轻型货车鼓式制动器设计
鼓式制动器设计

鼓式制动器设计
设计说明书:鼓式制动器设计
第一部分:引言
引言部分介绍了鼓式制动器的作用和设计的背景,解释了为何需要设
计新的鼓式制动器,并概述了本文档的结构和目标。
第二部分:设计要求
设计要求部分列出了鼓式制动器设计的主要目标和性能要求。
这些要
求主要包括制动力、制动效率、制动稳定性、耐久性等方面的要求。
同时,还需要考虑到制动器的重量、尺寸、成本等因素。
第三部分:结构设计
结构设计部分包括制动器的整体结构设计和各个部件的详细设计。
其中,整体结构设计需要考虑到制动器的安装位置和方式,以及与车辆其他
部件的配合关系。
各个部件的设计需要考虑到材料的选择、尺寸的确定、
加工工艺等因素。
第四部分:工作原理
工作原理部分详细介绍了鼓式制动器的工作原理。
包括制动器的构成、制动材料的摩擦特性、制动力的产生机制等内容。
同时,还需要考虑到制
动过程中的热量产生和传递机制,以确保制动器的稳定性和耐久性。
第五部分:性能评估
性能评估部分对鼓式制动器的主要性能进行评估。
主要包括制动力、制动效率、制动稳定性、耐久性等方面的测试和分析。
需要设计相应的测试方法和评估标准,以确保设计的鼓式制动器能够满足要求。
第六部分:结论
结论部分对整个设计过程进行总结,评价了设计的鼓式制动器的优缺点,并提出了进一步改进的建议。
同时,还需要总结设计过程中的经验和教训,以便在将来的鼓式制动器设计中能够有所借鉴。
轻型汽车底盘鼓式制动器设计

中型汽车底盘鼓式制动器设计DESIGN OF DRUM BRAKE FOR LIGHT VEHICLE CHASSIS2013年6月摘要制动器是产生阻碍车辆运动或运动趋势的力(制动力)的部件。
根据制动力矩产生的方式不同,制动器可分为:摩擦制动器(利用固定元件与旋转元件工作表面的摩擦作用产生制动力矩的制动器)和缓速制动器,通常提及的制动器泛指摩擦制动器。
目前各类汽车所采用的制动器可分为鼓式制动器和盘式制动器两大类。
鼓式制动器的摩擦副中的旋转元件为制动鼓,其工作表面为圆柱面;盘式制动器的旋转元件为制动盘,以端面为工作表面。
另外,根据旋转元件的安装位置不同,制动器又可分为车轮制动器和中央制动器两大类。
其中,车轮制动器的旋转元件固装在车轮或半轴上,即制动力矩直接分别作用于两侧车轮上,其一般用于行车制动,也可兼用于第二制动(或应急制动)和驻车制动;中央制动器的旋转元件固装在传动系的传动轴上,其制动力矩需经过驱动桥再分配到两侧车轮上,其一般只用于驻车制动和缓速制动。
鼓式制动器有内张型和外束型两种。
前者的制动鼓以内圆柱面为工作表面,在汽车上应用广泛;后者制动鼓的工作表面则是外圆柱面,目前只有极少数汽车将其用于驻车制动器。
内张型鼓式制动器主要由制动鼓(形状似锅,安装在轮毂上,并与车轮同步旋转)、制动蹄片(圆弧状部件,两个一组,蹄片外侧粘有产生制动力矩的摩擦衬片)、固定销及制动分缸等。
制动时,位于制动鼓内部的制动蹄片一端承受来自制动分缸的促动力后,绕其另一端的支点向外旋转,压靠到制动鼓内圆面上,进而产生摩擦力矩(制动力矩)。
盘式制动器主要由制动盘(安装在轮毂上与车轮形成整体旋转)和制动钳(固定在转向节等悬架构件上)组成。
其中,制动盘有通风式和实心式两种;制动钳主要有浮动钳夹式(单活塞)、浮动叉式、固定钳夹式等几种。
与鼓式制动方式相比,盘式制动装置的机械部分外露,散热性能好,减少了由于摩擦热而产生了制动衰退现象,制动性能较稳定,所以现代轿车大多采用了盘式制动器,但是为了降低车辆成本,部分轿车在前轮采用盘式制动器的同时,后轮仍保留了鼓式制动器。
轻型载货汽车制动器设计-任务书

内容:本设计题目要求学生利用计算机设计软件完成汽车底盘中制动器的结构设计,包括制动盘、制动钳、制动鼓、制动蹄等零件的设计以及部分零件的计算、校核。
掌握盘、鼓式制动器结构和原理,设计内容包括制动器总成、制动轮缸、制动钳、制动鼓、制动蹄等。同时对整车制动力矩进行校核,并对零件强度进行校核。设计的图纸包括制动器总成装配图和部分零件图。整个设计中的零件尺寸选取均按国家标准选取。在设计的过程中充分考虑盘式制动器与鼓式制动器的区别,在制动轮缸的设计中很好的体现各自制动器的特点。
要求:1、查阅相关资料,学习使用相关软件。
2、计算参数,设计结构,利用计算机辅助设计软件绘图。
3、编写设计说明书。
4、结构设计合理,图面清晰。
三、设计(论文)完成后应提交的成果
1.设计说明书一份。说明书字数:15000字以上。
2.图纸:总成图4张(折合0号图2张以上);零件图4张(折合0号图1张以上)。
(9)毕业设计审核、修改。第14~16周(5月28日~6月17日)
(10)毕业设计答辩。第17周(6月18日~6月20日)
五、主要参考资料
[1]王望予 . 汽车设计 (第四版) ,机械工业出版社 , 2004.8
[2]王国林 . 汽车底盘构造及维修 ,高等教育出版社 , 2005.1
[3]陈家瑞 . 汽车构造 ,机械工业出版社 , 2005.1
(4)进行制动系统零部件的设计计算。第4~5周(3月21日~4月2日)
(5)完成部分设计图纸,折合0#图纸1张,完成说明书初稿。第6周~8周(4月3日~4月22日)
(6)中期检查。第8周(4月22日)
(7)完成制动系统装配图、主要零件图,完成设计说明书第9~13周(4月23日~5月27日)
鼓式制动器毕业设计

鼓式制动器在智能交通系统中的应用前景和挑战
应用前景:鼓式制动器在智能交通系统中具有广泛的应用前景,如自 动驾驶、智能交通管理等。
挑战:鼓式制动器在智能交通系统中的应用面临着技术、成本、安全 等方面的挑战。
技术挑战:需要解决鼓式制动器在智能交通系统中的稳定性、可靠性、 响应速度等方面的问题。
成本挑战:需要降低鼓式制动器的制造成本,提高其在智能交通系统 中的竞争力。
添加标题
添加标题
优化制动器材料:提高耐磨性,降 低热衰退
优化制动器散热设计:提高散热效 率,降低热衰退
鼓式制动器设计评估方法
制动力评估:计算制动力大小,确保满足车辆制动需求 热负荷评估:计算制动器温度,确保不会因过热导致制动失效 磨损评估:计算制动器磨损量,确保使用寿命满足要求 噪音评估:计算制动器噪音,确保不会因噪音过大影响驾驶体验
铝合金鼓式制动器:重量轻,散热性能好,但强度和耐磨性相对较差 碳纤维鼓式制动器:重量极轻,散热性能极佳,但成本较高,耐磨性一 般 陶瓷鼓式制动器:耐磨性极佳,重量轻,但成本较高,散热性能一般
新型材料的鼓式制动器的研发和应用
碳纤维复合材料:轻量化、高 强度、耐高温
陶瓷材料:耐磨损、耐高温、 耐腐蚀
钛合金材料:轻量化、高强度、 耐腐蚀
鼓式制动器的装配技术要求和方法
装配前检查: 确保零件清洁、
无损伤
装配顺序:按 照图纸要求进
行装件之间的
配合精度
装配质量:确 保装配质量符
合要求
装配完成后的 检查:检查装 配是否正确, 有无漏装、错
装等问题
鼓式制动器的质量检测和控制方法
性能测试:进行制动性能测 试,如制动距离、制动力等
制动稳定性要求
货车前后轮制动器设计

货车前后轮制动器设计一、制动器类型选择货车常用的制动器类型包括鼓式制动器和盘式制动器。
鼓式制动器具有较高的制动效能和较低的制造成本,但在制动过程中摩擦片的磨损较大,需要定期更换。
盘式制动器具有较好的散热性能和较长的摩擦片寿命,但制造成本较高。
根据货车的具体使用情况和需求,可以选择合适的制动器类型。
二、制动器尺寸设计制动器的尺寸设计需根据车辆情况和需求进行确定,包括直径、宽度和厚度等参数。
直径过大会增加制动器的重量和成本,过小则会影响制动效能。
宽度过大会增加车辆的横向稳定性,过小则会影响制动效果。
厚度过大则会增加制动器的重量和成本,过小则会影响制动的持久性。
因此,在满足制动效能和车辆稳定性的前提下,应尽量减小制动器的尺寸。
三、制动器材料选择制动器的材料选择对制动器的性能和使用寿命具有重要影响。
铸铁具有良好的耐磨性和耐腐蚀性,但热传导性能较差,因此适用于低速和轻载车辆的制动器制造。
铸铝则具有较好的轻量化和散热性能,但成本较高,因此适用于高速和重载车辆的制动器制造。
其他材料如复合材料等也可以根据特定需求进行选择。
四、制动器间隙调整制动器间隙调整是保证制动器正常工作的重要环节。
调整机构的设计应简单易行,方便操作。
调整过程应遵循先调整后蹄鼓间隙再调整前蹄鼓间隙的顺序进行。
在调整过程中,还需注意观察间隙是否合适,以确保制动器的正常工作。
五、制动器散热设计制动器的散热设计是保证制动器稳定工作的重要因素。
通风口的设计应考虑气流的方向和速度,以便于将制动器产生的热量迅速排出。
散热器的选择应与制动器的功率和尺寸相匹配,以实现良好的散热效果。
此外,合理安排制动器与散热器的位置关系,有利于提高散热效果。
六、制动器摩擦片更换周期制动器摩擦片的更换周期应根据使用情况和摩擦原理进行设计。
在理想情况下,摩擦片应能在达到最大磨损之前更换一次。
实际应用中,可根据摩擦片的实际磨损情况和使用里程等因素来确定更换周期。
需要注意的是,在更换摩擦片时,还需对制动器进行调整以确保其正常工作。
轻型货车鼓式制动器设计

摘要制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。
制动系统的主要部件就是制动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄—鼓式制动器。
鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动鼓位于制动轮内侧,刹车时制动块向外张开,摩擦制动鼓的内侧,达到刹车的目的。
本设计就摩擦式鼓式制动器进行了相关的设计和计算。
在设计过程中,以实际产品为基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求进行设计。
首先根据给定车型的整车参数和技术要求,确定制动器的结构形式、驱动形式及制动器主要参数,然后计算制动器的制动力矩、制动效能因数、制动减速度、制动温升等,并在此基础上进行制动器主要零部件的结构设计,如制动鼓、制动蹄、制动底板等。
最后,完成装配图和零件图的绘制。
关键词:鼓式制动器,制动力矩,制动效能因数,制动减速度,制动温升ABSTRACTIn the vehicle brake system is very important. Braking failure can be result in serious consequences. The main part of the braking system is the brake. In the modern car brake shoe - brake drum which has high braking efficiency is still widely used.Drum brake, also known as block-type brake. The mainstream of drum brakes is sheets style, and its brake shoes located inside the brake wheel. When braking, brake-blocks open outward to friction the inside of the brake drum. The design of the friction drum brakes were related to the design and calculation. The design based on the actual product, accord to our country brake factory general new product development process, and union theoretical design requirements. The first, according to assigns vehicle the parameter and the specification, determine the brake structure, actuation structure and brake main parameters. And then calculate the braking torque, brake effectiveness factor, brake retarded velocity, brake temperature rise, etc. And the major components of the brake base on these to design. Finally, completes the assembly and details drawings.KEY WORDS:Drum brake, Braking torque, Drake efficiency factor, Braking deceleration, Brake temperature rising目录第一章绪论 (1)1.1引言 (1)1.2 选题背景与意义 (1)1.3 研究现状 (2)第二章鼓式制动器结构形式与选择 (3)第三章制动系的主要参数及其选择 (4)3.1 制动力与制动力分配系数 (4)3.2 同步附着系数 (7)3.3 制动器最大制动力矩 (8)3.4 鼓式制动器的结构参数与摩擦系数 (10)3.4.1 制动鼓内径D (10)3.4.2 摩擦衬片宽度b和包角β (10)3.4.3 摩擦衬片起始角 (12)3.4.4 制动器中心到张开力P作用线的距离a (12)3.4.5 制动蹄支承点位置坐标k和c (12)3.4.6 衬片摩擦系数f (12)第四章制动器的设计计算 (13)4.1 制动器因素计算 (13)4.2 制动驱动机构的设计计算 (14)4.2.1 所需制动力的计算 (14)4.2.2 确定制动轮缸直径 (15)4.2.3 轮缸的工作容积 (15)4.2.4 制动主缸的直径与工作容积 (16)4.2.5 制动踏板力验算 (16)4.3 制动蹄片上的制动力矩 (17)4.4 摩擦衬片的磨损特性 (20)4.5 制动器的热容量和温升核算 (22)4.6 行车制动效能计算 (23)4.7 驻车制动的计算 (23)第五章制动器主要零件的结构设计 (25)5.1 制动鼓 (25)5.2 制动蹄 (26)5.3 制动底板 (26)5.4 制动蹄的支承 (26)5.5 制动轮缸 (27)5.6 摩擦材料 (27)5.7 制动器间隙 (28)第六章三维建模 (29)6.1 UG的特点 (29)6.2 UG的应用 (29)第七章结论 (32)7.1 论文结论 (32)致谢 (33)参考文献 (34)附录A:英文资料 (35)附录B:英文资料翻译 (45)附录C:鼓式制动器装配图及零件图 (55)附件:毕业论文光盘资料第一章绪论1.1选题背景与意义随着汽车性能的提高,对汽车安全性能的要求也越来越高。
鼓式制动器设计(设计说明书)

毕业设计设计说明书题目 SC6408V 商用车鼓式制动器总成设计专业车辆工程(汽车工程)班级 2006级汽车一班学生 ___指导老师 ___重庆交通大学2010年前言1 本课题的目的和意义近年来,国内、外对汽车制动系统的研究与改进的大部分工作集中在通过对汽车制动过程的有效控制来提高车辆的制动性能及其稳定性,如ABS 技术等,而对制动器本身的研究改进较少。
然而,对汽车制动过程的控制效果最终都须通过制动器来实现,现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。
对于蹄-鼓式制动器,其突出优点是可利用制动蹄的增势效应而达到很高的制动效能因数,并具有多种不同性能的可选结构型式,以及其制动性能的可设计性强、制动效能因数的选择范围很宽、对各种汽车的制动性能要求的适应面广,至今仍然在除部分轿车以外的各种车辆的制动器中占主导地位。
但是,传统的蹄-鼓式制动器存在本身无法克服的缺点,主要表现于:其制动效能的稳定性较差,其摩擦副的压力分布均匀性也较差,衬片磨损不均匀;另外,在摩擦副局部接触的情况下容易使制动器制动力矩发生较大的变化,因此容易使左右车轮的制动力产生较大差值,从而导致汽车制动跑偏。
对于钳-盘式制动器,其优点在于:制动效能稳定性和散热性好,对摩擦材料的热衰退较不敏感,摩擦副的压力分布较均匀,而且结构较简单、维修较简便。
但是,钳-盘式制动器的缺点在于:其制动效能因数很低(只有0.7 左右),因此要求很大的促动力,导致制动管路内液体压力高,而且其摩擦副的工作压强和温度高;制动盘易被污染和锈蚀;当用作后轮制动器时不易加装驻车制动机构等。
因此,现代车辆上迫切需要一种可克服已有技术不足之处的先进制动器,它可充分发挥蹄-鼓式制动器制动效能因数高的优点,同时具有摩擦副压力分布均匀、制动效能稳定以及制动器间隙自动调节机构较理想等优点。
轻型载货汽车制动器设计

摘要从汽车诞生时起,车辆制动器在车辆的安全方面就起着决定性作用。
目前,汽车所用制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。
盘式制动器的主要优点是在高速刹车时能迅速制动,散热效果优于鼓式刹车,制动效能的恒定性好。
鼓式制动器的主要优点是刹车蹄片磨损较少,成本较低,便于维修、由于鼓式制动器的绝对制动力远远高于盘式制动器,所以普遍用于后轮驱动的卡车上,但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故轻型车一般还是使用前盘后鼓式。
本设计前轴采用浮动钳盘式制动器,后轴采用制动器为领从蹄式鼓式制动器。
主要设计内容包括制动器结方案分析与选择、制动器主要参数的确定与计算、盘式与鼓式制动器具体结构参数设计与强度校核。
关键词:轻型载货汽车,盘式制动器,鼓式制动器,制动蹄,设计ABSTRACTBorn on, from cars in the vehicle's safety vehicle brake plays a decisive role in. , at present, the car is almost always used brake friction type, can be divided into two categories: drum and disc. The main advantage of the disc brake at high speed, braking can quickly brake cooling effect is better than that of drum brake, braking performance of constant qualitative good. The main advantages of drum brake is brake shoe pieces wear less, low cost, convenient in maintenance, because of drum brake absolute braking force far outclass disc brakes, so commonly used to rear wheel drive the truck on but because in order to improve its braking performance and must add braking force system, make its increased cost is higher, so small QianPan HouGu type or use commonly.This design by floating p-s-n caliper disc brake, brakes is brought by axle from hoof type drum brake. Main design content including brakes "plan analysis and choose to determine the brake, main parameters and calculation, disc and drum brake specific structure parameter design and strength check.Keywords: Light bills car,Disc brake ,drum brakes, Brake shoes, design.目 录摘要 (I)ABSTRACT ...................................................... I I第1章 绪论 (1)1.1 制动器的目的意义 (1)1.2 制动器的研究现状 (1)1.3 制动器的研究方法 (2)1.4 本章小结 (2)第2章 制动器方案论证分析与选择 (3)2.1 制动器结构方案的确定 (3)2.1.1鼓式制动器结构方案的确定 (3)2.1.2盘式制动器结构方案的确定 (6)2.2制动器主要参数及其选择 (7)2.2.1制动器设计相关主要技术参数 (8)2.2.2同步附着系数 (8)2.2.3前后轴制动力矩分配系数b (8)2.2.4制动器最大制动力矩 (9)2.3 本章小结 (9)第3章 盘式制动器结构设计计算与校核 (10)3.1 盘式制动器的主要参数确定 (10)3.1.1 制动盘直径D (10)3.1.2 制动盘厚度h (10)3.1.3 摩擦衬片内半径1R 与外半径2R (10)3.1.4 摩擦衬片工作面积A (10)3.2 盘式制动器的主要零部件设计与计算 (11)3.2.1 制动盘 (11)3.2.2 制动钳 (11)3.2.3 制动块 (11)3.2.4 摩擦材料 (12)3.2.5 制动轮缸 (12)3.2.6制动器间隙的调整方法 (13)3.3盘式制动器强度校核 (13)3.3.1摩擦衬片的磨损特性的计算 (13)3.3.2 盘式制动器最大制动力矩的计算 (14)3.3.3 盘式制动器最大制动力矩的计算 (16)3.4本章小结 (18)第4章鼓式制动器结构设计计算与校核 (19)4.1鼓式制动器的主要参数确定 (19)4.1.1 鼓式制动器的结构参数与摩擦系数 (19)4.2鼓式制动器的主要零部件设计与计算 (20)4.2.1 制动鼓 (20)4.2.2 制动蹄 (21)4.2.3 制动底板 (21)4.2.4 制动蹄的支承 (21)4.2.5 制动蹄片上的制动力矩与张开力 (21)4.2.6 制动器因数与制动蹄因数的分析计算 (26)4.2.7 驻车制动计算 (28)4.2.8 制动轮缸的选择 (29)4.3鼓式制动器强度校核 (31)4.3.1紧固摩擦片铆钉的剪切应力验算 (31)4.3.2制动蹄支承销剪切应力计算 (32)4.3.3 回位弹簧强度校核 (32)4.4本章小结 (33)结论 (34)参考文献 (35)致谢 (36)附录1 (37)附录2 (39)第1章绪论1.1 制动器的目的意义汽车是现代交通工具中用得最多、最普遍,也是最方便的交通运输工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轻型货车鼓式制动器设计
制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。
制动系统的主要部件就是制动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄—鼓式制动器。
鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动鼓位于制动轮内侧,刹车时制动块向外张开,摩擦制动鼓的内侧,达到刹车的目的。
本设计就摩擦式鼓式制动器进行了相关的设计和计算。
在设计过程中,以实际产品为基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求进行设计。
首先根据给定车型的整车参数和技术要求,确定制动器的结构形式、驱动形式及制动器主要参数,然后计算制动器的制动力矩、制动效能因数、制动减速度、制动温升等,并在此基础上进行制动器主要零部件的结构设计,如制动鼓、制动蹄、制动底板等。
最后,完成装配图和零件图的绘制。
1.1选题背景与意义
随着汽车性能的提高,对汽车安全性能的要求也越来越高。
制动器是汽车制动系统中最重要的安全部件,对汽车的安全性有着重要的作用,因此对制动器的设计进行分析研究有着重要的意义。
鼓式制动器作为现代汽车广泛使用的具有较高制动效能的制动器,尽管对其的设计研究取得了一定的成绩,但是对传统鼓式制动器的设计仍然有着不可替代的基础性和研发性作用,也可以为后续设计提供理论参考。
这样,在以后的设计研究当中,不仅可以延续鼓式制动器的优点,还能在此基础上设计出制动性能更好的制动器,满足汽车的安全性和乘员舒适性,提高汽车的整体性能。
1.2研究现状
长期以来,为了充分发挥鼓式制动器的重要优势,旨在克服其主要缺点的研究工作和技术改进一直在进行中,尤其是对鼓式制动器工作过程和性能计算分析方法的研究受到高度重视。
这些研究工作的重点在于制动器结构和实际使用因素等对制动器的效能及其稳定性等的影响,取得了一些重要的研究成果,得到了一些比较可行、有效的改进措施,制动器的性能也有了一定程度的提高。
如以某汽车前轮鼓式双领蹄式制动器的制动蹄为研究对象,进行了受力分析并建立了力学模型,使用Pro/E建立了CAD模型,运用ANSYS进行了有限元
分析和强度计算。
详细的分析结果验证了原设计的合理性和CAD/CAE技术的功效。
参数化设计是三维实体造型方法的新发展。
通过对UG软件的二次开发,挖掘通用软件的潜力,可以更好地满足专业设计的要求。
通过对鼓式制动器组件的参数化设计,为汽车制动器专用设计平台的开发奠定了基础。
这不仅可以提高产品质量,缩短研制周期,降低设计成本,还可极大地减轻劳动强度。
1.3本文结构
第一章主要介绍了鼓式制动器的发展现状及研究意义;第二章介绍了鼓式制动器的结构形式及本课题所采用的结构形式;第三章讲述了制动系的主要参数及其选择,包括制动器分配系数、同步附着系数及结构参数;第四章讲述了制动器驱动机构的分析计算及选择;第五章介绍了制动器主要零件的结构设计。
第二章鼓式制动器结构形式及选择
鼓式制动器可按其制动蹄的受力情况分类(见图2.1),它们的制动效能,制动鼓的受力平衡状况以及对车轮旋转方向对制动效能的影响均不同。
图2.1鼓式制动器简图
(a)领从蹄式(用凸轮张开);(b)领从蹄式(用制动轮缸张开);(c)双领蹄式(非双向,平衡式);
(d)双向双领蹄式;(e)单向增力式;(f)双向増力式
制动蹄按其张开时的转动方向和制动鼓的转动方向是否一致,有领蹄和从蹄之分。
制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。
虽然领从蹄式制动器的效能及稳定性在各式制动器中均处于中等水平,但由于其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,易于调整蹄片与制动鼓之间的间隙。
故仍广泛用作载货汽车的前、后轮以及轿车的后轮制动器。
根据设计车型的特点及制动要求,并考虑到使结构简单,造价较低,也便于附装驻车制动机构等因数,选用领从蹄式制动器,其支撑结构型式为支承销式支撑。
平衡以阻止车轮再旋转的周缘力的极限值。
当制动到ω=0以后,地面制动力B F 达到附着力F ϕ值后就不再增大,而制动器制动力f F 由于踏板力P F 增大使摩擦力矩f T 增大而继续上升(见图3.1)
图 3.1 制动器制动力f F ,地面制动力B F 与踏板力P F 的关系
根据汽车制动时的整车受力分析,考虑到制动时的轴荷转移,可求得地面对前,后轴车轮的法向反力1Z ,2Z 为:
1Z =()2g G L h L
ϕ+ 2Z =()1g G L h L
ϕ- (3.5) 式中:G — 汽车所受重力,N ;
L — 汽车轴距,mm ;
1L — 汽车质心离前轴距离,mm ;
2L — 汽车质心离后轴距离,mm ;
g h — 汽车质心高度,mm ;
ϕ — 附着系数。
图3.2 制动时的汽车受力图
汽车总的地面制动力为:
B F =1B F +2B F =G du g dt
=Gq (3.6)。