激光测距仪讲解101页PPT
激光测距仪讲解

0.05m至100m ±1.5 mm
最小显示单位: 激光等级:
1mm 二级
激光类型: 激光点直径(远距离): 自动关闭电源: 连续测量,最大、最小值测
635nm,<1mW 6/30/60毫米(10/50/100米) 180秒无操作后 有
量,显示屏照明: 储存历史数据: 尺寸和重量: 电池(AAA型,2×1.5伏): 贮存温度范围: 操作温度范围: 防雨/防尘:
Leica A5 激光测距仪
测量范围:
0.05m至100m
测量精度:
±1.5 mm
最小显示单位:
1mm
激光等级:
二级
激光类型:
19组 135*45*31mm,145g 可进行至少5000次测量 -25°C至70°C -10°C至50°C IP54
Leica A5 激光测距仪
Leica A5
标准型Leica DISTO A5以其符合工效 的外型及柔软的Softgrip令人信服。 采用这样独特的底座、众多的附加功 能和内置式望远镜瞄准器,使您为各 种测量做好了最充分的准备,当然, 您也可以通过直接按钮,快速方便地 调用最常用的计算功能。可靠、简便 -从现在开始随时随地轻松测量。无 论室内还是室外- Leica DISTO A5是 您永远可靠的伙伴!
Power Ranger 技术可减少激光 衰减,提高接受灵敏度,在无反 射板的情况下,测程大大增加。 (在阳光下,激光测距仪A3对白 色墙面测程可达80米以上)备注: 对不同的反射目标,测程不同 面积:快速方便的测量 空间高度:轻松方便地按动按钮 即可得出结果。
Leica A3 激光测距仪
测量范围: 测量精度:
Leica A2 激光测距仪
Leica A2
激光测距

激光在军事中的应用激光测距激光测距技术出现于20世纪60年代中期,最早在航空、航天中得到应用、随着激光技术和数字处理技术的发展,由于其优异的性能得到了广泛的应用。
激光测距(laser distance measuring)是以激光器作为光源进行测距。
根据激光工作的方式分为连续激光器和脉冲激光器。
氦氖、氩离子、氪镉等气体激光器工作于连续输出状态,用于相位式激光测距;双异质砷化镓半导体激光器,用于红外测距;红宝石、钕玻璃等固体激光器,用于脉冲式激光测距。
激光测距仪由于激光的单色性好、方向性强等特点,加上电子线路半导体化集成化,与光电测距仪相比,不仅可以日夜作业、而且能提高测距精度,显著减少重量和功耗,使测量到人造地球卫星、月球等远目标的距离变成现实。
激光测距仪是利用激光对目标的距离进行准确测定(又称激光测距)的仪器。
激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。
激光测距有脉冲法、相位法和脉冲—相位法。
脉冲法准确度低,相位法准确度高1.脉冲法测距过程:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。
光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。
脉冲法测量距离的精度是一般是在+/- 1米左右。
另外,此类测距仪的测量盲区一般是15米左右。
原理:测距机发射矩形波激光脉冲,入射被测目标后返回部分的激光由,c为光速,t为激光脉冲测距机接收。
测距机与目标物的距离L为 L=c t2往返时间。
在激光器发射功率一定的情况下,光电探测器接受的回波功率P L的大小与测距机的光学系统的透过率有关,与目标物物理性质有关,与被测距离L的大小有关。
在不同目标下的测距方程:漫反射大目标:P L=P T A R2πL2ρK f K R K T K2α漫反射小目标:P L=P T A O A R2πΩT LρK f K R K T K2α角反射棱镜合作目标:P L=P T A t A RΩtΩT LρK f K R K T K2α式中,P T为发射功率;A R为接收光学系统的有效面积,A O为目标的有效面积,A t为角反射棱镜的有效面积,ΩT为经发散光学系统激光发散角,Ωt为角反射棱镜的激光发散角,K T为干涉滤光片的峰值透过率,K R为接收系统的透过率,K T为发射系统透过率,Kα为单程大气透过率,ρ为目标反射率。
激光测距非常详细ppt课件

8.2 脉冲激光测距
激光测距的基本公式为:
d 1 ct 2
c——大气中的光速
t——为光波往返所需时间
由于光速极快,对于一个不太大的D来说,t是一个很小的量,
例:设D=15km,c=3×105km/sec
则t=5×10-5sec
由测距公式可知,如何精确测量出时间t的值是测距的关键。由 于测量时间t的方法不同,产生了两种测距方法:
卫星激光测距-激光器 :
总的来讲在其它条件相同时,发射激光的脉冲能量 越高,脉宽越窄,重复率越高,峰值功率越大,则 系统的测距能力越高。
千赫兹皮秒激光器为第四代卫星激光测距之激光器。 下一代卫星测距用激光器为双波长激光器。
测距误差分析
(1) 测距系统仪器误差 – 激光脉冲宽度误差 – 时间间隔测量误差 – 主波计时探测误差 – 回波计时探测误差 – 时钟同步误差 – 时钟频率标准误差
卫星激光测距技术集光机电于一身,涉及计算机软、硬件技术, 光学、激光学、大地测量学、机械学、电子学、天文学、自动控制 学、电子通讯等多种学科。因此SLR测距仪系统十分复杂,消耗较大, 故障率较高,同时受天气因素制约,维护起来也比较困难,需要花费 较大的人力物力,但它又是目前精度最高的绝对观测技术手段。
即Ii=IN·Cosi 则该漫反射体称作“余弦幅射体”或“郎伯幅射体”。 设激光发射光轴与目标漫反射面法线重合,且主要反射 能量集中在1rad以内(约57°) 则Ω=πu2=π
则Pe Pt T / Pt T 1 2
式中:ρ——目标漫反射系数 Tα——大气单程透过率
3、测距仪光接受系统能接受到的激光功率Pr
SPAD
接收望远镜
转台
测距精度与激光脉宽
测距精度是由于激光脉冲前后沿时间差造成的;
激光测距(非常详细).ppt

?
? ? 2? L c
L? c ?? 2nf 2?
?t
短距离、
高精度, 精度可达 毫米级。
三、卫星激光测距
作为激光测距应用的最重要成果之一 ——卫星激光测距 Satellite Laser Ranging ,简称为 SLR)技术起源于二十世纪六 十年代,是目前单次测距精度最高的卫星观测技术,其测距精度已 达到毫米量级,对卫星的测轨精度可达到 1-3 cm。
激光测距是通过测量激光光束在待测距离上往返传播的时间来换算出 距离的,其换算公式为:
d ? ct 2
测距方法分类
脉冲测距法:测距仪发出光脉冲,经被测目标反射后,光 脉冲回到测距仪接收系统,测量其发射和接收光脉冲的时 间间隔,即光脉冲在待测距离上的往返传播时间t。脉冲法 测距精度大多为米的量级; 相位测距法:它是通过测量连续调制的光波在待测距离上 往返传播所发生的相位变化,间接测量时间t。这种方法测 量精度较高,因而在大地和工程测量中得到了广泛的应用。
第九讲 激光测距
电子工程学院光电子技术系
主要内容
8.1 概述 8.2 脉冲激光测距 8.3 多周期脉冲激光测距 8.4 相位激光测距
8.1 概述
激光测距的特点
激光测距仪与其它测距仪(如微波测距仪等)相比, 具备的特点: ? 探测距离远测距精度高 ? 抗干扰性强 ? 保密性好 ? 体积小 ? 重量轻
一、脉冲激光测距
由激光器对被测目标发射一个光脉冲,然后接收系统接收目标 反射回来的光脉冲,通过测量光脉冲往返的时间来算出目标的距离:
d ? ct 2
测程远,精度与激光脉宽有关,普通的纳秒 激光测距精度在米的量级 。
t 的测量:
开
结
始
束Байду номын сангаас
激光测距原理培训讲义PPT(含计算公式解析)

R2
R2
R2
注意:u为孔径角(rad)。
(4)“郎伯”定律:(如图9-3) 图9-3
设光正入射到一漫反射体,设垂直于漫反射面反射的光强 为IN,若向任一方向漫反射的光强Ii满足下式:
即Ii=IN·Cosi 则该漫反射体称作“余弦幅射体”或“郎伯幅射体”。 设激光发射光轴与目标漫反射面法线重合,且主要反射能 量集中在1rad以内(约57°) 则Ω=πu2=π
Ar——入瞳面积
R——目标距离(m)
所以:Pr=Pe·Kr·Ar/R2……(3)
4、测距公式
以(1)代(2)并代入(3)得:光电探测器可接收到
的激光功率Pr为:
Pr Pt1 T Ar K r / R 2
Pe
Pt Kt At T/As 1 T Ar K r / R 2
图9-7
场镜的作用是减小探测器口径,并使孔径光栏成像在光 电探测器上
设计时满足以下关系:
1 Dl 1
1 l
0.80
1 f 2 1
l l
式中:β为横向放大倍率,φ0为光电探器光敏面直径。
解以上方程组,可得 l、f2和 值 。
2、出窗探测系统(图9-8) 图9-8
0.01m ;
而当采用单脉冲测量时
单
C 2
1 fT
3108 2100106
1.5m
结论表明,多脉冲测量比单脉冲测量的测距精度提高了N倍。
(二)固定延时多周期脉冲激光测距
当测量距离很小时,则由“发射→接收→再发射……”过 程中所形成的振荡回路的频率就很高。
例:当S=1.5m时,测量一次(光脉冲往返一次)所需时
激光测距非常详细课件

一、脉冲激光测距
由激光器对被测目标发射一个光脉冲,然后接收系统接收目标 反射回来的光脉冲,通过测量光脉冲往返的时间来算出目标的距离:
d ct 2
测程远,精度与激光脉宽有关,普通的纳秒 激光测距精度在米的量级 。
t 的测量:
开
结
始
束
在确定时间起始点之间 用时钟脉冲填充计数。
t
时钟 脉冲
t=NT
激光测距是通过测量激光光束在待测距离上往返传播的时间来换算出 距离的,其换算公式为:
d ct 2
测距方法分类
脉冲测距法:测距仪发出光脉冲,经被测目标反射后,光 脉冲回到测距仪接收系统,测量其发射和接收光脉冲的时 间间隔,即光脉冲在待测距离上的往返传播时间t。脉冲法 测距精度大多为米的量级; 相位测距法:它是通过测量连续调制的光波在待测距离上 往返传播所发生的相位变化,间接测量时间t。这种方法测 量精度较高,因而在大地和工程测量中得到了广泛的应用。
机
箱
关
伺服系统
发射望远镜
SPAD
接收望远镜
转台
测距精度与激光脉宽
测距精度是由于激光脉冲前后沿时间差造成的;
因此激光脉冲宽度影响测距精度:L C t
表:测距精度与脉宽的比较
脉宽
10ns
100ps
测距精度 3m
3cm
10ps 3mm
卫星激光测距主要指标与激光器分系统的关系
• 测距精度—激光脉宽. • 测程(近地星、远地星)—激光能量、发散角. • 回波率—激光能量、发散角、激光脉冲重复频率.
(2) 卫星反射器误差 – 反射器质心修正值误差
(3) 系统延迟测量误差 – 地靶距离标定误差 – 地靶常规标校测量误差
激光测距讲解

激光测距技术在空间的应用随着空间技术和航天工业的发展。
空间距离测量已成为空间领域的重要研究内容。
传统雷达测距在太空中极易受到高能粒子和电磁波的干扰,测量精度低,无法满足高精度测量的要求。
宇宙空间空气稀薄、温度变化剧烈,无法进行超声波测距。
因此。
测量空间距离需要一种适合空间环境、抗干扰能力强和测量精度高的测距方法。
激光测距技术是一种自动非接触测量方法,对电磁干扰不敏感,抗干扰能力强,测量精度高。
与一般光学测距技术相比,它具有操作方便、系统简单及白天和夜晚都可以工作的优点。
与雷达测距相比,激光测距具有良好的抗干扰性和很高的精度。
在重复测距的同时,以细激光束对空间扫描,同时获得目标的距离、角度和速度等信息,这就是激光雷达。
激光雷达能实现很多传统雷达达不到的性能要求。
激光的发散角小、能量集中。
能够实现极高的探测灵敏度和分辨率;其极短的波长使得天线和系统尺寸可以很小,这些都是传统雷达所不可比拟的。
与微波雷达相比,激光测距仪方向性好、体积小、重量轻。
非常适用于搭载在航天器上进行空间目标距离测量。
激光测距技术综合了激光器技术、光子探测技术、信号处理技术等多项技术。
测距精度高。
测程大,可靠性高,能够满足空间目标高精度、大测程测距的要求。
在空间测量领域获得了广泛应用。
1.1研究背景及意义激光是一种自然界原本不存在的,因受激而发出的具有方向性好、亮度高、单色性好和相干性好等特性的光,激光的特点有:1.方向性好——普通光源(太阳、白炽灯或荧光灯)向四面八方发光,而激光的发光方向可以限制在小于几个毫弧度立体角内,这就使得在照射方向上的照度提高千万倍。
激光准直、导向和测距就是利用方向性好这一特性。
2.亮度高——激光是当代最亮的光源,只有氢弹爆炸瞬间强烈的闪光才能与它相比拟。
太阳光亮度大约是103瓦/(厘米2·球面度),而一台大功率激光器的输出光亮度经太阳光高出7~14个数量级。
这样,尽管激光的总能量并不一定很大,但由于能量高度集中,很容易在某一微小点处产生高压和几万摄氏度甚至几百万摄氏度高温。
激光测距仪基本知识讲解

激光测距仪基本知识激光测距仪的工作原理是怎样的?激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。
脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。
光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。
脉冲法测量距离的精度是一般是在+/-1米左右。
另外,此类测距仪的测量盲区一般是15米左右。
激光测距仪的应用领域主要是那些方面?激光测距仪已经被广泛应用激光测距仪的工作原理是怎样的?激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。
脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。
光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。
脉冲法测量距离的精度是一般是在+/- 1米左右。
另外,此类测距仪的测量盲区一般是15米左右。
激光测距仪的应用领域主要是那些方面?激光测距仪已经被广泛应用于以下领域:电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等。
为什么激光测距仪还有所谓“安全”和“不安全”的区别?顾名思义,激光测距仪是用激光做为主要工作物质来进行工作的。
目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540 纳米的半导体激光,工作波长为1064纳米的YAG激光。
1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。
所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。
在国内,某些厂家还有生产1064纳米的激光测距仪。
对于905纳米和1540纳米的激光测距仪,我们就称之为“安全”的。
对于1064纳米的激光测距仪,由于它对人体具有潜在的危害性,所以我们就称之为“不安全”的。
手持式激光测距仪激光测距原理激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。