高分子物理实验球晶观察

合集下载

偏光显微镜法观察聚合物球晶及其生长过程-高分子物理-实验7-07

偏光显微镜法观察聚合物球晶及其生长过程-高分子物理-实验7-07

实验七偏光显微镜法观察聚合物球晶及其生长过程一、实验目的1.熟悉偏光显微镜的构造,掌握偏光显微镜的使用方法。

2.观察聚丙烯在不同结晶温度下得到的球晶的形态,估算聚丙烯球晶大小。

3.测定聚丙烯在不同结晶度下的晶体的熔点。

4.测定25℃聚丙烯的球晶生长速度。

二、实验原理聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有着密切的关系,所以对聚合物的结晶形态研究具有很重要的意义。

聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,而其中球晶是聚合物结晶时最常见的一种形态(如图1所示),它是由晶核开始,片晶辐射状生长而成的球状多晶聚集体,基本结构单元是具有折叠链结构的片晶(如图2所示)。

球晶可以长得比较大,直径甚至可以达到厘米数量级。

在偏光显微镜下球晶通常呈现Maltese 黑十字消光图样,因此,普通的偏光显微镜就可以对球晶进行观察。

图1 聚乙烯球晶的扫描电镜照片光是电磁波,也就是横波,它的传播方向与振动方向垂直。

但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。

但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光。

一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。

光波在各向异性介质中传播时,其传播速度随振动方向不同而变化,折射率值也加以改变,一般都发生双折射,分解成振动方向相互垂直,传播速度不同,折射率不同的两条偏振光。

而这两束偏振光通过第二个偏振片时,只有在与第二偏振轴平行方向的光线可以通过。

而通过的两束光由于光程差将会发生干涉现象。

在正交偏光显微镜下观察:非晶体聚合物,因为其各向同性,没有发生双折射现象,光线被正交的偏振镜阻碍,视场黑暗。

球晶会呈现出特有的黑十字消光现象,黑十字的两臂分别平行于两偏振轴的方向。

而除了偏振片的振动方向外,其余部分就出现了因折射而产生的光亮。

如图3是全同立构聚苯乙烯球晶的偏光显微镜照片。

图2 球晶示意图在偏振光条件下,还可以观察晶体的形态,测定晶粒大小和研究晶体的多色性等等。

高分子物理:07 聚合物的球晶

高分子物理:07 聚合物的球晶

AFM原位研究:
聚双酚A正辛烷基原始晶核和晶片的形成
球晶的生长过程
AFM phase images of ( a ) two growing spherulites; ( b ) two approaching spherulites.
当两球晶相遇时,生长的片晶逐渐相交并相互终止, 形成一个明显的界面。
聚合物的球晶
¾聚合物结晶有多种形态
¾当结晶聚合物由熔融态冷却或由玻璃态升 温或从浓溶液中析出结晶时,在不存在应力 和流动的情况下,一般形成球晶。
¾球晶是最典型的结晶形态之一
高聚物球晶的生长过程一般按下列顺序发生:
(1)具有相似构象的高分子链段聚集在一起,形 成一个稳定的原始核;
(2)随着更多的高分子链段排列到核的晶格中, 核逐渐发展成一个片晶;
参考文献
1 .何平笙,朱平平,杨海洋.谈谈聚合物的结晶形态问题. 化学通报,2003, 66(3):210-212 .
2 .马德柱,何平笙,徐种德,周漪琴.高聚物的结构与性能.第二 版,北京: 科学出版社,1995.
3 .王曦,刘朋生,姜勇,等. 原子力显微镜原位观察球晶界面上片晶的生长. 高分子学报,2003, (5):761-764.
6。范泽夫,王霞瑜,姜勇,等。原子力显微镜研究环带球晶的形貌和片晶结 构。中国科学B辑,200罗艳红,姜勇,雷玉国,等. 原子力显微镜研究高聚物结晶的最新进展 。 Chinese Science Bulletin(科学通报),2002,47(15): 1121-1125 .
5。 徐军,郭宝华,张增民,等. 聚羟基丁酸酯环带球晶的形貌研究. 高等学校化 学学报,2002, 23(6): 1216-1218
Keller:带状片晶沿晶轴方向作周期性扭曲 Keith and Padden:片晶在生长过程中,不规则折叠面的 上下表面所积累的不对称应力所导致。 Bassett:导致片晶扭曲的主要原因是螺位错 马德柱:晶片扭曲的驱动力是相互作用能密度的不同

偏光显微镜发观察聚合物球晶

偏光显微镜发观察聚合物球晶
• ③物镜中心调节。偏光显微镜物镜中心与 载物台的转轴(中心)应一致
• (3)计算机显示观察实验操作。 • ①先打开显微镜、冷热台的开关,再开计
算机电源开关。

②双击Windows开始桌面上的“Linksys”测试 软件。
③点Setup → Comm Port → Comm l → 确定。
④ File → Reset Serial Interface →联机。
• 2.球晶聚合物试样:聚丙烯,聚乙烯。聚酰 胺等。
• 四、实验步骤 • 1.聚合物的试样制备 • (1)熔融法制备聚合物球晶。 • (3)溶液法制备聚合物晶体试样。 • (2)直接切片制备聚合物试样。
• 2.偏光显微镜调节,检查(即无试样观察) • (1)观测基本程序 • (2)目镜观察实验操作。 • ①正交偏光的校正。 • ②调节焦距,使物像清晰可见
的熔点。
• 五、思考题
• 1.聚合物结晶过程有何特点?形态特征如何 (包括球晶的大小与分布,球晶边界,球 晶的颜色等)?结晶温度对球晶形态有何 影响?
• 2.利用晶体光学原理解释正交偏光系统聚合 物球晶的黑十字消光现象。
• 3.聚合物结晶体生长依赖什么条件,在实际 生产中如何控制晶体的形态?
• 六、参考文献
偏光显微镜法观察聚合物球晶
• 一、实验目的 • 1.熟悉偏光显微镜的构造,掌握偏光显微镜
的使用方法。
• 2.观察不同结晶温度下得到的球晶形态,估 算聚合物球晶大小。
• 3.测定聚合物在不同结晶度下晶体的熔点。 • 4.测定不同温度下聚合物的球晶生长速度。
聚合物在不同条件下形成不同的结晶,比如 单晶、球晶、纤维晶等等,而其中球晶是聚 合物结晶时最常见的一种形式。球晶可以长 得比较大,直径甚至可以达到厘米数量级。 球晶是从一个晶核在三维方向上一齐向外生 长而形成的径向对称的结构,由于是各向异 性的,就会产生双折射的性质。因此,普通 的偏光显微镜就可以对球晶进行观察,因为 聚合物球晶在偏光显微镜的正交偏振片之间 呈现出特有的黑十字消光图形。

小角激光光散射法测定不同结晶条件下聚合物球晶尺寸-高分子物理-实验8-08

小角激光光散射法测定不同结晶条件下聚合物球晶尺寸-高分子物理-实验8-08
/4s、1/8s、1/15s、1/30s、1/60s 。 6. 暗房工作,冲洗底片。 7. 将底片晾干后,从底片上测出 d 值。 五、数据记录和处理
按下列要求记录实验数据,并计算球晶半径 R 。
No. 激光管电流/mA
曝光时间/s
L/cm
1 2 3
d/cm θm/(°) R /μm
挑选一张拍摄比较清晰,散射强度极大位置明显的底片,测定 d 值,计算球晶平均半径 R 。
如果检偏片和起偏片的偏振方向都是垂直取向(即图 1 中的z轴方向),记作Vν 散射;如果检 偏片水平取向,而起偏片垂直取向,记作Hν 散射。在研究结晶性聚合物的结构形态方面,用得较 多的是Hν 散射。
1
图 2 是聚丙烯球晶的 小角激光光散射图形。
光散射理论,有“模型 法”和“统计法”两种。球晶 是结晶性高聚物中极为普
六、思考题 1.与光学显微镜相比较,用小角激光光散射法研究晶态聚合物的球晶结构有什么优点? 2.你还知道哪些小角激光光散射法在固体聚合物研究中的应用? 七、参考文献 1.R. S. Stein, J. Appl. Phys., 1960,31,1873 2.R.S. 斯坦著,,徐懋等译.散射和双折射方法在聚合物织构研究中的应用.北京:科学出版社, 1983 3. 左榘编著.激光散射原理及其在高分子科学中的应用.郑州:河南科学技术出版社,1994
U
=
4πR λ
sin⎜⎛ ⎝
θ 2
⎟⎞ ⎠
2
λ为光在介质中的波长;sinU 定义为正旋积分
∫ sin U = U sin x dx 。 0x
从公式(1)中可以看出,散射强度与球晶的光学各向异性项 (αr − αt )
相关,而与周围介质无关。并且对散射角、方位角有依赖关系,以 sinμcosμ的形式随μ而变化。当μ = 0°、90°、180°、270°时,sinμcosμ = 0,因此,在这四个方位上,散射强度IHν =0;而当μ = 45°、135°、225°、 315° 时,sinμcosμ有极大值,因而散射强度也出现最大值。这就是Hν 散射图之所以呈四叶瓣的原因。

高分子物理实验

高分子物理实验

Glass transition
crystallization
exothermic melting
Temperature, K
endothermic
DSC 的影响因素
样品量 Polymer : 10mg 扫描速率(升、降温)
气氛
实验四 塑料熔体流动速率的测定
一、实验目的
1、了解热塑性塑料熔体流动速率与加工性能的关系 2、掌握熔体流动速率的测定方法
一、实验目的
1、掌握黏度法测定聚合物分子量的原理 2、掌握乌氏黏度计的使用方法以及测定结果的数据处 理
二、基本原理
三、仪器和试样
乌氏黏度计、恒温槽装置一套等 1%聚乙二醇水溶液
注意事项
温度 浓度 时间
实验三 聚合物的热谱分析―差示扫描量热法 (DSC)
一、实验目的
通过用差示扫描量热分析仪测定聚合物的 加热及冷却谱图,了解DSC的原理
中的应用 学习一般的实验方法,包括单晶和球晶的
培养,并对聚合物的各种结晶形态进行观 察。
二、基本原理
聚合物晶体像其他晶体一样,也是对光各 向差异性的 ,会产生双折射现象
球晶呈现出特有的黑十字消光图像,黑十 字的两臂分别平行起偏镜和检偏镜的振动 方向。转动工作台,这种消光图像不改变, 其原因在于球晶是由沿半径排列的微晶所 组成,这些微晶均是光的不均匀体,具有 双折射现象
和影响测定结果的因素
二、基本原理
邵氏硬度计:
将规定形状的压针在标准的弹簧压力下和规定的 时间内,将压针压入试样的深度转换为硬度值
三、仪器和试样
Lx-A型邵氏硬度计 橡胶皮
注意事项
温度 时间
实验六 溶胀法测定天然橡胶的交联度 一、实验目的

高分子物理实验指导书详解

高分子物理实验指导书详解

高分子物理实验指导书合肥工业大学高分子科学与工程系2011年6月目录实验一偏光显微镜观察聚合物结晶形态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 实验二膨胀计法测定聚合物玻璃化温度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 实验三粘度法测定高聚物分子量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 实验四聚合物熔融指数的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 实验五聚合物应力应变曲线的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17实验一偏光显微镜观察聚合物结晶形态一、实验目的了解偏光显微镜的结构及使用方法;观察聚合物的结晶形态,以加深对聚合物结晶形态的理解。

二、实验原理聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。

聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维状晶等等,面其中球晶是聚合物结晶时最常见的一种形式。

球晶可以长得比较大,直径甚至可以达到厘米数量级。

球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。

因此,普通的偏光显微镜就可以对球晶进行观察,因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。

偏光显微镜的最佳分辨率为200nm,有效放大倍数超过500-1000倍,与电子显微镜、X射线衍射法结合可提供较全面的晶体结构信息。

球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即一个球状聚集体。

光是电磁波,也就是横波,它的传播方向与振动方向垂直。

但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。

但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光(如图1-1,箭头代表振动方向,传播方向垂直于纸面)。

a) b)图1-1 自然光和线偏振光的振动现象a) 自然光b) 线偏振光一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。

偏光显微镜法观察聚合物球晶形态


桂林工学院高分子教研室
二 、实验原理
根据聚合物晶体具有双折射性质,我们采用偏 光显微镜来观察球晶的结构。 高聚物自熔体冷却结晶后,成为光学各向异性 体,当光线通过它时,就会分解为振动平面互相 垂直的两束光,它们的传播速度除光轴方向外, 一般是不相等的,于是就产生两条折射率不同的 光线。 当结晶体的振动方向与上、下偏光镜振动方向 不一致时,视野明亮,就可以观察到晶体,利用 这一原理,我们可以在正交偏光镜间观察到球晶的 形态,大小,数目及光性符号等。
桂林工学院高分子教研室
实验步骤
聚丙烯颗粒 偏光显 微镜
以45°斜角 盖上另外一 片载玻片
观察显微镜下球晶 的形态并估算其半 径
载玻片
电热炉
桂林工学院高分子教研室
五、数据处理
1、画出用偏光显微镜所观察到的球晶形态示 意图。 2、将记录的格数乘以mm/格(已经显微尺标 定),计算球晶直径。 返回首页
桂林工学院高分子教研室
六、思考题
1.简述聚合物球晶在正交偏光下黑 十字消 光及消光环成因. 2. 2.偏光显微镜下观察晶体形态的原理是什么? ? 3. 球晶大小与结晶温度的依赖关系怎样? 4.制样时,应注意哪些环节?
桂林工学院高分子教研室
参考文献
[ 1] 南京地质学会. 晶体光学. 地质出版社; [2] AV托博尔斯基等. 长春应化所译. 聚合物 科学与材料. 第八章. 科学出版社,1977 ; [3] 何君曼等. 高分子物理. 复旦大学出版社, 1983。
桂林工学院高分子教研室
偏光显微镜法观测聚合物球晶形态
Байду номын сангаас
一、实验目的 二、实验原理 三、仪器与试剂 四、实验步骤 五、数据处理 六、思考题

高分子物理实验-偏光显微镜法测定聚合物球晶的生长速率


g. 重复 cdef。 h. 切断电源。 五、注意事项 1. 在使用显微镜时, 任何情况下都不得用手或硬物触及镜头, 更不允许对显微镜的任 何部分进行拆卸。镜头上有污物时,可用镜头纸小心擦试。 2. 用显微镜观察时, 物镜与试片间的距离, 可先后用粗调/细调旋钮调节, 直至聚焦清 晰为止。禁防镜头触碰盖玻片。 3. 试样在加热台上加热时, 要随时仔细观察温度和试样形貌变化, 避免温度过高引起 试样分解。 4. 制样时, 样品量尽可能少, 否则难以压成薄层液膜, 致使在偏光显微镜中观察时, 出
5
2
高物实验报告
现球晶的重叠,既妨碍观察,也影响其自然生长。 5. 等温结晶的温度越高,拍照间隔要设定的长一些。 六、数据处理 1. 实验参数 熔化温度:180℃左右 等温结晶温度 /℃ 102 100 98 96 94 2. 结晶速度 在五个温度点下分别进行等温结晶, 按照上表进行拍照, 得到每个时刻下的球晶半径, 将球晶半径对时间作图, 并取曲线中间段的部分进行线性拟合, 其斜率即为各个温度点下的 球晶生长速度。原始生长曲线及其拟合图如下: 恒温台设定温度 /℃ 1 113 111 109 107 105 拍照间隔 /s 30 15 12 10 4
图1
T=94℃时的等温结晶-球晶生长图
图2
T=96℃时的等温结晶-球晶生长图
图3
T=98℃时的等温结晶-球晶生长图
图4
T=100℃时的等温结晶-球晶生长图
1
恒温台温度需要校正,因此和实际温度不同。 3
高物实验报告
图5
T=102℃时的等温结晶-球晶生长图
由上述曲线中, 我们可以看到, 球晶半径与结晶时间大致呈线性关系, 球晶生长速率基 本恒定。 但经过仔细观察, 我们可以发现, 结晶时间较长时, 球晶生长速率会略有下降, 我 认为, 这可能是由于球晶体积增加, 出现了球晶的靠近、 交叠, 这使得熔体部分的流动体积 减少, 使得链段在球晶表面的迁移、 扩散、 堆砌减缓。 因此为了不同温度之间能够进行更好 的比较,我基本均选取了 r=20-30μm 附近的数据点。 由图 1~图 5 可得球晶生长速度随时间的变化,如下表所示: 温度 /℃ 生长速度 /(μ m/s) 94 0.778 96 0.201 98 0.101 100 0.104 102 0.033

高分子物理实验讲义

实验一偏光显微镜法观察聚合物球晶形态一、实验目的1. 了解偏光显微镜的基本结构和原理。

2. 掌握偏光显微镜的使用方法和目镜分度尺的标定方法。

3. 用偏光显微镜观察球晶的形态,估算聚乙烯试样球晶的大小。

二、实验原理球晶是高聚物结晶的一种最常见的特征形式。

当结晶性的高聚物从熔体冷却结晶时,在不存在应力或流动的情况下,都倾向于生成球晶。

球晶的生长过程如图1-1所示。

球晶的生长以晶核为中心,从初级晶核生长的片晶,在结晶缺陷点发生分叉,形成新的片晶,它们在生长时发生弯曲和扭转,并进一步分叉形成新的片晶,如此反复,最终形成以晶核为中心,三维向外发散的球形晶体。

实验证实,球晶中分子链垂直球晶的半径方向。

图1-1 聚乙烯球晶生长的取向(a)晶片的排列与分子链的取向(其中a、b、c轴表示单位晶胞在各方向上的取向)(b) 球晶生长(c) 长成的球晶用偏光显微镜观察球晶的结构是根据聚合物球晶具有双折射性和对称性。

当一束光线进入各向同性的均匀介质中,光速不随传播方向而改变,因此个方向都具有相同的折射率。

而对于各向异性的晶体来说,其光学性质是随方向而异的。

当光线通过它时,就会分解为振动平面互相垂直的两束光,它们的传播速度除光轴外,一般是不相等的,于是就产生两条折射率不同的光线,这种现象称之为双折射。

晶体的一切光学性质都是和双折射有关。

偏光显微镜是研究晶体形态的有效工具之一,许多重要的晶体光学研究都是在偏光镜的正交场下进行的,即起偏镜与检偏镜的振动平面相互垂直。

在正交偏光镜间可以观察到球晶的形态,大小,数目及光性符号等。

当高聚物处于熔融状态时,呈现光学各向同性,入射光自起偏镜通过熔体时,只有一束与起偏镜振动方向相同的光波,故不能通过与起偏镜成90°的检偏镜,显微镜的视野为暗场。

高聚物自熔体冷却结晶后,成为光学各向异向体,当结晶体的振动方向与上下偏光镜振动方向不一致时,视野明亮,就可以观察到晶体。

图1-2画出了一轴晶一个平行于它的光轴Z的切面。

偏光显微镜法观察聚合物球晶结构

偏光显微镜法观察聚合物球晶结构6.2 高分子链的三级结构如果说聚合物的基本性质主要取决于链结构(即一、二级结构),对于实际应用中的高分子材料,其使用性能很大程度上还取决于加工成形过程中形成的聚集态结构(即三级结构)。

例如同样的聚对苯二甲酸乙二醇酯,如果从熔融状态下迅速淬火,冷却后得到的制品是透明的,如果缓慢冷却则由于结晶得到不透明体。

6.2.1 结晶结构三维空间长程有序是低分子晶体的基本结构。

对于长径比大、分子长短不一、链柔软且易于缠结的高分子是否能形成长程有序的晶体的认识,曾长期不能统一。

然而大量实验证明,高聚物晶体确实存在。

它们有清楚的衍射图、明确的晶胞参数和显著的相转变点。

它们的形态可以通过偏光显微镜或电子显微镜直接观察到。

与低分子晶体不同的是,它们的晶胞没有最高级的晶型——立方晶系,在其余的6个晶系中正交和单斜约各占30%。

而且由于结晶条件不同,分子链构象或链堆砌方式发生变化,同一种高聚物可以形成几种不同的晶型,如聚丙烯就有α型(单斜晶系)、β型(六方晶系)和γ型(三方晶系)不同的晶型,这种现象称为同质多晶现象,这也是高聚物结晶所特有的。

同一种高聚物的结晶形态也具有多样性,而且晶体中结晶很不完善,结晶与非晶共存。

总之高分子结晶是复杂的。

6.2.1.1缨状微束模型早在上世纪40年代就提出了如图6-7所示被称为缨状微束的高分子结晶模型。

它认为在结晶高分子中存在许多胶束和胶束间区,胶束是结晶区,胶束间区是非晶区。

胶束是由许多高分子链段整齐排列而成,其长度远小于高分子链的总长度,所以一根高分子链可以穿过多个胶束区和胶束间区。

这种结构很象一团乱毛线被随机扎成若干束的情形(图6-8)。

这个结晶模型主要得到了以下两个实验事实的证明。

一是在高聚物的X射线衍射图上(图6-9),同时存在结晶的锐利衍射峰和非晶的弥散峰,两者叠加在一起,说明晶区和非晶区共存。

二是用X光衍射测得的晶区尺寸远小于分子链的伸直长度,说明一根高分子链可以穿几个晶区和非晶区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档