51单片机综合实验交通灯设计报告

合集下载

基于51单片机控制交通灯课程设计报告

基于51单片机控制交通灯课程设计报告

基于51单片机控制交通灯课程设计报告本设计课程使用STC89c52型号的芯片及相关元器件自己组装单片机最小系统,并编写程序用于控制交通信号灯。

1.STC89c52的芯片元器件的说明:STC89c52内置8位中央处理单元、256字节内部数据存储器RAM、8k片内程序存储器(ROM)32个双向输入/输出(I/O)口、3个16位定时/计数器和5个两级中断结构,一个全双工串行通信口,片内时钟振荡电路。

此外,STC89c52还可工作于低功耗模式,可通过两种软件选择空闲和掉电模式。

在空闲模式下冻结CPU而RAM定时器、串行口和中断系统维持其功能。

掉电模式下,保存RAM数据,时钟振荡停止,同时停止芯片内其它功能,STC89c52在众多嵌入式控制应用系统中得到广泛应用。

2.STC89c52的功能是:·标准MCS-51内核和指令系统·片内8kROM(可扩充64kB外部存储器)· 32个双向I/O口· 256x8bit内部RAM(可扩充64kB外部存储器)· 3个16位可编程定时/计数器·时钟频率3.5-12/24/33MHz·向上或向下定时计数器·改进型快速编程脉冲算法· 6个中断源· 5.0V工作电压·全双工串行通信口·布尔处理器—帧错误侦测· 4层优先级中断结构—自动地址识别·兼容TTL和CMOS逻辑电平·空闲和掉电节省模式· PDIP(40)和PLCC(44)封装形式3.管脚说明VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

基于51单片机设计的交通灯报告书

基于51单片机设计的交通灯报告书

报告书干路—支路口交通信号灯控制器项目目的:通过对模拟交通灯控制系统的操作,让我们掌握定时器和中断系统的综合应用,进一步熟练51单片机的应用.项目要求:本项目主要通过感应开关控制交通灯的切换显示,实现主干路与支路车辆的分流。

(1)在正常情况下,主干道交通灯绿灯一直亮着。

(2)当支路检测到有车辆,60秒后,主干道禁止通行,支路放行。

(3)支路放行30 秒后,恢复正常情况。

项目电路如图:按键S1、S2模拟支路的车辆检测,当S1、S2为高电平(不按下按键)时,表示正常情况。

当S1或S2为低电平(按下按键)时,表示支路上有车辆,将S1、S2接到P3.0、P3.1把信号送入到单片机。

程序设计:源程序代码:#include<reg51.h>#define uchar unsigned char#define uint unsigned intuchar time,second,n,m;sbit k1=P3^0;sbit k2=P3^1;Uchar code Tab[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x 80,0x90};//数码管显示0~9的段码表void delay(uint t){uchar i;while(t--)for(i=0;i<255;i++);}void shumaguan(uchar s){P2=0xfd;P0=Tab[s/10];delay(1);P2=0xfe;P0=Tab[s%10];delay(1);}void main(){IE=0x82;TMOD=0x01;TH0=(65536-50000)/16;TL0=(65536-50000)%16;while(1){ uchar j;P1=0xde;if(k1==0||k2==0){delay(500);if(k1==0||k2==0){time=40;TR0=1;for(second=60;second>0;)shumaguan(second);TR0=0;P2=0x00;P1=0xf3;delay(3000);for(j=0;j<2;j++){P1=0xfb;delay(200);P1=0xf3;delay(200);}P1=0xeb;delay(500);}}}}void ld() interrupt 1{TR0=0;time--;if(time==0){time=40;second--;if(second==5)P1=0xdf;if(second==4)P1=0xde;if(second==3)P1=0xdf;if(second==2)P1=0xdd;if(second==1)P1=0xdd;}TH0=(65536-50000)/16;TL0=(65536-50000)%16;TR0=1;}项目小结:本项目程序主要包括四部分:主函数、延时函数、数码管显示函数、中断函数。

基于51单片机的智能交通灯课程设计报告书

基于51单片机的智能交通灯课程设计报告书

基于51单⽚机的智能交通灯课程设计报告书简易智能交通灯设计1、设计背景⾃从1886两个德国⼈发明了第⼀辆汽车交通灯改变了交通路况,交通问题也渐渐被⼈们所重视。

从英国伦敦街头的第⼀个以燃煤⽓为光源的红,蓝两⾊的机械扳⼿式信号灯,到现在以电为光源的红黄绿三⾊交通灯,不知不觉中交通信号灯在⼈们⽇常⽣活中占据了重要地位。

随着⼈们社会活动⽇益增加,经济发展,汽车数量急剧增加,城市道路⽇渐拥挤,交通灯更加显⽰出了它的功能,使得交通得到有效管制,对于交通疏导,提⾼道路导通能⼒,减少交通事故有显著的效果。

近年来,随着科技的飞速发展,电⼦器件也随之⼴泛应⽤,其中单⽚机也不断深⼊⼈民的⽣活当中。

本次课程设计以模拟交通灯系统利⽤单⽚机AT89C51作为核⼼元件,实现了通过信号灯对路⾯状况的智能控制。

在⼀定程度上解决了交通路⼝堵塞、车辆停车,特殊情况的交通灯等待时间不合理、急车强通等问题。

在该次的设计系统具有结构简单、可靠性⾼、成本低、实时性好、安装维护⽅便等优点,有⼴泛的应⽤前景。

本模拟系统由单⽚机软件系统,两位8段数码管和LED灯显⽰系统。

和复位电路控制电路等组成,较好的模拟了对交通路⾯的控制。

1.1 设计思路(1)分析⽬前交通路⼝的基本控制技术以及各种通⾏⽅案,并以此为基础提出⾃⼰的交通控制的初步⽅案。

(2)确定系统交通控制的总体设计,包括,⼗字路⼝具体的通⾏禁⾏⽅案设计以及系统应拥有的各项功能,在这⾥,本设计除了有信号灯状态控制能实现基本的交通功能,还增加了倒计时显⽰提⽰,并基于实际情况,⼜增加了紧急状况处理和通⾏时间可调这两项特特殊功能。

(3)进⾏倒计时显⽰电路,灯状态电路,特殊情况按键电路的设计和对各器件的选择及连接,⼤体分配各个器件及模块的基本功能要求。

(4)进⾏软件系统的设计和仿真中,程序在KEIL软件中⽤单⽚机c语⾔编写,电路的搭建和仿真实现是在proteus软件中实现的。

在本次课程设计中通过对单⽚机内部结构和⼯作情况做了⼀定的研究,充分了解定时器,中断以及延时原理,为本次智能交通灯的设计提供了理论基础。

基于51单片机交通灯工程实践方案报告书

基于51单片机交通灯工程实践方案报告书

《工程实践》设计方案报告基于单片机的交通灯控制系统设计题目主要研究思路和方法:一,研究方案本项目计划实现的基本目标是:利用单片机作为主要控制系统,模拟出东西方向为主干道十字路口交通灯控制系统。

二,重点解决问题1. 本项目要求可实现可手动设定交通灯亮灭交换所需时长,并且该灯亮时间倒计时用数码管显示。

2. 模拟遭遇突发情况的时候,可手动实现红灯全亮,禁行任何方向的车辆。

3. 由于本项目是模拟东西主干道的十字路口交通灯系统,故要求须包含左转灯,并且可实现右转灯长绿灯。

三. 技术路线1. 本项目由于是单片机作为主控系统,故要求我们熟练掌握单片机编程知识。

2. 本系统由显示电路(包含LED灯倒计时及发光二极管模拟交通灯),单片机主控制电路,按键和电源电路组成,需熟悉自动控制原理。

3. 将紧急情况红灯全亮写成程序编入单片机。

4. 该系统采用+5V直流稳压电源供电工作。

5.显示界面4个路口采用8个共阴极数码管,采用74LS48芯片驱动电路驱动LED晶体管显示部分。

系统原理框图和工作原理:具体:先东西双向直行和左转都是红灯,直行红灯长亮45秒,红灯亮时开始倒计时,剩5秒时开始闪烁(共计红灯亮50秒);接着左转还是红灯,东西双向直行灯长亮绿灯57秒,绿灯亮时倒计时,剩3秒时闪烁(共计绿灯亮60秒,在此期间其余全部红灯);然后5秒黄灯倒计时(不闪烁);然后东西左转绿灯亮时开始倒计时,剩3秒时闪烁(共计13秒),接着黄灯5秒倒计时(不闪烁),直行灯亮红色。

然后东西双向直行与左转又是红灯依次循环(灯亮情况南北直行方向与东西直行方向相反)。

具体对应情况如下主干道亮灭情况及时长:东西 南北左转灯 直行灯 左转灯 直行灯1.红 红(35) 1.红 绿(27)2. 红 绿闪(3)红 黄(5)3.红 红(7) 3.绿(7) 红4.红 红(3) 4.绿闪(3) 红5.红 红(5) 5.黄(5) 红6.红 绿(57) 6.红 红(65)7.红 绿闪(3)8.红 黄(5)9.绿(7) 红 9.红 红(10)10.绿闪(3)红 10.红 红(5)11.黄(5) 红12.红 红(35) 12.红 绿(32)东西方向为主干道;南北为辅干道。

交通灯设计报告

交通灯设计报告

交通灯设计报告一、设计要求和任务➢设计任务:以51单片机为核心,设计一个交通灯,具有数码管倒计时功能和红绿灯交替显示的功能,带有一个紧急按钮,当按钮按下的时候停止倒计时,所有路口的红绿灯变成红色。

再按一次按钮交通灯恢复正常。

该交通灯系统分为主路和次路,主路车流量大绿灯时间长,次路车流量小,绿灯时间短。

其中主路绿灯时间为40s,后3s为黄灯,红灯时间为20s;次路绿灯时间为20s,后3s为黄灯,红灯时间为40;两个干道轮流放行。

当有应急车辆需要通过的时候,两个干道全亮红灯,倒计时停止。

当应急车辆通过后,系统继续显示。

➢设计要求:1.完成系统的硬件电路设计与软件设计;2.采用C51语言编程;3.采用Proteus、Keil C等软件实现系统的仿真调试;4.绘制电路图和程序流程图;5.设计报告要求思路清晰,结构合理,语言流畅,书写格式符合要求。

二、设计方案图1 系统原理框图系统整体框图如图1所示,整个系统有四部分组成:按键输入部分,单片机控制部分,数码管显示模块和红绿灯显示模块。

其中单片机控制器则是采用的是AT89C51,AT89SC51是一个低功耗,高性能CMOS 8位单片机,片内含4k Flash,40个引脚,对于完成交通灯非常适合。

该单片机自身拥有高精度的定时器,可以让我们不用通过外部时钟芯片就可以实现精确计时。

这样节省了硬件的成本和设计的难度,直接可以通过单片机的定时器功能实现时间的显示。

按键模块是用来进入或者退出应急模式。

数码管显示模块我们使用的是公阴数码管,直接使用单片机引脚驱动。

红绿灯显示模块本质上就是LED的显示,这些LED等根据时间进行相应的红绿黄三色显示。

三、硬件电路的设计1、单片机最小系统图2单片机最小系统单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统。

对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路。

图2是一个51单片机的最小系统电路图。

51单片机红绿灯设计报告

51单片机红绿灯设计报告

51单片机红绿灯设计报告一、设计目的在交通管理中,红绿灯是一种重要的交通设施,能够有效地控制交通流量,保证道路交通的安全和顺畅。

本设计旨在使用51单片机实现一个红绿灯控制系统,通过控制红绿灯的状态来实现交通信号控制。

二、系统设计1.设计原理红绿灯控制系统分为两种模式:定时模式和交通流量感应模式。

在定时模式下,红绿灯会按照预设的时间间隔循环切换;在交通流量感应模式下,通过传感器检测车辆的流量来实现智能控制。

2.硬件设计本设计采用51单片机作为控制核心,配合电路部件包括红绿灯LED 灯、传感器等。

51单片机通过IO口控制LED灯的状态,同时接收传感器信号用于交通流量感应模式。

3.软件设计软件设计主要包含控制程序和交通流量感应算法。

控制程序通过定时器产生中断来实现定时模式下红绿灯的切换;交通流量感应算法通过读取传感器信号来判断是否有车辆通过,进而控制红绿灯的切换。

三、系统实现1.控制程序控制程序主要实现红绿灯状态的切换,包括定时模式和交通流量感应模式的切换逻辑。

在定时模式下,通过定时器中断来实现红绿灯的周期性切换;在交通流量感应模式下,通过传感器信号来判断车辆的流量,并根据流量大小来调整红绿灯的状态。

2.传感器接口传感器接口用于检测车辆的流量,根据传感器的信号来实现对红绿灯状态的控制。

在系统中,传感器可以是红外传感器、光电传感器等,通过检测车辆通过时的信号变化来判断车辆的流量。

3.LED灯控制LED灯控制通过51单片机的IO口来实现,控制红绿灯的状态。

根据控制程序的逻辑,51单片机可以实现红绿灯的亮灭控制,从而实现交通信号的控制。

四、系统优化1.系统稳定性优化为了提高系统的稳定性,在设计中可以加入硬件看门狗等机制来监测系统的运行状态,确保系统正常运行。

2.智能交通流量控制在交通流量感应模式下,可以通过进一步算法优化,实现更加智能的交通流量控制,提高红绿灯的切换效率。

3.软硬件结合优化软硬件结合优化可以进一步提高系统的性能和稳定性,减少系统的延迟,提高交通信号的控制效率。

单片机c语言程序设计---C51-交通灯实验报告

单片机c语言程序设计---C51-交通灯实验报告

单片机c语言程序设计---C51-交通灯实验报告课程名称:单片机c语言设计实验类型:设计型实验实验项目名称: C51-交通灯实验一、实验目的和要求1.熟悉单片机的硬件结构及其工作原理2.掌握单片机的C51编程二、实验内容和原理(1)硬件设计使用P1端口连接VD1、VD2、VD3,模拟路口东面的红、黄、绿灯;P0端口连接VD9、VD10、VD11,模拟路口西面的红、黄、绿灯;P3端口连接VD17、VD18、VD19,模拟路口南面的红、黄、绿灯;P2端口连接VD25、VD26、VD27,模拟路口北面的红、黄、绿灯。

路口红绿灯的显示规律为:①南面和北面显示红灯(即VD17和VD25为红灯)时,东面和西面显示绿灯(即VD3和VD11为绿灯)。

②南面和北面,东面和西面都变成黄灯。

③南面和北面显示绿灯,东面和西面显示红灯④南面和北面,东面和西面都变成黄灯,然后再从①进行循环(需注意:此处设置的黄灯显示时长应短于红灯或绿灯的显示时长)(2)protues仿真通过Keil编译后,利用protues软件进行仿真。

在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

三、主要仪器设备四、操作方法与实验步骤1.按照硬件设计在protues上按照所给硬件设计绘制电路图。

2.在keil上进行编译后生成“xxx.hex”文件。

3.编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

五、实验结果与分析void S_N(void){VD1=0;VD9=0;VD19=0;VD27=0;Delay(1000);VD1=1;VD9=1;VD19=1;VD27=1;}int main (void) {while(1){E_W();NOT();S_N();NOT();}}六、讨论和心得。

51单片机红绿灯设计报告

51单片机红绿灯设计报告

51单片机红绿灯设计报告一、引言红绿灯是城市道路交通管理中非常重要的设备,它能够有效地控制车辆和行人的通行,维护交通秩序,提高交通效率。

本报告将介绍一种基于51单片机的红绿灯设计,利用单片机的强大功能,实现了智能化、自动化的红绿灯控制系统。

二、设计原理1.硬件设计本设计使用了51单片机,通过其IO口控制LED灯的亮灭。

红绿灯的控制通过三个IO口分别连接到红、黄、绿三个LED灯,通过控制这三个IO口的电平,实现红绿灯的切换。

2.软件设计设计中使用了C语言进行程序开发。

程序通过设置IO口的状态和延时函数,控制红绿灯的切换和延时时间。

三、电路设计1.电路图电路图给出了51单片机、LED灯和电流限制电阻之间的连接关系。

单片机的P1口连接到红、黄、绿三个LED灯上,通过改变P1口的电平,控制LED的亮灭。

2.电路元件说明-51单片机:中央处理器,负责控制整个系统的运行和信号的处理。

-LED灯:用于显示红、黄、绿三种不同的状态。

-电流限制电阻:用于限制电流大小,保护51单片机和LED灯。

四、程序设计程序设计中,通过无限循环实现红绿灯系统的连续运行,程序中设置了红绿灯切换的时间间隔和黄灯亮灭的时间间隔。

五、实验结果经过测试,本设计能够正常地实现红绿灯的切换,各种状态都能够正确显示。

红灯亮10秒,黄灯亮3秒,绿灯亮15秒,然后循环重复。

六、总结本设计利用51单片机的强大功能,实现了红绿灯的自动切换。

通过控制IO口的电平和延时函数,能够实现红绿灯的各种状态的切换。

该设计简单、实用、可靠,适用于城市交通管理中的红绿灯设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51单片机综合实验交通灯设计报告班级:学生姓名:学号:指导教师:一实验题目交通灯控制系统设计二实验目的1、学会用8051单片机开发简单的计算机控制系统;2、学会用汇编语言和C语言开发系统软件;3、学会8051单片机开发环境wave或Keil uVision3软件的使用;4、学会Proteus软件的使用方法,会用Proteus单片机系统进行仿真;5、学会Protel软件的使用方法,会用Protel绘制电气原理图和印制板图;6、熟悉七位数码管显示的使用方法;7、了解交通灯控制系统的基本组成。

三实验要求交通灯处在十字路口上。

它有红﹑黄﹑绿三种颜色的灯组成。

红灯亮时道路上的车辆停止运行;黄灯是一种过渡用的信号灯,当它亮时,表示道路上的红绿色信号灯即将进行转换。

下面拿东西南北四个方向来说明。

当东西方向允许行车(或者左转)的时候,南北方向就禁止行车,即此时东西方向的绿灯亮红灯灭,而南北方向的绿灯灭红灯亮。

反之当南北方向允许行车(或者左转)的时候,东西方向就禁止行车,即此时南北方向的绿灯亮红灯灭,而东西方向的绿灯灭红灯亮。

交通灯配置示意图如图1所示。

同时当有特殊的情况发生时,能手动控制各个方向的信号灯。

设计任务就是将这一电路用单片机来实现具体的控制。

1 十字路口交通灯配置示意图四 设计内容与原理为了在后面的分析中便于说明,将南北方向允许直行命名为状态1,南北方向允许左转命名为状态2,南北方向行车到东西方向行车的转换阶段命名为状态3,将东西方向允许直行命名为状态4,东西方向允许左转命名为状态5,东西方向行车到南北方向方向行车的转换阶段命名为状态6。

假定直行绿灯点亮的时间为25s ,左转绿灯点亮的时间为20s ,黄灯点亮的时间为5s ,则对方红灯的点亮时间为50秒。

黄灯每隔500ms 亮一次,之后灭500ms (亮灭一次叫作闪烁一次),一共闪烁5次,持续5s 。

各个状态之间的变换情况如下:具体显示周期如下:图2交通信号灯点亮时间图设计电路中每个路口的控制信号灯应有四个,即绿灯两个、黄灯、红灯各一个,同时需要七段数码管一个。

因此,本电路的设计中应用到绿灯八个,黄灯四个,红灯四个,七段数码管两个(东西方向相同,南北方向相同,为节省空间可省略一对)。

五电路设计分析根据前面的设计内容与原理分析,电路设计中应有控制模块(单片机电路)、显示模块(十六个信号灯和两个七段数码管)本电路的设计,将发光二极管作为16个信号灯的材料。

电源将采用5V的直流电源。

东西两个方向的绿灯是同时亮的,为了简化电路可以让这两个灯接同一个引脚。

同理,东西方向的黄灯、红灯也可以分别接同一个引脚。

南北方向同上。

这样我们可以用一个8位口控制16盏信号灯。

各信号灯均是共阴极接法,LED负极均接地,正极通过保护电阻接单片机P1口。

这样单片机引脚的输出一个高电平时,相应的信号灯就被点亮。

七段数码管经过8位排阻RESPACK-8连接。

单片机中应包括复位电路和晶振电路。

本设计中,采用上电复位形式,由于本系统应用的机器周期为lms,所以晶振选择为12MHz,根据调试电容选择30pF.图3:复位电路图4:晶振电路六硬件原理图七程序流程本程序的程序流程图如图所示八心得体会这次系统实验历时一个月的时间,在这实验过程里我们巩固了从编程、软件使用到调试的专业知识,逻辑思维和动手能力都得到了很大的提高。

要解决的主要问题就是程序的设计和仿真,虽然初期在设计和布局、编程时思路比较清晰,但是到了细节处,也出了不少问题,而且很难被检查出来,如在定时器使用方面出了一些错误。

但是最后经过不断努力,还是写出来正确的代码。

通过这次系统实验,对以前学过的知识进行了巩固,加深了理解,提高了应用的能力,而且提高了我们的发现、分析、解决问题的能力,同时提高了对专业的认识及兴趣,对于我们工科生来说,对以后就业很有帮助。

附录程序代码:#define uchar unsigned char#define uint unsigned int#include <reg52.h>/*****定义控制位**********************/sbit EW_LED2=P2^3; //东西数码管个位sbit EW_LED1=P2^2; //东西数码管十位sbit SN_LED2=P2^1; //南北数码管个位sbit SN_LED1=P2^0; //南北数码管十位_sbit SN_Yellow=P1^6;//南北黄灯sbit EW_Yellow=P1^2;//东西黄灯sbit EW_Red=P1^3;//东西红灯sbit SN_Red=P1^7;//南北红灯sbit Busy_Btton=P3^4;bit Flag_SN_Yellow; //南北黄灯标志位bit Flag_EW_Yellow;//东西黄灯标志位char Time_EW;//东西方向倒计时单元char Time_SN;//南北方向倒计时单元uchar EW=50,SN=25,EWL=20,SNL=20; //程序初始化赋值uchar EW1=50,SN1=25,EWL1=20,SNL1=20;//用于存放修改值的变量1-9段选码ucharcode table[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90 }; uchar code S[8]={0X28,0X48,0X18,0X48,0X82,0X84,0X81,0X84};//交通信号灯控制代码/**********************延时子程序************************/void Delay(uchar a){uchar i;i=a;while(i--){;}}/*****************显示子函数**************************/void Display(void){char h,l;h=Time_EW/10;l=Time_EW%10;P0=table[l];EW_LED2=1;Delay(200);EW_LED2=0;P0=table[h];EW_LED1=1;Delay(200);EW_LED1=0;h=Time_SN/10;l=Time_SN%10;P0=table[l];SN_LED2=1;Delay(200);SN_LED2=0;P0=table[h];SN_LED1=1;Delay(200);SN_LED1=0;}/**********************T0中断服务程序*******************/ void timer0(void)interrupt 1 using 1{static uchar count;TH0=(65536-50000)/256;TL0=(65536-50000)%256;count++;if(count==10){if(Flag_SN_Yellow==1) //南北黄灯标志位{SN_Yellow=~SN_Yellow;}if(Flag_EW_Yellow==1) //东西黄灯标志位{EW_Yellow=~EW_Yellow;}}if(count==20){Time_EW--;Time_SN--;if(Flag_SN_Yellow==1)//南北黄灯标志位{ Time_SN=Time_EW;{SN_Yellow=~SN_Yellow;}}if(Flag_EW_Yellow==1)//东西黄灯标志位{ Time_EW=Time_SN;{EW_Yellow=~EW_Yellow;}}count=0;}}void main(void){IT0=1; //INT0负跳变触发TMOD=0x01;//定时器工作于方式1TH0=(65536-50000)/256;//定时器赋初值TL0=(65536-50000)%256;EA=1; //开中断总允许ET0=1;//开定时中断EX0=1;//开外部INTO中断TR0=1;//启动定时while(1){ /*******状态1**********/Flag_EW_Yellow=0; //EW关黄灯显示信号Time_EW=EW;Time_SN=SN;while(Time_SN>0){P1=S[0]; //SN通行,EW红灯Display();}/*******状态2**********/Flag_SN_Yellow=0; //SN关黄灯显示信号Time_SN=SNL;while(Time_SN>0){P1=S[2];//SN左拐绿灯亮,EW红灯Display();}/*******状态3**********/P1=0x00;while(Time_EW>0){Flag_SN_Yellow=1; //SN开黄灯信号位EW_Red=1; //SN黄灯亮,等待停止信号,EW红灯 //SN_LED1=EW_LED1;//SN_LED2=EW_LED2;Display();}/***********赋值**********/EW=EW1;SN=SN1;EWL=EWL1;SNL=SNL1;/*******状态4**********/Flag_SN_Yellow=0; //SN关黄灯显示信号Time_EW=SN;Time_SN=EW;while(Time_EW>0){P1=S[4]; //EW通行,SN红灯Display();}/*******状态5**********/Flag_EW_Yellow=0; //EW关黄灯显示信号Time_EW=EWL;while(Time_EW>0){P1=S[6];//EW左拐绿灯亮,SN红灯Display();}/*******状态6**********/P1=0X00;while(Time_SN>0){Flag_EW_Yellow=1; //EN开黄灯信号位SN_Red=1;//EW黄灯亮,等待停止信号,SN红灯Display();}/***********赋值**********/EW=EW1;SN=SN1;EWL=EWL1;SNL=SNL1;}}如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档