聚类分析与判别分析
聚类分析与判别分析区别

表示
:
cos
!
ij
=
p
a
=
1
!
x
ia
x
ja
p
a
=
1
!
x
2
・
p
a
=
1
!
x
2
"
ia
ja
1
≤
cos
!
ij
≤
1
当
cos
!
ij
=1
,
说明两个样品
x
i
与
x
j
完全相似
;
cos
!
ij
接
近
1
,
说
明
两
个
样
品
x
i
与
x
j
相
似
密
切
;
cos
!
ij
=0
,
说明
x
i
与
x
j
完全不一样
;
cos
!
ij
接近
0
,
说
明
x
i
与
x
j
差别大。把所有两两样品的相似系数都
通过聚类分析可以达到简化数据的目的
,
将
众多的样品先聚集成比较好处理的几个类别或子
集
,
然后再进行后续的多元分析。
比如在回归分析
中
,
有时不对原始数据进行拟合
,
而是对这些子集
的中心作拟合
,
可能会更有意义。又比如
,
为了研
究不同消费者群体的消费行为特征
,
「聚类分析与判别分析」

「聚类分析与判别分析」聚类分析和判别分析是数据挖掘和统计学中常用的两种分析方法。
聚类分析是一种无监督学习方法,通过对数据进行聚类,将相似的样本归为一类,不同的样本归入不同的类别。
判别分析是一种有监督学习方法,通过学习已知类别的样本,构建分类模型,然后应用模型对未知样本进行分类预测。
本文将对聚类分析和判别分析进行详细介绍。
聚类分析是一种数据探索技术,其目标是在没有任何先验知识的情况下,将相似的样本聚集在一起,形成互相区别较大的样本群。
聚类算法根据样本的特征,将样本分为若干个簇。
常见的聚类算法有层次聚类、k-means聚类和密度聚类。
层次聚类是一种自下而上或自上而下的层次聚合方法,通过测量样本间的距离或相似性,不断合并或分裂簇,最终形成一个聚类树状结构。
k-means聚类将样本划分为k个簇,通过优化目标函数最小化每个样本点与其所在簇中心点的距离来确定簇中心。
密度聚类基于样本点的密度来判断是否属于同一簇,通过划定一个密度阈值来确定簇的分界。
聚类分析在很多领域中都有广泛的应用,例如市场分割、医学研究和社交网络分析。
在市场分割中,聚类分析可以将消费者按照其购买行为和偏好进行分组,有助于企业制定更精准的营销策略。
在医学研究中,聚类分析可以将不同患者分为不同的亚型,有助于个性化的治疗和药物开发。
在社交网络分析中,聚类分析可以将用户按照其兴趣和行为进行分组,有助于推荐系统和社交媒体分析。
相比之下,判别分析是一种有监督学习方法,其目标是通过学习已知类别的样本,构建分类模型,然后应用模型对未知样本进行分类预测。
判别分析的目标是找到一个决策边界,使得同一类别内的样本尽可能接近,不同类别之间的样本尽可能远离。
常见的判别分析算法有线性判别分析(LDA)和逻辑回归(Logistic Regression)。
LDA是一种经典的线性分类方法,它通过对数据进行投影,使得同类样本在投影空间中的方差最小,不同类样本的中心距离最大。
逻辑回归是一种常用的分类算法,通过构建一个概率模型,将未知样本划分为不同的类别。
聚类分析和判别分析

18
24 30 36 42 48 54 60 66 72
0.69
0.77 0.59 0.65 0.51 0.73 0.53 0.36 0.52 0.34
1.33
1.41 1.25 1.19 0.93 1.13 0.82 0.52 1.03 0.49
0.48
0.52 0.30 0.49 0.16 0.35 0.16 0.19 0.30 0.18
i i
( xi x ) 2 ( yi y ) 2
i i
i
当变量的测量值相差悬殊时,要先进行 标准化. 如R为极差, s 为标准差, 则标 准化的数据为每个观测值减去均值后 再除以R或s. 当观测值大于0时, 有人 采用Lance和Williams的距离
1 | xi yi | x y p i i i
Number of Cases in each Cluster Cluster 1 2 3 4 1.000 1.000 2.000 15.000 19.000 .000
Valid Missing
结果解释
参照专业知识,将儿童生长发育分期定为: 第一期,出生后至满月,增长率最高; 第二期,第2个月起至第3个月,增长率次之; 第三期,第3个月起至第8个月,增长率减缓; 第四期,第8个月后,增长率显著减缓。
k-均值聚类:案例
为研究儿童生长发育的分期,调查1253名1月至7岁儿 童的身高(cm)、体重(kg)、胸围(cm)和坐高(cm) 资料。资料作如下整理:先把1月至7岁划成19个月份段, 分月份算出各指标的平均值,将第1月的各指标平均值与出 生时的各指标平均值比较,求出月平均增长率(%),然后 第2月起的各月份指标平均值均与前一月比较,亦求出月平 均增长率(%),结果见下表。欲将儿童生长发育分为四期, 故指定聚类的类别数为4,请通过聚类分析确定四个儿童生 长发育期的起止区间。
判别分析与聚类分析的基本原理

判别分析与聚类分析的基本原理数据分析是在如今信息时代中,越来越重要的一项技能。
在数据分析的过程中,判别分析和聚类分析是两个非常重要的方法。
本文将介绍判别分析和聚类分析的基本原理,以及它们在数据分析中的应用。
一、判别分析的基本原理判别分析是一种用于分类问题的统计方法,其目的是通过学习已知类别的样本数据,来构建一个分类器,从而对未知样本进行分类。
判别分析的基本原理可以简单概括为以下几个步骤:1. 数据预处理:首先需要对数据进行预处理,包括数据清洗、缺失值处理、特征选择等,以获得更好的数据质量。
2. 特征提取:在进行判别分析之前,需要将原始数据转化为有效的特征。
特征提取的方法有很多种,常用的包括主成分分析、线性判别分析等。
3. 训练分类器:利用判别分析算法对已知类别的样本数据进行训练,建立分类模型。
常用的判别分析方法有线性判别分析、二次判别分析等。
4. 分类预测:通过训练好的分类器,对未知样本进行分类预测。
分类预测的结果可以是离散的类标签,也可以是概率值。
判别分析广泛应用于医学、金融、市场营销等领域。
例如,在医学领域,可以利用判别分析来预测疾病的状态,辅助医生做出诊断决策。
二、聚类分析的基本原理聚类分析是一种无监督学习方法,其目的是将相似的数据对象分组,使得同一组内的对象相似度较高,不同组间的相似度较低。
聚类分析的基本原理可以概括为以下几个步骤:1. 选择相似性度量:首先需要选择一个合适的相似性度量,用于评估数据对象之间的相似程度。
常用的相似性度量包括欧氏距离、曼哈顿距离等。
2. 选择聚类算法:根据具体的问题需求,选择合适的聚类算法。
常用的聚类算法有K-means、层次聚类等。
3. 确定聚类数目:根据实际问题,确定聚类的数目。
有些情况下,聚类数目事先是已知的,有些情况下需要通过评价指标进行确定。
4. 根据聚类结果进行分析:将数据对象划分到各个聚类中,并对聚类结果进行可视化和解释。
聚类分析被广泛应用于市场分析、图像处理、社交网络等领域。
聚类分析与判别分析

第一节聚类分析统计思想一、聚类分析的基本思想1.什么是聚类分析俗语说,物以类聚、人以群分。
当有一个分类指标时,分类比较容易。
但是当有多个指标,要进行分类就不是很容易了。
比如,要想把中国的县分成若干类,可以按照自然条件来分:考虑降水、土地、日照、湿度等各方面;也可以考虑收入、教育水准、医疗条件、基础设施等指标;对于多指标分类,由于不同的指标项对重要程度或依赖关系是相互不同的,所以也不能用平均的方法,因为这样会忽视相对重要程度的问题。
所以需要进行多元分类,即聚类分析。
最早的聚类分析是由考古学家在对考古分类中研究中发展起来的,同时又应用于昆虫的分类中,此后又广泛地应用在天气、生物等方面。
对于一个数据,人们既可以对变量(指标)进行分类(相当于对数据中的列分类),也可以对观测值(事件,样品)来分类(相当于对数据中的行分类)。
2.R型聚类和Q型聚类对变量的聚类称为R型聚类,而对观测值聚类称为Q型聚类。
这两种聚类在数学上是对称的,没有什么不同。
聚类分析就是要找出具有相近程度的点或类聚为一类;如何衡量这个“相近程度”?就是要根据“距离”来确定。
这里的距离含义很广,凡是满足4个条件(后面讲)的都是距离,如欧氏距离、马氏距离…,相似系数也可看作为距离。
二、如何度量距离的远近:统计距离和相似系数1.统计距离距离有点间距离好和类间距离2.常用距离统计距离有多种,常用的是明氏距离。
3.相似系数当对个指标变量进行聚类时,用相似系数来衡量变量间的关联程度,一般地称为变量和间的相似系数。
常用的相似系数有夹角余弦、相关系数等。
夹角余弦:相关系数:对于分类变量的研究对象的相似性测度,一般称为关联测度。
第二节如何进行聚类分析一、系统聚类1.系统聚类的基本步骤2.最短距离法3.最长距离法4.重心法和类平均法5.离差平方和法二、SPSS中的聚类分析1、事先要确定分多少类:K均值聚类法;2、事先不用确定分多少类:分层聚类;分层聚类由两种方法:分解法和凝聚法。
最新spss9-聚类分析与判别分析

14.3.4 用分层聚类法进行观测量聚类实例P358
对20种啤酒进行分类(data14-02),变量包括:Beername(啤酒名
具体见下面吴喜之教授有关判别分析的讲义
补充:聚类分析与判别分析
以下的讲义是吴喜之教授有关 聚类分析与判别分析的讲义, 我觉得比书上讲得清楚。 先是聚类分析一章 再是判别分析一章
聚类分析
分类
俗语说,物以类聚、人以群分。 但什么是分类的根据呢? 比如,要想把中国的县分成若干类,就有很 多种分类法; 可以按照自然条件来分, 比如考虑降水、土地、日照、湿度等各方面; 也可以考虑收入、教育水准、医疗条件、基 础设施等指标; 既可以用某一项来分类,也可以同时考虑多 项指标来分类。
聚类分析
对于一个数据,人们既可以对变量(指标)进 行分类(相当于对数据中的列分类),也可以对 观测值(事件,样品)来分类(相当于对数据 中的行分类)。
Agglomeration Schedule 凝聚状态表 Proximity matrix:距离矩阵 Cluster membership:Single solution:4 显示分为4类时,各观测
量所属的类
Method: Cluster (Furthest Neighbor), Measure-Interval (Squared Euclidean distance), Transform Value (Range 01/By variable (值-最小值)/极差)
上面啤酒分类问题data14-02。
Analyze→Classify →Hierarchical Cluster:
聚类分析和判别分析

垂直冰柱图
树状图是将实 际的距离按比 例调整到0-25 例调整到 的范围内, 的范围内,用 逐级连线的方 式连线距离相 近的样品和新 类,直至成为 一大类. 一大类.
判别分析
判别分析也是一种常用比较常用的分 类分析方法, 类分析方法,它先根据已知类别的事物 的性质(自变量) 建立函数式( 的性质(自变量),建立函数式(自变量的 线性组合,即判别函数) 线性组合,即判别函数),然后对未知类 别的新事物进行判断以将之归入已知的 类别中. 类别中.
1,快速聚类 快速聚类也称为逐步聚类, 快速聚类也称为逐步聚类,它先 对数据进行初始分类, 对数据进行初始分类,然后系统采用标 准迭代算法进行运算,逐步调整, 准迭代算法进行运算,逐步调整,把所 有的个案归并在不同的类中, 有的个案归并在不同的类中,得到最终 分类.它适用于大容量样本的情形. 分类.它适用于大容量样本的情形.
利用快速聚类分析对20家上市公司进行分类. 20家上市公司进行分类 例1:利用快速聚类分析对20家上市公司进行分类.
SPSS实现 SPSS实现 (1)打开文件 打开文件: (1)打开文件:上市 公司.sav .sav. 公司.sav. (2)点击 分析/ 点击" (2)点击"分析/分 /K类/K-均值聚 类". (3)选择变量 选择变量, (3)选择变量, 个案标记依据, 个案标记依据, 分类类别数. 分类类别数. (如图对话框中 2表示把所有个 案分为两类) 案分为两类)
聚类分析主要解决的问题: 聚类分析主要解决的问题:所研究的对 象事前不知道应该分为几类, 象事前不知道应该分为几类,更不知道分类 情况, 情况,需要建立一种分类方法来确定合理的 分类数目,并按相似程度, 分类数目,并按相似程度,相近程度对所有 对象进行具体分类. 对象进行具体分类. 基本思路:在样本之间定义距离, 基本思路:在样本之间定义距离,在指 标之间定义相关系数,按距离的远近, 标之间定义相关系数,按距离的远近,相似 系数的大小对样本或指标进行归类. 系数的大小对样本或指标进行归类. SPSS实现 实现: 分析/分类"命令. SPSS实现:"分析/分类"命令. 常用的有快速( K-均值)聚类分析, 常用的有快速( K-均值)聚类分析,系统聚 类分析. 类分析.
判别分析与聚类分析

判别分析与聚类分析判别分析与聚类分析是数据分析领域中常用的两种分析方法。
它们都在大量数据的基础上通过统计方法进行数据分类和归纳,从而帮助分析师或决策者提取有用信息并作出相应决策。
一、判别分析:判别分析是一种有监督学习的方法,常用于分类问题。
它通过寻找最佳的分类边界,将不同类别的样本数据分开。
判别分析可以帮助我们理解和解释不同变量之间的关系,并利用这些关系进行预测和决策。
判别分析的基本原理是根据已知分类的数据样本,建立一个判别函数,用来判断未知样本属于哪个分类。
常见的判别分析方法包括线性判别分析(LDA)和二次判别分析(QDA)。
线性判别分析假设各类别样本的协方差矩阵相同,而二次判别分析则放宽了这个假设。
判别分析的应用广泛,比如在医学领域可以通过患者的各种特征数据(如生理指标、疾病症状等)来预测患者是否患有某种疾病;在金融领域可以用来判断客户是否会违约等。
二、聚类分析:聚类分析是一种无监督学习的方法,常用于对数据进行分类和归纳。
相对于判别分析,聚类分析不需要预先知道样本的分类,而是根据数据之间的相似性进行聚类。
聚类分析的基本思想是将具有相似特征的个体归为一类,不同类别之间的个体则具有明显的差异。
聚类分析可以帮助我们发现数据中的潜在结构,识别相似的群组,并进一步进行深入分析。
常见的聚类分析方法包括层次聚类分析(HCA)和k-means聚类分析等。
层次聚类分析基于样本间的相似性,通过逐步合并或分割样本来构建聚类树。
而k-means聚类分析则是通过设定k个初始聚类中心,迭代更新样本的分类,直至达到最优状态。
聚类分析在市场细分、社交网络分析、图像处理等领域具有广泛应用。
例如,可以将客户按照他们的消费喜好进行分组,以便为不同群体提供有针对性的营销活动。
总结:判别分析和聚类分析是两种常用的数据分析方法。
判别分析适用于已知分类的问题,通过建立判别函数对未知样本进行分类;聚类分析适用于未知分类的问题,通过数据的相似性进行样本聚类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(xi yi )2
i
平方欧氏距离(Squared Euclidean) (xi yi )2 i
绝对距离(Block): Si|xi-yi|
切比雪夫距离 (Chebychev ) Maxi|xi-yi|
1
明考夫斯基距离(Minkowski)
(
xi
yi
)q
q
i
10
(2)相似系数
向量x =(x1,…, xp)与y =(y1,…, yp)之间的相似系数:
夹角余弦cosine
Cxy (1) cos xy
xi yi i
xi2 yi2
i
i
cosθ =1,说明x和y完全相似;接近1,x和y比较相似。
cosθ=0,说明x和y完全不一样;接近0,x和y差别很大。
相关系数
(xi x )( yi y)
Pearson correlation Cxy (2) rxy
1
提纲
1 聚类分析
1-1 概述
1-1-1聚类分析的原理 1-1-2 距离和相似系数 1-1-3 类间距离的算法
1-2系统聚类分析(Hierarchical clustering) 1-2-1 基本思想
1-2-2 分类
1-2-3 SPSS 实现
1-3 k-均值聚类 ( K-Means Cluster)
每一种样品都具有多种特性,或称之为具有多种变量。聚类分析是基于
多变量数据,对n个样品进行分类的一种方法,即将那些相似的样品归为一类, 不相似的样品分别归到各自不容的类别中。
目的:寻找数据中潜在的自然分组结构 和感兴趣的关系。
3
自然分组结构 Natural grouping : 例如:有16张牌,如何将他们分为一组一组的牌?
– 可能被极大值扭曲,删除这些值之后再聚类
15
(3)重心法(centroid hierarchical method)
– 类的重心之间的距离 – 对异常值不敏感,结果更稳定
16
(4) 类平均距离法(average linkage method) 类间所有样本点的平均距离
– 利用了所有样本的信息,是较好的系统聚类法
1-3-1 基本思想 1-3-2 SPSS 实现
1-4 PCA 与聚类分析连用实例解析
2 判别分析
2-1 距离判别法
2-2 Fisher判别法 2-3 Bayes 判别法
2-4 逐步判别分析
2-5 应用SPSS 实现判别分析
3 综合性实例解析
2
1 聚类分析 1-1 概述
1-1-1聚类分析的原理
定义:根据事物本身特性来研究个体分类的 统计方法,是按照物以类聚的原则来研究的 事物分类。
第7章 聚类分析与判别分析
Cluster analysis & Discriminant Analysis
中心问题:分类 解决方法:聚类分析—— 无管理的模式识别
判别分析—— 有管理的模式识别 授课思路:基本思想;
用 SPSS软件解决问题。
聚类分析是将一群具有相关性的资料(样本、变量) 加以有意义的分类。 判别分析是在已知的分类之下,选定一判别标准, 将新样本归类。
(d(xi,xj)表示点xi∈ Gp和xj ∈ Gq之间的距离)
最短距离法: Dpq min d (xi , x j )
最长距离法: Dpq max d (xi , x j )
重心法: Dpq min d (xp , xq )
类平均法:
Dpq
1 n1n2
d (xi , xj )
xiGp x j Gq
i
(xi x )2 ( yi y)2
i
i
11
当变量的测量值相差悬殊时,要先进行标准化. 如R为极差, s 为标准偏差(标准差), 则标准化的数据为每个观测值减去 均值后再除以R或s:
当观测值大于0时, 有人采用Lance和 Williams的距离
1 | xi yi |
p i xi yi
12
两个距离概念
✓ 点间距离:
每个样本之间的距离。
✓ 类间距离:
由一个点组成的类是最基本的类;如果每一类都由一个点 组成,那么点间的距离就是类间距离。但是如果某一类包 含不止一个点,那么就要确定类间距离。
类间距离是基于点间距离定义的: 两类之间最近点之间的距离可以作为这两类之间的距离; 两类中最远点之间的距离作为这两类之间的距离; 各类的重心之间的距离来作为类间距离; ……
离差平方和: D1 xiGp (xi xp ) '(xi xp ), D2 xjGq (x j xq ) '(x j xq ),
(Ward)
D12
( xk
x ) '(xi
x)
Dpq
D12
D1
19
D2
xk Gp Gq
聚类的方法
系统聚类:事先不用确定分多少类 k-均值聚类:事先要确定分多少类 (快速样本聚类)
A K Q J
4
分成四组: 每组里花色相同,组与组之间花色相异
A K Q J
花色相同的牌为一副
Individual suits
5
分成四组: 符号相同的牌为一组
A K Q J
符号相同的的牌
Like face cards
6
分成两组: 颜色相同的牌为一组
A K Q J
颜色相同的配对 Black and red suits 7
17
(5)离差平方和法(ward method)
– D2=WM-WK-WL
即 DK2L
nL nk nM
XK XL XK XL
Cluster K
Cluster M
Cluster L
对异常值很敏感;对较大的类倾向产生较大的距离, 从而不易合并,较符合实际需要。
18
类Gp与类Gq之间的距离Dpq
1-1-2 距离和相似系数
——相似性的度量
样本之间距离有很多定义方式,最简单的是欧氏距离,还有其他的距离。 和距离相反但起同样作用的概念,比如相似性等,两点相似度越大,就 相当于距离越短。
9
(1)点间距离的计算方法
向量x =(x1,…, xp)与y =(y1,…, yp)之间的距离:
欧氏距离(Euclidean)
各种点间距离和类间距离的计算可通过统计软件的选项实现。
13
1-1-3 类间距离的算法
(1) 最小距离法(single linkage method) (nearest neighbor)
– 极小异常值在实际中不多出现,避免极大值的影响
14
(2) 最大距离法(complete linkage method) ( fartherst neighbor)