MATLAB矩阵运算与应用实例

合集下载

【精选】数学实验一矩阵运算与Matlab命令24

【精选】数学实验一矩阵运算与Matlab命令24
B1=[b11 b12 b13 b14 ;b21 b22 b23 b24; b31 b32 b33 b34]
运行
17
矩阵的运算(矩阵的加减、数乘、乘积)
C=A1+B1 D=A1-B1 syms c, cA=c*A1 A2=A1(:,1:3), B1 G=A2*B1
18
矩阵的运算(矩阵的加减、数乘、乘积)
求解方程组Ax=b x=A\b 若A为可逆方阵, 输出原方程的解x; 若A为nxm(n>m)阵, 且A’A可逆,输出
原方程的最小二乘解x.
21
矩阵的运算(求解线性方程组)
求矩阵方程:
设A、B满足关系式:AB=2B+A,求B。 其中A=[3 0 1; 1 1 0; 0 1 4]。
取出A的1、3行和1、3列的交叉处元素 构成新矩阵A1
程序
A=[1 0 1 1 2;0 1 -1 2 3;

3 0 5 1 0;2 3 1 2 1],
vr=[1, 3];vc=[1, 3];
A1=A(vr, vc)
观察结果
26
分块矩阵(矩阵的标识)
将A分为四块,并把它们赋值到矩阵B 中,观察运行后的结果。
3
2
2

35 20 60 45
, B 10
15
50
40

20 12 45 20
将 表 格 写 成 矩 阵 形 式
6
计算
输入下面Matlab指令 A=[4 2 3;1 3 2;1 3 3;3 2 2], B=[35 20 60 45;10 15 50 40;20

3 0 5 1 0;2 3 1 2 1]

第三章_matlab矩阵运算

第三章_matlab矩阵运算
Matlab 仿真及其应用
主讲:陈孝敬 E-mail:chenxj9@
第3章
数学运算
主要内容:
①矩阵运算; ②矩阵元素运算;
3.1 矩阵运算
3.1.1 矩阵分析
1.向量范式定义:
x x x
1

n
k 1
xk
2 k
2

k 1 n
x
n

1/ 2


k 1
xk
向量的3种常用范数及其计算函数 在MATLAB中,求向量范数的函数为: (1) norm(V)或norm(V,2):计算向量V的2—范数。 (2) norm(V,1):计算向量V的1—范数。 (3) norm(V,inf):计算向量V的∞—范数。
3.1.2 矩阵分解
矩阵分解:把矩阵分解成比较简单或对它性质比较熟悉的若干 矩阵的乘积的形式;
1.Cholesky分解: Cholesky分解是把对称正定矩阵表示成上三角矩阵的转 置与其本身的乘积,即:A=RTR,在Matlab中用函数chol 来计算Cholesky分解 例3-13 求矩阵A=pascal(4)的Cholesky分解, A=pascal(4) R=chol(A) R’*R
例3-18.求解方程组
x1 x2 3 x3 x4 1 3 x1 x2 3 x3 4 x4 4 x 5x 9 x 8x 0 2 3 4 1
解 先用Matlab函数null求出对应的齐次线性方程组的基础解 系,再利用其系数矩阵的上、下三角阵求出方程组的一个特解, 这样即可得到该方程组的通解,程序如下: >> >> >> >> >> >> A=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8]; b=[1 4 0] ′; format rat C=null(A , ′r′); %求基础解系 [L,U]=lu(A); %A=LU,L为上三角阵,U为下三角阵 X0= U\(L\b) %用LU求出一个齐次方程的特解

实训三 MATLAB 矩阵建立与运算

实训三  MATLAB 矩阵建立与运算

物理与工程技术学院实验报告班级: 17物理分组: 姓名:陈俊聪学号: 04同组人:日期:教师评分:实验名称:实训三矩阵建立与运算一、目的1.了解MATLAB基本运算对象,即矩阵:2.通过输入矩阵中每个元素的值来建立一个矩阵;3.矢量法创建矩阵,学会使用冒号和数字产生矢量:4.函数法创建矩阵,利用函数可以快速产生- -些特殊有用的矩阵;5.掌握矩阵的基本运算:矩阵与标量的运算,矩阵与矩阵的运算,提取子块,矩阵的展开,矩阵的线性变换。

二、仪器电脑显示器、电脑主机、键盘、鼠标、MATLAB 软件三、内容1.通过输入矩阵中每个元素的值来创立-一个矩阵,只需以左方括号,以逗号或空格为间隔输入元素值,行与行之间用分号或单击Enter键隔开,最后以右方括号结尾即可。

当矩阵中元素个数比较少是,这种方法非常适用。

另外,用单引号界定的字符或字符串可以创字符例【1-6】创建3X3数值矩阵A, B和字符矩阵C。

例【1-7】建立一个10以内的奇数矩阵。

例【1-8】建立空矩阵A、单位矩阵B、常数矩阵C、均匀分布随机矩阵D、正正态分布的随机矩阵E、零矩阵F。

例【1-9】已知矩阵A=[1 2 3;4 5 6],标量b=3,计算A+b、A*b、A/b和A.^b。

例【1-10】已知矩阵A=[1 2;3 4],矩阵B=[5 6;7 8],求A*B、A.*B、A\B、A/B和A./B的运算结果。

例【1-11】输入一个4×3的矩阵,选出前3行构成一个矩阵;选出前两列构成一个矩阵。

例【1-12】把矩阵A=[1 3 5;7 9 11]和矩阵B=[2 4 6]合并成一个矩阵,再转置后展开。

例【1-13】建立-一个3×3的魔方矩阵,提取其对角元素和下三角矩阵,并上下翻转。

例【1-14】例[1-14] 将矩阵转化为稀疏矩阵B,并察看;再将稀疏矩阵B转化为完全矩阵C。

例【1-15】已知矩阵A=[1,3,5,7,9],找出大于4的元素的位置。

矩阵的运算应用实例

矩阵的运算应用实例

25 .0 40 .0 55 .0
25 .0 25 .0 47 .5
矩阵运算应用示例三
问题描述:
设我们要为一次聚会准备餐饮,需要10个大型
三明治(巨无霸)、6夸脱(每夸脱约1.14 升——译注)果汁饮料、3夸脱土豆沙拉及2盘 开胃菜。以下数据给出3家不同供货商提供这 些商品的单价:
问题分析一:
问题所要求的是对于题目中所给出的四种矩阵,
理解它们所代表的含义,并根据所提出的三个 问题,将对应的矩阵组合起来,以乘积形式表 述出来。由于各个矩阵代表的含义不同,所以 局阵乘积所代表的含义也尽不相同。
问题分析二:
对于第一个问题是要求出为建造每种类型住宅
需要各种物品的数量,由题意对于C矩阵的定 义我们得知矩阵C正是题目所要求的答案。 对于第二个问题是要求出在每个国家制造每种物
(b)哪个矩阵乘积给出了在每个国家制造 每种物品需要多少费用? (c)哪个矩阵乘积给出了在每个国家建造 每种类型住宅需要多少费用?
预备知识:
两个矩阵乘积的定义: 矩阵A与B的乘积C的第i行第j列的元素等于第
一个矩阵A的第i行与第二个矩阵B的第j列的对 应元素乘积的和。当然,在矩真乘积定义中, 我要求第二个矩阵的行数与第一个矩阵的列数 相等。

A
机时
I/O 执行 系统
计时收费
B I/0 执行 系统
方式Ⅰ
方式Ⅱ
作业A 作业B
20 10 作业C 5 4 25 8 10 10 5
2 3 6 5 3 4

C 每种类型的作业数量 D 方式Ⅰ 方式Ⅱ 机时比
供货商A 供货商B 供货商C
巨无霸 $ 4.00 $ 6.00 $ 1.00 $ 0.85 $ 5.00 $ 5.00 $ 0.85 $ 1.00 $ 7.00

MATLAB中的矩阵运算与计算技巧分享

MATLAB中的矩阵运算与计算技巧分享

MATLAB中的矩阵运算与计算技巧分享概述:MATLAB是一款强大的数值计算软件,广泛应用于科学研究、工程设计等领域。

在MATLAB中,矩阵运算是非常重要的一部分内容。

本文旨在分享一些MATLAB中的矩阵运算和计算技巧,帮助读者更好地应用MATLAB进行数值计算和数据处理。

一、基本的矩阵运算1. 矩阵的创建与存储在MATLAB中,可以使用不同的方法创建矩阵,如直接赋值、生成全零矩阵、单位矩阵等。

创建矩阵后,可以使用变量名进行存储,方便后续的计算和操作。

2. 矩阵的运算MATLAB提供了丰富的矩阵运算函数,如加法、减法、乘法、除法等。

例如,使用"+"进行两个矩阵的相加,使用"*"进行矩阵相乘,使用"\ "进行矩阵的求解等等。

3. 矩阵的转置与共轭转置通过单引号操作符可以实现矩阵的转置操作,即将矩阵的行和列进行交换。

对于复数矩阵,可以使用"'"进行共轭转置。

二、常用的矩阵运算函数1. 矩阵求逆与伪逆MATLAB提供了inv函数来求矩阵的逆,pinv函数来求矩阵的伪逆。

对于非奇异矩阵,可以使用inv函数实现精确的逆求解;对于奇异矩阵,则可以使用pinv函数求得伪逆。

2. 矩阵的特征值与特征向量可以使用eig函数来求解矩阵的特征值和特征向量。

特征值表示矩阵的特征属性,特征向量则表示对应特征值的方向信息。

3. 矩阵的奇异值分解奇异值分解(Singular Value Decomposition,简称SVD)是一种重要的矩阵分解方法。

在MATLAB中,可以使用svd函数进行奇异值分解。

通过SVD,我们可以将矩阵分解为三个矩阵的乘积,便于后续的处理和分析。

三、高效计算的技巧与技巧1. 矩阵的切片与索引通过切片和索引操作,可以选取矩阵的部分元素进行操作,或者获取特定的行或列。

这在大规模数据处理和计算中非常有用。

2. 向量化计算向量化计算是一种更高效的计算方式,在MATLAB中,可以通过矩阵运算和函数的向量化实现。

MATLAB矩阵及运算

MATLAB矩阵及运算

点乘——元素对元素乘法 叉乘——矩阵对矩阵乘法
对比举例
矩阵的右除、左除
MATLAB的基本处理单元是复数矩阵(标量是一 个1*1的矩阵)。而在《线性代数》理论中没有除 法运算。所以定义了除法为乘法的逆运算。
注意:因为矩阵乘法不满足交换律,即一般 A*B≠B*A,所以除法要考虑“右除”、“左 除”。
2.1.2 变量
变量的命名规则: 1)变量名、函数名对字母的大、小写敏感。 2)变量名由字母、数字和下划线构成。第一个
字母必须是英文字母。 3)有字符个数限制(版本5.0 :最多31个字符)
2.1.2 变量
MATLAB系统默认变量
重点
(注意大小写!)
i或j:
虚单元 正确:5+7j 错误:5+j7
2.1表达式
表达式 (即语句):将变量、数值、函数 用操作符连接起来,就构成了表达式 。
例如:a=(10j+sqrt(10))/2; %注释 ☆行末的“;”用于抑制结果在屏幕上显示
例如: sin(a),sin(b) ,a+b ☆同在一行的表达式,必须用“,”分开
2.2 矩阵的产生与操作
矩阵的产生:
A./Baa31//b b1 3
a2/b2 a4/b4
B.\A
A.\Bbb31//aa13 bb42//aa42B./A
分析:
K/N=K*inv(N)
因为N不是方阵,没有逆 阵,所以报告错误。
K\N=inv(K)*N
因为K的逆阵尺寸2×2, N的尺寸2×3,所以结 果矩阵2×3。
矩阵元素的指数运算
这种战略取得了成功:使人们不在编程细节上化 精力,把注意力集中到科学计算的方法和建模合理性等 大问题上。

matlab矩阵与线性变换与计算

matlab矩阵与线性变换与计算

05
实例演示
矩阵的基本操作实例
矩阵的创建
使用方括号[],例如A = [1 2; 3 4]。
矩阵的加法
使用加号+,例如B = [5 6; 7 8],则A + B = [6 8; 10 12]。
矩阵的数乘
使用标量乘法,例如2 * A = [2 4; 6 8]。
矩阵的元素运算
使用点运算符.,例如A.^2 = [1 4; 9 16]。
矩阵计算实例
行列式计算
使用det函数,例如det(A) = -2。
行最简形式
使用rref函数,例如rref(A) = [1 0; 0 1]。
矩阵的逆
使用inv函数,例如inv(A) = [-2 -3; 1.5 0.5]。
矩阵的转置
使用'运算符,例如A' = [1 3; 2 4]。
THANKS
感谢观看
Matlab矩阵与线性变换与计 算
• Matlab矩阵基础 • 线性变换 • 矩阵计算 • Matlab中的矩阵与线性变换操作 • 实例演示
01
Matlab矩阵基础
矩阵的定义与表示
矩阵是一个由数字组 成的矩形阵列,行和 列的数量可以不同。
还可以使用分号来分 隔行,以创建多行矩 阵。
在Matlab中,可以 使用方括号[]来创建 矩阵,并使用逗号分 隔行内的元素。
矩阵的基本操作
加法
将两个矩阵的对应元素相加。
减法
将一个矩阵的对应元素减去另 一个矩阵的对应元素。
数乘
将一个标量与矩阵中的每个元 素相乘。
转置
将矩阵的行和列互换。
特殊类型的矩阵
对角矩阵
除了主对角线上的元素外,其他元素都为零 的矩阵。

如何使用Matlab进行矩阵运算

如何使用Matlab进行矩阵运算

如何使用Matlab进行矩阵运算随着科学技术的不断发展,矩阵运算在各个领域的应用日益广泛。

Matlab作为一款功能强大的数学软件,其矩阵运算能力非常强大。

本文将介绍如何使用Matlab进行矩阵运算,希望能对读者在科学研究和工程实践中的矩阵计算有所帮助。

一、Matlab的基本矩阵运算1. 创建矩阵在Matlab中,可以使用一对方括号`[]`来创建矩阵。

例如,要创建一个3行3列的矩阵A,可以使用如下命令:A = [1 2 3; 4 5 6; 7 8 9]。

这样就创建了一个元素分别为1到9的3行3列矩阵。

2. 矩阵加法和减法Matlab中可以使用加号和减号来进行矩阵的加法和减法运算。

例如,要计算矩阵A和B的和,可以使用命令C = A + B;要计算矩阵A和B的差,可以使用命令D = A - B。

3. 矩阵乘法Matlab中使用乘号`*`来进行矩阵的乘法运算。

例如,要计算矩阵A和B的乘积,可以使用命令C = A * B。

需要注意的是,矩阵乘法是满足结合律的,即A *(B * C) = (A * B) * C。

4. 矩阵转置在Matlab中,可以使用单引号`'`来对矩阵进行转置操作。

例如,对矩阵A进行转置,可以使用命令B = A'。

需要注意的是,转置操作只能应用于二维矩阵。

5. 求逆矩阵在Matlab中,可以使用inv函数来求解矩阵的逆矩阵。

例如,要求矩阵A的逆矩阵,可以使用命令B = inv(A)。

需要注意的是,只有方阵才有逆矩阵。

6. 矩阵的特征值和特征向量Matlab中可以使用eig函数来求解矩阵的特征值和特征向量。

例如,要求矩阵A的特征值和特征向量,可以使用命令[V,D] = eig(A),其中V为特征向量矩阵,D 为特征值对角矩阵。

二、Matlab的高级矩阵运算1. 矩阵的点乘和叉乘Matlab中使用.*和.^来进行矩阵的点乘和叉乘运算。

例如,要计算矩阵A和B 的点乘,可以使用命令C = A .* B;要计算矩阵A和B的叉乘,可以使用命令D =A .^ B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 从外部读入大量数据 2. 使用M文件,建立空数组(作为中间变量或输
出变量) 3. 进行你希望的处理(如成绩统计、进行基本
的数组循环处理)
A
12
(3)图片处理(2013年的全国赛B题 为图像处理类题目)
1. 使用imread()函数从外部读入一个位图 图像
2. 进行你想要和处理(如使用rgb2gray() 函数将彩图变为灰阶图;对某个灰度值 放大或放小)
︻┳═一数组
在C/C++、C#、 JAVA等几乎所有的编 程语言中,像左图这个 的数据集合都被称作数 组。使用最多的数组是 一维数组和二维数组, 左图是一个二维数组。
A
4
●明辨关系
A
它既是一维数组(编程 语言的叫法),也是向 量(数学的叫法)
它既是二维数组(编 程语言的叫法),也 是矩阵(数学的叫法)
更多内容请参考MATLAB的帮助文档或一下,以上内容引自MATLAB帮助文档。
A
9
三、应用
(1)解线性方程组 (2)批量数据的处理 (3)图片处理(2013年的全国赛 B题为图像处理类题目)
A
10
(1)解线性方程组
改写为矩阵 形式
A
A
X
B
这里必须使用左除运算符, 不能写成X=B/A。 11
(2)批量数据的处理
5
二、基本运算(操作)
(1)引用 (2)提取与删除 (3)外部录入
!!! 注意,以下讲解看到 数组和矩阵时,应该 意识到它是同一样东 西
A
6
(1)引用
左图是在MATLAB中输入和显 示的一个二维数组截图,在上 面的输入中,magic(4)将生 成一个4*4的二维数组(或者 说一个4*4的矩阵),并且将 该数组赋值给一个变量array, array为数组名,以后可以通 过数组名(数组元素所在的行 数,数组元素所在的列数)来 引用数组中的某一个元素,如 array(2,2)引用了第二行第二 列的元素,即11
A
13
A
14
对于一维数组元素(即向量)
的A引用,大家就自己摸索吧。
7
(2)提取与删除 核心内容——冒号运算符(:)
• 将任意矩阵变为列向量
array(:)
• 选取矩阵的某行:)
选取数组array第四行的所有列
• 选取矩阵的某列所有行
array(:,3)
选取数组array第三列的所有行
• 删除矩阵的某行或某列
array(:,3)=[]
令数组aArray第三列为空,即删除了第三列,[]表示空数组8
(3)外部录入
1. 使用变量窗口直接编辑(包括复制、粘 贴、修改、删除等操作)
2. 使用xlsread()函数;
Read a specific range of data from the Excel file in the previous example. filename = 'myExample.xlsx'; sheet = 1; xlRange = 'B2:C3'; subsetA = xlsread(filename, sheet, xlRange)
MATLAB矩阵运算与应用
一、基本知识
• 什么是矩阵 • 矩阵、向量以及数组的关系
A
2
先来看一个5*5的矩阵
行向量
列 向 量
A
矩阵由行向量和列向量组成,实际上, 它是一张数据表,每行的列数相等, 每列的行数相等。一般情况下,这种 数据表在数学上叫做矩阵,但在编程 语言上却有另一种叫法。
3
• 必须意识到MATLAB也是一门编程语言(事实上 你可以用它开发游戏和进行图像处理),那么在 编程语言上这种数据表一般称作什么呢?
相关文档
最新文档