锐角三角函数(正弦、余弦和正切)
初三数学锐角三角函数

初三数学锐角三角函数中考要求中考要求模块一 三角函数基础一、锐角三角函数的定义如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边.(1)正弦:Rt ABC ∆中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin aA c=.(2)余弦:Rt ABC ∆中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =. (3)正切:Rt ABC ∆中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b=. 注意:①正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、cos 与A 、tan 与A 的乘积.③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值.二、特殊角三角函数a A这些特殊角的三角函数值一定要牢牢记住! 三、锐角三角函数的取值范围在Rt ABC ∆中,90C ∠=︒,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan aA b=,所以 0sin 10cos 1tan 0A A A <<<<>,,. 四、三角函数关系 1.同角三角函数关系: 22sin cos 1A A +=,sin tan cos AA A= 2.互余角三角函数关系:(1) 任意锐角的正弦值等于它的余角的余弦值:()sin cos 90A A =︒-;(2) 任意锐角的余弦值等于它的余角的正弦值:()cos sin 90A A =︒-; (3) 任意锐角的正切值等于它的余角的余切值:()tan cot 90A A =︒-. 3.锐角三角函数值的变化规律:(1)A 、B 是锐角,若A >B ,则sin A >sin B ;若A <B ,则sin A <sin B(2) A 、B 是锐角,若A >B ,则cos A <cos B ;若A <B ,则cos A >cos B (3) A 、B 是锐角,若A >B ,则tan tan A B >;若A <B ,则tan tan A B <【例1】 已知在ABC △中,A B ∠∠、是锐角,且5sin tan 22913A B AB cm ===,,,则ABC S =△ .【巩固】如图,点A 在半径为R 的O 上,以A 为圆心,r 为半径作A ,设O 的弦PQ 与A 相切,求证PA QA ⋅为定值.【例2】 求tan1tan2tan3tan89︒⋅︒⋅︒⋅⋅︒的值【巩固】化简:22sin cos sin 1tan sin cos αααααα++--【例3】已知tan α1)221cos sin cos 1sin cos sin a ααααα-+-+,(2090α︒<<︒).【巩固】已知tan 2α=,求4sin 2cos 5cos 3sin αααα-+.【例4】 已知α为锐角,且22sin 5cos 10αα-+=,求α的度数. OQPA【巩固】若α为锐角,且22cos 7sin 50αα+-=,求α的度数.【例5】 已知sin cos αα+(α为锐角),求作以1sin α和1cos α为两根的一元二次方程.【巩固】若方程222210x ax a -+-=的一个根是sin α,则它的另一个根必是cos α或cos α-.【巩固】已知:ABC △中,方程2(sin sin )(sin sin )(sin sin )0B A x A C x C B -+-+-=的两根相等,求证60B <︒.【巩固】在ABC △中,60A =︒,最大边与最小边的边长分别是方程2327320x x -+=的两个根,求ABC △的外接圆半径和内切圆的面积.【例6】 若0°<θ<30°,且1sin 3km θ=+(k 为常数,且k <0),则m 的取值范是 .模块二 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切; 当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题. 六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来cb aC BA(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等. 七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位.【例7】 如图,某高层楼房与上海东方明珠电视塔隔江想望,甲、乙两学生分别在这楼房的A B ,两层,甲在A 层测得电视塔塔顶D 的仰角为α,塔底C 的俯角为β,乙在B 层测得塔顶D 的仰角为θ,由于塔底的视线被挡住,乙无法测得塔底的俯角,已知A B ,之间的高度差为a ,求电视塔高CD(用含a αβθ,,,的代数式表示)图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线【例8】一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.(1)求整修后背水坡面的面积;(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?【例9】如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60︒方向上,港口D在港口A 北偏西60︒方向上.一艘船以每小时25海里的速度沿北偏东30︒的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75︒方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.DC BA【巩固】海面上B 处有一货轮正在向正南方向航行,其航行路线是当它到达正南方C 时,在驶向正西方的目的地A 处,且200CA CB ==海里,在AB 中点O 处有一客轮,其速度为货轮的一半,现在客轮要截住货轮取一件货物,于是选择某一航向行驶去截住货轮,那么当客轮截住客轮时至少航行了多少海里,它所选择了怎样的方向角?(路程保留整数海里,角度精确到度)课堂检测1. (辽宁竞赛)如图,湖心岛上有一凉亭,现欲利用湖岸边的开阔平整地带,测量凉亭顶端到湖面所在平面的高度AB (见示意图),可供使用的工具有测倾器、皮尺.(1)请你根据现有条件,设计一个测量凉亭顶端到湖面所在平面的高度AB 的方案,画出测量方案的平面示意图,并将测量的数据标注在图形上(所测的距离用m ,n 表示,角用α,β表示,测倾器高度忽略不计);(2)根据你所测量的数据,计算凉亭到湖面的高度AB (用字母表示).2. 化简:222tan1tan 2....tan89sin 1sin 2...sin 89︒⋅︒︒︒+︒++︒3. 如图1、图2,是一款家用的垃圾桶,踏板AB (与地面平行)或绕定点P (固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持''AP A P BP B P ==,).通过向下踩踏点A 到'A (与地面接触点)使点B 上升到点'B ,与此同时传动杆BH 运动到''B H 的位置,点H 绕固定点D 旋转(DH 为旋转半径)至点'H ,从而使桶盖打开一个张角'HDH ∠.如图3,桶盖打开后,传动杆''H B 所在的直线分别与水平直线AB DH 、垂直,垂足为点M C 、,设''H C B M =.测得6cm 12cm '8cm AP PB DH ===,,.要使桶盖张开的角度'HDH ∠不小于60︒,那么踏板AB 离地面的高度至少等于多少cm ?(结果保留两位有效数字)课后作业1. 化简求值:1sin 1sin 1cos 1cos 1sin 1sin 1cos 1cos αααααααα⎛⎫⎛⎫-+-+-- ⎪⎪ ⎪⎪+-+-⎝⎭⎝⎭(090α︒<<︒)2. 若045α︒<<︒,且3sin cos 716αα=,求sin α的值. 图3图2C MAA'P BB'HDH'H'DHB'BPA'A(图1)3. (2011甘肃兰州)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图①在ABC △中,AB AC =,顶角A 的正对记作sadA ,这时=BCsadA AB=底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题: (1)60sad ︒= .(2)对于0180A ︒<<︒,∠A 的正对值sadA 的取值范围是 . (3)如图②,已知3sin 5A =,其中A ∠为锐角,试求sadA 的值.图②图①C BAC B A。
锐角三角函数讲义

锐角三角函数讲义【知识点拨】知识点一:锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b ,c . ∠A 的正弦=A asin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注意:我们说锐角三角函数都是在直角三角形中讨论的!若没有直角,要想方设法构造直角。
课堂练习:1. 把Rt △ABC 各边的长度都扩大3倍得Rt △A 'B 'C ',那么锐角A.A '的余弦值的关系为( ).A.cosA =cosA 'B.cosA =3cosA 'C.3cosA =cosA 'D.不能确定 2. 已知中,AC =4,BC =3,AB =5,则( )A .B .C .D .3. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( )A.34 B.43 C.35 D.45α图14.在△ABC中,∠C=90°,tan A=,则sin B=()A. B. C. D.5.在Rt△ABC中,∠C=90°,a=2,b=3,则cos A=,sin B=,tan B=,6.⑴如图1-1-7①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.知识点二:特殊角三角函数值的计算知识点三:运用三角函数的关系化简或求值 1.互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A tan (900-A )=ctan A ; ctan (900-A )=tan A2.同角的三角函数关系. ①平方关系:sin 2A+cos 2A=l ② 商数关系:sin cos tan ,cot cos sin A AA A A A==sin cos a a += ③倒数关系: tgα·ctgα=1.课堂练习:1. 如α∠是等腰直角三角形的一个锐角,那么cos α的值等于( )A.12D.12. 45cos 45sin +的值等于( ) A. 1B. 2C. 3D.213+ 3. 下列计算错误的是( )A .sin 60sin 30sin 30︒-︒=︒B .22sin 45cos 451︒+︒=C .sin 60cos 60cos 60︒︒=︒D .cos30cos30sin 30︒︒=︒4. 已知a 为锐角,sina=cos500则a 等于( )A 20°B 30°C 40°D 50°5. 若tan(a+10°)=3,则锐角a 的度数是 ( ) A 、20° B 、30° C 、35° D 、50°6. (兰州市)如果sin 2α+sin 230°=1那么锐角α的度数是( )A.15° B.30° C.45° D.60° 7. 已知α为锐角,且sin α-cos α=12 ,则sin α·cos α=___________8. cos 2α+sin 242○ =1,则锐角α=______.9. tan30°sin60°+cos 230°-sin 245°tan45°10. 22sin30cos60tan 60tan30cos 45+-⋅+︒.11. 22sin 45cos30tan 45+-知识点四:锐角三角函数的增减性三角函数的单调性1. 正弦和正切是增函数,三角函数值随角的增大而增大,随角的减小而减小.2. 余弦是减函数,三角函数值随角的增大而减小,随角的减小而增大。
sincostan度数公式以及常见角度数值

sincostan度数公式以及常见角度数值
锐角三角函数是以锐角为自变量,以此值为函数值的函数。
在直角三角形ABC 中,我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。
初中数学主要考察正弦(sin)、余弦(cos)和正切(tan)的计算公式。
正弦(sin)
在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边。
sin30°=1/2 sin45°=√2/2 sin60°=√3/2
余弦(cos)
在直角三角形中,任意一锐角∠A的临边与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的临边/斜边。
cos30°=√3/2 cos45°=√2/2 cos60°=1/2
正切(tan)
在直角三角形中,任意一锐角∠A的对边与临边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/临边。
tan30°=√3/3 tan45°=1 tan60°=√3
三角函数顺口溜
正弦对比斜,余弦邻比斜,正切对比邻,正弦余弦互逆运算。
sin30°=cos60°=1/2
sin60°= cos30°=√3/2
sin45°=cos45°=√2/2。
中考复习: 锐角三角函数

中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。
把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。
锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。
当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。
2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。
3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。
4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。
5、正、余弦的平方关系:sin 2α+ cos 2α=1。
二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。
1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。
锐角三角函数sin cos tan

锐角三角函数sin cos tan
我们要讨论锐角三角函数,包括正弦(sin)、余弦(cos)和正切(tan)。
首先,我们需要理解这些函数的基本定义和性质。
锐角三角函数是定义在锐角上的函数,这些函数与三角形的边和角有关。
1. 正弦(sin): 正弦函数是定义为直角三角形中锐角的对边与斜边的比值。
2. 余弦(cos): 余弦函数是定义为直角三角形中锐角的邻边与斜边的比值。
3. 正切(tan): 正切函数是定义为直角三角形中锐角的对边与邻边的比值。
这些函数有一些重要的性质,例如:
1. 它们的值都在-1到1之间,这是因为在一个锐角三角形中,对边和邻边
的长度永远不会超过斜边的长度。
2. 正弦、余弦和正切函数在锐角范围内是单调的,这意味着随着角度的增加,它们的值也会增加。
3. 正弦和余弦函数在45度时相等(sin(45°) = cos(45°)),这是因为在一
个等腰直角三角形中,对边和邻边的长度是相等的。
4. 正切函数是无界的,这意味着随着角度的增加,正切函数的值可以无限增加或无限减少。
这些性质对于理解锐角三角函数非常重要,它们可以帮助我们解决各种与三角学相关的问题。
28.1锐角三角函数--余弦、正切ppt

AB 5
BC 3
例2 如图,在Rt△ABC中,∠C=90°,BC=2,
AB=3,求∠A,∠B的正弦、余弦、正切值. B
解:在RtABC中,
3
2
AC AB2 BC2 32 22 5,
A
C
sin A BC 2,cos A AC 5 ,tan A BC 2 2 5 .
AB 3
AB 3
∴ AB = 19.608 080 89≈19.61m 即旗杆的高度是19.61m.
练习:
使用计算器求下列锐角的三角函数值.(精确到 0.01)
(1)sin20°,cos70°; sin35°,cos55°; sin15°32′,cos74°28′;
(2)tan3°8′,tan80°25′43″;
新知探索:60°角的三角函数值
B
2
3
60.0
A
C
1
sin60°= A的对边 3
斜边
2
cos60°= A的邻边 1 斜边 2
tan60°= A的对边 3 A的邻边
30°、45°、60°角的正弦值、余弦值和正切 值如下表:
锐角a 三角函数
30°
45°
60°
sin a
1
2
3
2
2
2
cos a
3
2
1
28.1锐角三角函数(2)
——正弦 正切
复习与探究:
在 RtABC中, C 90
B 1.锐角正弦的定义
c
A
b
a
∠A的正弦:
s
inA
A的对边 斜边
BC AB
a c
C
2、当锐角A确定时,∠A的对边与斜边的比就随之 确定。此时,其他边之间的比是否也随之确定?为 什么?
锐角三角函数公式和面积公式

锐角三角函数公式正弦:sin α=∠α的对边/∠α的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边面积公式长方形,正方形以及圆的面积公式面积公式包括扇形面积共式,圆形面积公式,弓形面积公式,菱形面积公式,三角形面积公式,梯形面积公式等多种图形的面积公式。
扇形面积公式在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积:S=nπR^2÷360比如:半径为1cm的圆,那么所对圆心角为135°的扇形的周长:C=2R+nπR÷180=2×1+135×3.14×1÷180=2+2.355=4.355(cm)=43.55(mm)扇形的面积:S=nπR^2÷360=135×3.14×1×1÷360=1.1775(cm^2)=117.75(mm^2)扇形还有另一个面积公式S=1/2lR其中l为弧长,R为半径三角形面积公式任意三角形的面积公式(海伦公式):S=√p(p-a)(p-b)(p-c), p=(a+b+c)/2,a.b.c,为三角形三边。
证明:证一勾股定理分析:先从三角形最基本的计算公式S△ABC = aha入手,运用勾股定理推导出海伦公式。
证明:如图ha⊥BC,根据勾股定理,得: x = y = ha = = = ∴S△ABC = aha= a× = 此时S△ABC为变形④,故得证。
证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha。
斯氏定理:△ABC边BC上任取一点D,若BD=u,DC=v,AD=t.则t 2 = 证明:由证一可知,u = v = ∴ha 2 = t 2 = -∴S△ABC = aha = a × = 此时为S△ABC的变形⑤,故得证。
锐角三角函数的简单运用

锐角三角函数的计算方法包括直接计算、利用三角恒等式化简、利用同角关系式化简等。 掌握这些计算方法是解决三角函数问题的基本技能。
对未来学习锐角三角函数的建议
01
深入理解概念
在学习锐角三角函数的过程中,要深入理解其概念,掌握其性质和定理,
这样才能更好地运用它们解决实际问题。
02 03
利用三角函数求长度
在直角三角形中,已知角度和一边长度,可以利用正弦、余弦、正切等三角函数 求出另一边的长度。
利用三角函Байду номын сангаас求距离
在平面几何问题中,可以利用三角函数求两点之间的距离,或者点到直线的距离 。
判断三角形形状问题
利用三角函数判断三角形形状
通过比较三角形的三个内角的三角函数值,可以判断三角形是锐角三角形、直角三角形还是钝角三角 形。
正弦函数的性质
01
02
03
定义域
正弦函数在第一象限和第 二象限有定义,即角度范 围在0到180度之间。
值域
正弦函数的值域为[-1,1], 表示角度的正弦值永远不 会超过1或小于-1。
单调性
正弦函数在第一象限和第 二象限内是单调递增的, 随着角度的增加,正弦值 也会增加。
余弦函数的性质
定义域
余弦函数在第一象限和第 四象限有定义,即角度范 围在0到180度之间。
锐角三角函数的 简单运用
目录
• 引言 • 锐角三角函数的性质 • 锐角三角函数的计算方法 • 锐角三角函数在几何问题中的应
用 • 锐角三角函数在实际问题中的应
用 • 总结与展望
01
引言
锐角三角函数的定义
锐角三角函数是三角函数中的一种, 主要研究锐角的角度与其边长之间的 关系。常见的锐角三角函数有正弦、 余弦和正切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.同一锐角三角函数的关系:
如图, 在 Rt△ ABC中,∠ C=90°, sin A
a ,cos A
b
,
c
c
则 sin2 A cos2 A
2
a
c
2
b
c
a2 b2 c2
c2 c2
1,即同一锐角的
正弦、余弦的平方和等于
1,或者说若
α
为锐角, 则
sinห้องสมุดไป่ตู้
2
2
α+cos α =1.
规律 学习锐角三角函数时,应明确三角函数值的两个变化规律: 1.特殊角的三角函数值的记忆规律:
Rt△ ABC中,∠ A+∠ B=90°,由
三角函数定义得
sin A
a ,cos(90
a
b
A) cosB ,cos A
sin B sin(90
A) ,
c
c
c
所以 sin A=cos(90° - A),cos A= sin (90° - A).即任意锐角的余弦值等于它的余角的正
弦值,任意锐角的正弦值等于它的余角的余弦值.
锐角三角函数教案
概念
1.在直角三角形中,斜边大于直角边且各边均为正数,正弦、余弦都是直角边与斜边
的比值,正切是两直角边的比值,因此正弦值、余弦值都是小于
1 的正数,正切值是大于零
的数,并且都没有单位,即 0<sin A<1,0<cos A<1, tan A>0(∠ A为锐角).
2.每一个三角函数都是一个完整的符号, 如 sin A不能理解为 sin · A,sin A 中的“ A”
2.锐角三角函数值的增减性:锐角 α 的正弦 sin α 值随着∠ α 的增大而增大;锐角
α 的余弦 cosα 值随着∠ α 的增大而减小;锐角 α 的正切 tan α 值随着∠ α 的增大而增
大.
观察上表可知:
( 1)正弦、余弦值可表示为
x
的形式,正切值可表示为
2
x
的形式;
3
( 2)顺口溜:一、二、三;三、二、一;三九二十七.这三句话中的
1、 2、3; 3、 2、
1;3、9、27,分别是 30°, 45°, 60°的角的正弦、 余弦、 正切值中分子根号内 x 的值. 顺
口溜简单、有趣、易记.
“sin10 °+sin40 °=sin50 °”、“ tan10 °+tan40 °=tan50 °”等错误.
3.当锐角 A的度数固定不变时, ∠ A 的三角函数也是固定不变的, 它与∠ A 的两边长短
(即三角形的边长)无关.
4.三角函数式乘方时,一般将指数写在三角函数符号与角之间,如
sin α 的平方
是用一个大写字母表示的角, sin A(或 sin α )只表示一个角 A(或 α)的正弦(角的符号
可以省略);若用三个大写字母表示的角,在表示它的三角函数时,角的符号不能省略,如
“∠ AOB 的 正 弦 ” 应 写 成 “sin ∠ AOB” 而 不 能 写 成 “sin AOB” , 更 要 避 免 出 现
“( sin α)2”一般写成“ sin2 α ”.
5.三角函数式是一个等式,右边是一个分式,所以它具有等式、分式的性质,即已知
式子中的两个量时,可以求出第三个量,如
②c
a
.
sin A
sin A
a
,它的两个变式为:①
a=c· sin A;
c
关系
学习锐角三角函数时,应注意以下两种关系:
1.直角三角形中互余两角的三角函数的关系:如图,