G ,它与x 轴交于两点QA ;将G 绕A 旋转180°得到C 2,交x 轴于A 2 ;将C 2绕A 2旋转180° 得到C 3,交x 轴于A 3;……如此进行下去,得到C 10,若点P (28, m在第10段抛物线C 10上,则口为(A. 1B. -1C. 2D.二、填空题(每小题3分,共15分)11 .计算(兀- 1)0 + 49 = _________12. 大学生小明和小刚准备去观看演出, 而且他们两人前往时选择了 以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选 C. J -------------1 0D. ------ -1 0择同一种交通工具前往观看的概率为 __________13.已知三个边长分别为1, 2, 3的正三角形从左到右如图排列,则图中阴影部分面积为 ________14.某果园有100棵橘子树,平均每一棵树结600个橘子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省郑州市2017—2018学年上期九年级期末考试数学试题卷注意事项:本试卷分试题卷和答题卡两部分.考试试卷100分钟,满分120分.考生应首先阅读试题卷及答题卡上的相关信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,最小的数是()A .-2018B .2018C .12018-D .120182.下列计算正确的是()A .2222a a a⋅=B .824a a a÷=C .22(2)4a a -=D .325()a a =3.将一副三角板的直角顶点重合按如图所示方式放置,其中BC ∥AE ,则∠ACD 的度数为()A .20°B .25°C .30°D .35°4.第十一届中国(郑州)国际园林博览会于2017年9月29日在郑州航空港经济综合实验区开幕,共有园博园、双鹤湖中央公园、苑陵故城遗址公园三个园区,“三园”作为我市新的热门旅游胜地,吸引了众多游客的目光.据统计,开园后的首个“十一”黄金周期间,园博园入园人数累计约280000人次,把280000用科学记数法表示为()A .2.8×104B .2.8×105C .0.28×108D .28×1045.如图,已知△ABC (AC <BC ),用尺规在BC 边上确定一点P ,使得PA +PC =BC ,则下列四种不同的作图方法中正确的是()A .B .C .D .6.若干盒奶粉放在桌子上,如图是一盒奶粉的实物以及这若干盒奶粉所组成的几何体从正面、左面、上面所看到的图形,则这些奶粉共有()盒A .3B .4C .5D .不能确定7.班级元旦晚会上,主持人给大家带来了一个有奖竞猜题,他在一个不透明的袋子中放了若干个形状大小完全相同的白球,想请大家想办法估计出袋中白球的个数.数学课代表小明是这样来估计的:他先往袋中放入10个形状大小与白球相同的红球,混匀后再从袋子中随机摸出20个球,发现其中有4个红球.如果设袋中有白球x 个,根据小明的方法用来估计袋中白球个数的方程是()A .10420x =B .10120x =C .1014x =D .1041020x =+8.如图,已知一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象与x 轴交于点A (3,0),若正比例函数y =mx (m 为常数,且m ≠0)的图象与一次函数的图象相交于点P ,且点P 的横坐标为1,则关于x 的不等式(k -m )x +b <0的解集为()A .x <1B .x >1C .x <3D .x >39.若关于x 的一元二次方程(k +1)x 2+2(k +1)x +k -2=0有实数根,则k 的取值范围在数轴上表示正确的是()A .B .C .D .10.如图一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O 和A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3,如此进行下去,直至得到C 10,若点P (28,m )在第10段抛物线C 10上,则m 的值为()A .1B .-1C .2D .-2二、填空题(每小题3分,共15分)11.计算(1)9π-+=_____________.12.2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为_____________.13.已知三个边长分别为1,2,3的正三角形从左到右如图排列,则图中阴影部分面积为_____________.第13题图第15题图14.某果园有100颗橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵橘子树,平均每棵橘子树就会少结5个橘子.设该果园增种x 棵橘子树,果园橘子总个数为y 个,则果园增种__________棵橘子树,橘子的总个数最多.15.如图,BC ⊥y 轴,BC <OA ,点A ,点C 分别在x 轴、y 轴的正半轴上,D 是线段BC上一点,124BD OA ==AB =3,∠OAB =45°,E ,F 分别是线段OA ,AB 上的两动点,且始终保持∠DEF =45°.将△AEF 沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE 的值为___________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:22444(22x x x x x x +++÷--.其中x 的值从不等式组1213x x -<⎧⎨-⎩≤的整数解中选取.17.(9分)郑州市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是__________;(2)补全条形统计图;(3)在扇形统计图中,求表示A 组(t ≤10分)的扇形圆心角的度数;(4)如果骑共享单车的平均速度为12km/h ,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.18.(9分)如图,在□ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 的延长线于点E ,连接BD ,EC .(1)求证:四边形BECD 是平行四边形;(2)当∠BOD =______°时,四边形BECD 是菱形;(3)当∠A =50°,则当∠BOD =_____°时,四边形BECD是矩形.19.(9分)如图,某办公楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时办公楼在建筑物的墙上留下高1米的影子CE ,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F 与墙角C 有20米的距离(B ,F ,C 在一条直线上).(1)求办公楼AB 的高度;(2)若要在A ,E 之间挂一些彩旗,请你求出A ,E 之间的距离.(精确到1米)(参考数据:3sin 228︒≈,15cos 2216︒≈,2tan 225︒≈)20.(9分)直线y =kx +b 与反比例函数6y x =(x >0)的图象分别交于点A (m ,3)和点B (6,n ),与坐标轴分别交于点C 和点D .(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.21.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB的中点,点P为直线BC上的动点(不与点B、点C重合),连接OC,OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系:________________;(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长.图1图2图323.(11分)如图,已知抛物线y=ax2+bx+3过点A(-1,0),B(3,0),点M,N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.(1)求抛物线的表达式;(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M 在对称轴的右侧),求该正方形的面积;(3)若∠DMN=90°,MD=MN,直接写出点M的坐标.备用图【参考答案】一、选择题1.A2.C3.C4.B5.D6.B7.D8.B9.A 10.D二、填空题11.412.1313.3414.1015.3,32322三、解答题16.原式=2x x +,当x =1时,原式=13.17.(1)50;(2)图略;(3)A 组(t ≤10分)的扇形圆心角的度数为108°;(4)骑车路程不超过6km 的人数所占的百分比为92%.18.(1)证明略;(2)90°;(3)100°.19.(1)办公楼AB 的高度为15米;(2)A ,E 之间的距离为37米.20.(1)直线AB 的解析式为142y x =-+;(2)点P 的坐标为(2,0)或(12,0).21.(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要15,20分钟;(2)小王该月收入最多是3544元,此时小王生产的甲、乙两种产品分别是60,555件.22.(1)BQ =CP ;(2)成立,理由略;(3)BQ 的长为434.23.(1)y =-x 2+2x +3;(2)该正方形的面积为245-或2485+(3)点M 的坐标为(2,3),(-1,0),5175317(22--,或517517()22-+,.。