机械原理第5章-连杆机构设计

合集下载

机械原理 平面连杆机构及设计

机械原理 平面连杆机构及设计

机械原理平面连杆机构及设计平面连杆机构是机械原理中最经典也是最重要的一种机构类型之一。

这种机构由多个刚性杆件组成,每个杆件都能在平面内移动,它们通过连接点(铰链/球头)相互连接。

平面连杆机构在机械工程领域中有着广泛的应用,能够实现很多不同的机械运动和工作原理。

平面连杆机构中最重要的构件是连杆,也就是连接各个零件的关键杆件,如果连杆设计不合适可能导致机构性能的下降。

因此,平面连杆机构的设计要受到重视,需要考虑以下几个因素。

一、长度比例连杆不同长度比例的设置,对整个机构的运动特性和反应速度有着很大的影响。

在设计平面连杆机构时,需要根据机构所要完成的任务,选择恰当的连杆长度比例,保证机构的平衡性和可靠性,以及使机构的工作效率更高。

二、铰链/球头的位置铰链/球头是平面连杆机构中的关键组成部分。

在设计平面连杆机构时,需要合理选择铰链/球头的位置,以达到机构所要完成的特定任务。

如果铰链/球头设置不当,或者位置过分集中,会使机构不平衡或失效。

因此,设计者需要考虑连杆的长度、位置、形状和角度等因素。

三、材质选择平面连杆机构的设计材料非常重要,它将直接影响到机构的质量和强度。

不同材料的连接部分,对于平面连杆机构的工作效率和稳定性有着非凡的意义。

因此,在设计时,应本着安全、可靠、实用的原则,选用优质、耐用的材料,确保机构长期稳定、可靠的工作。

以汽车减震器为例,汽车减震器中使用的是多连杆机构原理,作为一种基于平面连杆机构的机构类型,它通过几个连杆的特定结构和布局,使得整个减震器能够更好地适应路况,缓解车辆的震动和冲击。

汽车减震器的设计考虑了多个因素,包括结构的稳定性和可靠性,杆件的材质和尺寸比例等。

总结来说,平面连杆机构是机械原理中非常重要的一种机构类型,广泛应用于机械和工程领域,需要经过仔细的设计和考虑,才能达到最好的运转效果。

设计者需要从多个维度进行考虑,包括长度比例、铰链/球头的位置、材质选择等等。

这些因素的合理应用,能够使平面连杆机构能够更好地适应不同的任务需求,达到最高的技术性能和质量水平。

机械原理第五章 连杆机构设计

机械原理第五章 连杆机构设计

4. 曲柄滑块机构存在曲柄的条件
根据曲柄摇杆机构的演化过程及曲柄摇杆机构曲柄存在的 条件,机架为无穷大+偏距e,则有: 偏置曲柄滑块机构有曲柄的条件:
a
b
① a+e≤b; ② a为最短杆。
若偏距=0,则得对心曲柄滑块机构有曲柄的条件:
① a≤b; ② a为最短杆。
例5-1 图示铰链四杆机构,lBC=50mm,lCD=35mm, lAD=30mm,AD为机架,若为曲柄摇杆机构, 试讨论lAB的取值范围。
机械原理 第五章 平面连杆机构及其设计
§5-1 平面连杆机构的应用及传动特点
§5-2 平面四杆机构的类型和应用
§5-3 平面四杆机构的一些共性问题 §5-4 平面四杆机构的设计
§5-1 平面连杆机构的应用及传动特点
应用举例 如:四足机器人(图片、动画)、内燃机中的曲柄滑块机构、 汽车刮水器、缝纫机踏板机构、仪表指示机构等。
锻压机肘杆机构
可变行程滑块机构
汽车空气泵
单侧曲线槽导杆机构
3)可用于远距离操纵、重载机构,如:自行车手闸机构,挖掘 机等。 4)连杆曲线丰富,可实现特定的轨迹要求,如:搅拌机构, 鹤式起重机等。
挖掘机
搅拌机构
鹤式起重机
二、平面连杆机构的缺点 1)运动副中的间隙会造成较大累积误差,运动精度较低。 2)多杆机构设计复杂,效率低。 3)多数构件作变速运动,其惯性力难以平衡,不适用于高速。 多杆机构大都是四杆机构组合或扩展的结果。 六杆机构及六杆机构的实际应用 本章介绍四杆机构的分析和设计。
1)最短杆长度+最长杆长度≤其余两杆长度之和;(杆长条件) 2)组成该周转副的两杆中必有一杆为最短杆。 2. 铰链四杆机构存在曲柄的条件
1)各杆长度应满足杆长条件; 2)最短杆为连架杆或机架。

机械原理课程设计 连杆机构的设计及运动分析

机械原理课程设计 连杆机构的设计及运动分析

机械原理课程设计编程说明书一设计任务-------------------------------2二设计过程-------------------------------22.1设计思想-------------------------------22.2参数的定义-----------------------------22.3数学模型-------------------------------32.4程序流程图-----------------------------42.5源程序设计-----------------------------5三设计结果--------------------------------123.1 连杆运动示意图-----------------------123.2 连杆参数的计算结果-------------------123.3 位移、角速度、加速度曲线绘制---------16 四课程设计总结------------------------17五参考文献---------------------------18一设计任务任务:连杆机构的设计及运动分析已知:中心距X1=70mm,X2=190mm,Y=330mm。

构件3的上、下极限Φ=60、Φ=120,滑块的冲程H=220mm,比值CE/CD=1/2,EF/DE=1/4,各构件S重心的位置,曲柄每分钟转速N1=120r/min。

要求:1)建立数学模型;2)用C语言编写计算程序、并运行;3)绘制从动件运动规律线图,并进行连杆机构的动态显示;4)用计算机打印出计算说明;二设计过程2.1 设计思想根据主动杆AB的转角变化和DE杆的极限位置的确定得出其它各杆件的运动规律。

确定初始角度通过循环模拟连杆的运动过程。

数学模型的建立运用矢量方程解析法。

2.2参数的定义theta-------转角omga-----角速度epsl------角加速度2.3 数学模型04321=--+ZZ Z Z (1)按复数式可以写成)sin (cos )sin (cos )sin (cos )sin (cos 44332211=+-+-+++θθθθθθθθi d i c i b i a 由于04 =θ,上式可简化为0)sin (cos )sin (cos )sin (cos 332211=-+-+++d i c i b i a θθθθθθ (2)根据(2)式中实部、虚部分别相等得0cos cos cos 321=--+d c b a θθθ (3)0sin sin sin 321=-+θθθc b a (4)由(3)、(4)式联立消去θ2得)cos 2(sin )sin 2(cos )2cos 2(122223131θθθθθad ac cd ac b d c a --++=+- (5) 令:θθθ1222211111cos 2,sin 2,2cos 2ad ac cd ac b d c a N M L --++==-=,则(5)式可简化为N M L 13131s i n c o s =+θθ(6)解得之ML LML N21211212113a r c s i na r c s i n +-+=θ(7)同理,根据(3)、(4)式消去θ3可解得ML LML N22222222222arcsinarcsin+-+=θ (8)其中:θθθ1222221212cos 2,sin 2,2cos 2ad ab bd ab b d a c N M L +---==-=)sin()cos()cos()sin(2)sin()cos()cos()sin()sin()sin(,)sin()sin(43873232232221212113232323223121311212321313213223θθθθωωθθωθθεεθθωθθωθθωθθεεωθθθθωωθθθθωθθ--+-----=---+-+-=--=--=c c b a a b c b a a c a b ad c ,求解得)式对时间求二介导数将()式对时间求导,得)、(为简便,将(都是时间的函数,、杆的角位移方程。

机械原理平面连杆机构及设计

机械原理平面连杆机构及设计

机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。

本文将对平面连杆机构进行介绍,并探讨其设计原理。

平面连杆机构是由至少一个定点和至少三个连杆组成的机构。

定点为固定参考点,连杆是由铰链连接的刚性杆件。

连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。

平面连杆机构的运动由这些连杆的位置和相互连接方式决定。

平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。

运动类型可以是旋转、平移、摆动、滑动等。

通过运动分析,可以确定连杆的长度和相互连接的方式。

2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。

例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。

3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。

静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。

4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。

运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。

5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。

通过运动分解,可以确定每个连杆的运动规律,从而进行设计。

当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。

具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。

2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。

根据机构的运动要求和外力作用,确定连杆的长度。

3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。

4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。

5.结构设计:根据上述分析和计算结果,进行结构设计。

机械原理课程设计图解法设计平面连杆机构

机械原理课程设计图解法设计平面连杆机构

工程技术学院课程设计题目:图解法设计平面连杆机构摘要设计内容:设计曲柄摇杆机构。

已知摇杆长度l,摆角ψ,摇杆3的行程速比系数K,要求摇杆CD靠近曲柄回转中心A一侧的极限位置与机架间的夹角为∠CDA,试用图解法设计其余三杆的长度,并计算机构的最小传动角γ。

设计方法:在设计时首先需计算极位夹角θ,再绘制机架位置线及摇杆的两个极限位置,然后确定曲柄回转中心和各杆长度最后验算最小传动角 。

最后根据已知数据和所计算的数据进行图解,画出平面四杆机构图。

平面连杆机构是由若干构件用平面低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。

平面连杆机构的使用很广泛,它被广泛地使用在各种机器、仪表及操纵装置中。

例如内燃机、牛头刨、钢窗启闭机构、碎石机等等,这些机构都有一个共同的特点:其机构都是通过低副连接而成,故此这些机构又称低副机构低副机构低副机构低副机构。

关键词:机械设计基础机械设计基础课程设计平面四杆机构图解法极位夹角云南农业大学工程技术学院目录1题目 (3)1.1原始数据及要求 (3)1.2 工作量 (3)1.3 制图说明 (3)1.4 设计计算说明书包括的内容 (3)2 设计方案的讨论 (4)3 设计过程 (5)3.1 各杆长度的确定 (5)3.2 盐酸最小传动角 (6)4 小结 (7)5 参考文献 (8)1、题目1.1原始数据及要求:设计曲柄摇杆机构。

已知摇杆长度l,摆角ψ,3摇杆的行程速比系数K,要求摇杆CD靠近曲柄回转中心A一侧的极限位置与机架间的夹角为∠CDA,试用图解法设计其余三杆的长度,并计算机构的最小传动角γ。

1.2工作量:1.平面连杆机构图解法设计图纸一张。

2.计算说明书一份。

1.3制图说明:1.用3号图纸作图。

2.标注尺寸。

3.辅助线用细实线。

4.杆的一个极限位置用粗实线,另一个极限位置用虚线。

1.4设计计算说明书包括的内容:1.设计任务书2.目录3.设计过程3.1.计算极位夹角θ3.2.绘制机架位置线及摇杆的两个极限位置3.3.确定曲柄回转中心3.4.确定各杆长度3.5.验算最小传动角γ参考文献2、设计方案的讨论平面连杆机构是将各构件用转动副或移动副联接而成的平面机构。

机械原理-平面连杆机构的运动分析和设计

机械原理-平面连杆机构的运动分析和设计

平面连杆机构的设计流程和方法
在这个部分中,我们将深入探讨平面连杆机构的设计,介绍流程和方法,提供实际案例分析,帮助您了解如何设 计成功的机械。
1.
需求分析
将客户的需求转化为机械设计
目标。
2.
构思和设计
基于机械原理构思和设计机械
装备支撑结构,并采用 CAD 软
件实施初始的草图或模型。
3.
材料选择
选择合适的材料和工艺,确保
结构和类型
平面连杆机构通常由零件精细制 造而成,以满足工业和商业目的 的要求。
工程应用
机械工程师们可以使用平面连杆 机构来完成各种复杂的任务,如 发动机和自动化流水线等。
日常应用
平面连杆机构可以进一步应用在 日常用品中,如钟表、洗衣机和 自动售货机等。
平面连杆机构的运动分析方法
在这个部分中,我们将探索平面连杆机构的运动学和动力学,介绍运动方程和速度方程,以及如何用数学 公式计算不同零件的运动和速度。
1 平衡条件
平衡是指物理系统中所有力和运动之间所需达到的状态,这是机械工程师需要考虑的重 要问题。
2 稳定性
稳定性是一个重要的物理学概念,涉及动量、速度和质量,能够帮助工程师在设计平面 连杆机构时考虑不同零件的状态和取向。
3 应用场景
平面连杆机构无处不在,具有开发良好设计的潜力,是自动化流水线的核心,也是钟表、 汽车和机器人的重要部分。
1
运动学
运动学研究物体运动的规律和运动参数,如位移、速度、加速度等。
2
动力学
动力学研究物体的运动状态和运动参数之间的关系,如动量、力和功等。
3
数值模拟
数字计算能够预测机械零件的运动,利用计算机模拟机械过程,提高设计效率。

机械原理大作业-连杆机构

机械原理大作业-连杆机构

设计内容
结论
1. 机构结构分析 1)计算机构自由度,确定机构是否有确定运动。
机构自度 F=1
本机构中,n= 5 , pL= 7
,pH = 0
则有:F=3n-2PL –PH= 3*5-2*7=1
是否有确定
机构确定运动判断: 因 F= 1 ,原动件个数= 1 ,可知: 自由度等于原动件数,机构有确定 的运动。
➢ 求解速度 vB 、角速度 2 : 矢量方程:
大小 ? √ ? 方向 ⊥BD ⊥OA ⊥AB
逆时针方向 ➢ 求解速度 vC 、2 杆质心 S2 的速度 vs2 :
vB =1.57m/s 2 =0.36rad/s, 逆时针方向
vC =1.56m/s vs2 =1.53m/s
-3-
➢ 求解速度 vE 、角速度 4 : 矢量方程:
动态静力学参数:m2=20 kg , JS2 = 1.1 kg m2 ,m5=50 kg
表 2 阻抗力参数表
班级序号 1
2
3
4
5
6
7
8
9
10
Fr /N
500 600 700
800
900
1000 1100 1200 1300 1400
-1-
机械原理模块训练一
二、 训练要求
通过对干草压缩机六杆机构进行结构分析、运动分析和力分析,对该设备的运动性能做出 定量的计算,为新设备的设计与评价提供依据。 机构结构分析:了解机构组成,学会对机构工作原理简图表达,判断机构的结构组成是否可行。 机构运动分析:已知原动件运动参数情况下,学会求解机构输出端和机构中关键点的运动参数。 机构动态静力分析:当已知工作阻力时,需要给机器配置动力,通过平衡力求解可以获得;当 机器安装时需要知道支座的反力,可通过动态静力分析获得。

机械原理+阶段练习二及答案(5-6)

机械原理+阶段练习二及答案(5-6)

华东理工大学网络教育学院机械原理课程阶段练习二(第5-6章)第五章平面连杆机构及其设计一:选择题1、铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和( A )其他两杆长度之和。

A <=;B >=;C > 。

2、当行程速度变化系数k B时,机构就具有急回特性。

A <1;B >1;C =1。

3、当四杆机构处于死点位置时,机构的压力角( B ).A.为0o;B.为90o;C.与构件尺寸有关.4、对于双摇杆机构,最短构件与最长构件长度之和( A )大于其余两构件长度之和.A.一定;B.不一定;C.一定不.5、若将一曲柄摇杆机构转化为双曲柄机构,可将( B ).A.原机构曲柄为机构;B.原机构连杆为机架;C.原机构摇杆为机架.6、曲柄摇杆机构处于死点位置时( B )等于零度.A.压力角;B.传动角;C.极位角.7、偏置曲柄滑动机构中,从动件滑动的行程速度变化系数K( A )1.A.大于;B.小于;C.等于.8、曲柄为原动件的曲柄摇杆机构, 若知摇杆的行程速比系数K=1.5,那么极位角等于( C ).A.18;B.-18;C.36;D.72.9、曲柄滑块机构的死点只能发生在( B ).A.曲柄主动时;B.滑块主动时;C.连杆与曲柄共线时.10、当曲柄为主动件时,曲柄摇杆机构的最小传动角 min总是出现在( C ).A.连杆与曲柄成一条直线;B.连杆与机架成一条直线时;C.曲柄与机架成一条直线.11、四杆机构的急回特性是针对主动件作( A )而言的.A.等速运动;B.等速移动;C.与构件尺寸有关.12、平面连杆机构的行程速比系数K值的可能取值范围是( C ).A 0≤ K≤1B 0≤ K≤2C 1≤ K≤3D 1≤ K≤213、摆动导杆机构,当导杆处于极限位置时,导杆( A )与曲柄垂直.A.一定;B.不一定;C.一定不.14、曲柄为原动件的偏置曲柄滑动机构,当滑块上的传动角最小时,则( B ).A.曲柄与导路平行;B.曲柄与导路垂直;C.曲柄与连杆共线;D.曲柄与连杆垂直.15、在曲柄摇杆机构中,若增大曲柄长度,则摇杆摆角将( A )A.加大;B.减小;C.不变;D.加大或不变.16、铰链四杆机构有曲柄存在的必要条件是( A )A.最短杆与最长杆长度之和小于或等于其他两杆长度之和B.最短杆与最长杆长度之和大于其他两杆长度之和C.以最短杆为机架或以最短杆相邻的杆为机架二:填空题1、平面四杆机构有无急回特性取决于极位夹角θ的大小.2、曲柄滑快机构,当以滑块为原动件时,可能出现死点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3 多杆机构
缺点:行程大小的调节是通 过改变曲柄长度a的大小。 因此,改变行程的同时必然
改变了机构的急回特性。
a
m
2arcsina() b
k1 180m 2 180m
(1) 要求机构有较大行程的往复移动,且有显著的急回特性时
B ①


θ
C
A

对心曲柄滑块机构
a
+
a
回转导杆机构
A B
调节行程的大小只须改变AB的长度,而不改变机构的急回特性。 插床利用了回转导杆机构的变速转动性质。
a 1 ,b c d 2 的 一 族 连 杆 曲 线
5.2.2 曲柄滑块机构
B
B
C C
A A
D B
C A
转动副D的同性异形演化。
曲柄滑块机构可看作 由曲柄摇杆机构演化 而得。
e = 0, 对心曲柄滑块机构 e 0 , 偏置曲柄滑块机构
对心曲柄滑块机构
对心曲柄滑块机构
曲柄回转中心A在过C点导路延长线上,称对心曲柄滑块机构
MC1C290
2. 以M为圆心,MC1为半径 画圆,则圆上圆弧 C 1 C 2 所对应的圆心角
C1MC2 2
3. 则在此圆上任选一点A, 都满足圆上圆弧 C 1 C 2
4. 所对应的圆周角
C1AC2
不要忘记检验机构中是否存在曲柄!
C2
C1
90
b MM
A a B1
D
B2
M
AC1 ba
AC2 ba
+
B ①

θ
A
① C

A1
+
2 3
4
B
连杆AB中点的轨迹为圆,其余点轨迹为椭圆 1. 椭圆仪机构
2) 椭圆仪机构的演化机构 十字滑槽联轴器
教材P78图5.17谁是投影面?
A1
2 3
4
B
变换机架
1 4 3
2
1
4 3
+
2
转动的主动件+RPP杆组而成 1 3
3) 正弦机构
A
B
y
可用于小型冲压机
若 lAB 取 单位:长 ys度 in
C2 ——C1,构件1
转动 2 构件3
转 180°ω3>ω1
1
C p12
p14 B
1
2
p23
p13
Hale Waihona Puke 243∞p13
∞ C2
A p34
C1

当摆动导杆机构中 a > b 时,曲柄整周转动也能带动导杆整周转 动,机构称为回转导杆机构。
5.2.4 几种其他类型的四杆机构
Ⅱ级杆组共有5种类型,将他们分别与主动件和机架相连接组 成四杆机构:
C2
C1
β1
β2
e
α1 b θ
s
aA
α2
B2
k 1 2
—极位夹角
B1
1
arcsin
b
e
a
2
arcsin
b
e
a
12 s2a2b22b2a2cos
A B
C 1) 曲柄滑块机构 2) 定块机构 3)摆块机构 4) 导杆机构
A B
5.2.3 导杆机构
A B
A B
C
变换机架 曲柄滑块
就 是 如 此 , 几度风 雨几春 秋。
插床工作机构 连续转动→往复移动
叉车的举升机构 引导一个构件按给定序列位置运动
平面连杆机构的应用
传送装置的主体机构 使构件上指定点按预期轨迹运动
平面连杆机构的应用
5.2 四杆机构的运动变换功能和性能指标
5.2.1 铰接四杆机构:四个构件以四个转动副连接 而成的平面机构。
m 45
3. 求极位夹角
k 1 180 k 1
1 . 2 1 180 1 .2 1
16 . 36
可见,只需在固定平面上找到一点A,使 C1AC2 ,A点即
为曲柄转动中心,进而可以求出曲柄摇杆机构。
C2
C1
90
M
A
D
M
1. 连接C1C2,做中垂线, 在其上找到一点M,使
1 B M
所用时间为 t 2 ,对应 2
1、传动性能好,压力角 0
2、有显著的急回特性
A2
b 2a
A1
m
2arcsina() b
1180m
M
C
2180m
急回系数: k1 180m 2 180m
匀速转动 往复摆动
m
k1180 k1
摆动导杆机构的特点:
1 B
1
a
A2
b 2
A1
M
3
A1 A2 往行程
第5章 平面连杆机构及其设计
本章目录
§5.1 平面连杆机构的特点及应用 §5.2 四杆机构的运动变换功能和性能指标 §5.3 多杆机构 §5.4 连杆机构设计概论 §5.5 连杆机构设计—解析法 §5.6 连杆机构设计—图解法
§ 5.1 平面连杆机构的特点及应用
连杆机构:全部构件都以低副联结而成的机构。
D C2
死点的利弊—克服坏处
1. 利用惯性来渡过死点 2. 利用错位排列的方法克服死点
死点的利弊—利用益处 利用死点,防止起落架收回
死点的利弊—利用益处 利用死点,夹紧机构
5.2.1.4 连杆曲线
连杆曲线:平面连杆机构中的连杆作平面复杂运动,其上任一 点在运动过程的中轨迹称为连杆曲线。
铰接四杆机构的连杆曲线一般是六次代数曲线。
平面连杆机构的特点
连续转动 往复摆动
优点: 连续转动 往复移动 1 能够实现多种形式的运动变换
2 低副连接承载能力强,易加工 连续转动 连续转动
3 运动副保证构件接触,不需外力锁合
缺点:
1 连杆机构平衡困难,尤其对于高速运转的机构
平面连杆机构中最基本的、最常用的是四杆机构
平面连杆机构的应用
死点: 机 构 处 于 9 0 ( 或 0 ) 的 位 置 称 为 死 点 位 置
对于铰接四杆机构来说,死点是连杆与从动件共线的位置。
B1
A B2
如图曲柄摇杆机构: 当曲柄为主动件时,不会出现死点位置;
当摇杆为主动件时,会出现两个死点位置。
C1 当机构处于死点位置时,无论主动件上施加 多大的力也不会使机构运动。
C1
c1 c 2 工作行程
C2
所用时间为 t 1 ,对应 1
1
B1
A
2
B2
M D
c2 c1 回程
所用时间为 t 2 ,对应 2
M -摇杆摆角范围
-极位夹角
极位夹角:在从动件处于两个极限位置时,对应
连杆位置的夹角θ 被称为极位夹角。
K -急回系数
从 动 件 快 行 程 速 度 从 动 件 慢 行 程 时 间 k从 动 件 慢 行 程 速 度 从 动 件 快 行 程 时 间 1
岁 月 像 极 了一 根盘根 交错的 藤,茂 密而坚 韧,即 使曲曲 折折, 须子却 扎的很 深 。 翻 一 翻 墙 角的日 历,好 像只是 一眨眼 ,大半 年便过 去了, 我一直 偏爱这 老 式 的 日 历 ,过一 天翻一 张,日 子久了 ,翻过 去的纸 张,侵 着微微 的黄晕 ,夹杂 着 丝 丝 缕 缕 的烟火 味。这 样的细 数时光 ,让生 活更多 了回味 与盼头 。 我 总 是 怀 念 起 年 轻 的时候 ,走过 的路, 去过的 城市。 那份所 到之处 都会带 给我年 轻的朝 气 与 豪 迈 的 热血与 激情。 走 过 了 那 么多的 路,不 禁感慨 ,年轻 人如果 条件允 许 , 尽 可 能 的要多 迈开腿 ,走出 去多看 看,如 果青春 没那么 多一往 无前, 老了又 有 多 少 回 忆 可做为 茶余饭 后的谈 资? 无 数 次 在午 夜梦回 间,我 仿佛再 一次骑 着 俊 马 驰 骋 于草原 ,再一 次轻摇 浆板, 放眼云 烟于水 墨江南 。再一 次领略 西藏的 神 秘 雄 伟 , 再一次 亲吻梦 里的胡 杨。我 想在我 美好的 青春年 华里, 只要一 抬腿就 可 以 去 自 己 想去的 地方。 待到暮 年,我 可以翻 一翻老 照片, 寻找下 自己年 轻的影 子 。 生 活 里 那 些布满 青色苔 藓的日 子,终 归会被 一丝暖 阳所照 耀,人 生的路
曲柄摇杆机构
C B
非整周转动副
整周转动副
A
D
非整周转动副
C
C
C
B
B
B
A
D
(a)
双曲柄机构
A
D
(b)
曲柄摇杆机构
A
D
(c)
双摇杆机构
5.2.1.1
C2



B
C b
C1
c

a

A

B1

D
B2



d



令a < d、 c<b
bc
ad
BD max
bc
d
a
BD min
a d b c b c d a
B
a
b
B1
A
B2 C1
M
C
C2 S=2a
(1) 显然,曲柄存在条件为:a ≤ b 即动铰链B能通过M点。
(2) 曲柄与连杆(机架)两次共线位置对应滑块两个极限位置。
(3) 曲柄为主动件,滑块行程 S = 2a,显然无急回特性。
曲柄为主动件时,压力角 为保证传力性能好,推荐
=aBC1A~显1然,,[m]a= x =19 a. rc5sin~(2 ba3 ).5
相关文档
最新文档