三年级奥林匹克数学专题讲解三阶幻方理论A篇和练习B篇
三年级奥数教程第12讲三阶幻方

三年级奥数教程第12讲三阶幻方三阶幻方就是将九个自然数填在3×3(三行三列)的正方形内,使每一行、每一列以及每一条对角线上的三个数的和都相等.三阶幻方是一种特殊的数阵图.例1、将1~9这九个数填入下图,使它成为一个三阶幻方.图12-1分析与解 1+2+…+8+9=45.所以,每行、每列、每条对角线的三个数的和是15(=45÷3).从1到9中,三个不同的数相加等于15,只可能是9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3.6+5+4这八个式子.其中只有5出现四次,因此5一定在中心.在式子中出现三次的只有8、6、4、2这四个数,因此这四个数应当在四个角上.从而将三阶幻方完成,如图所示.816357492图12-2说明除了上图所示的答案外,如果8、6、4、2在四个角上的位置排得不同,9、7、3、1的位置也相应有所不同,那么还可以得到其他形式的三阶幻方.我们把这些只是形式不同而实质相同的结果看作是一个解,只要写出其中一个作为答案就可以了.随堂练习1 用0到8这9个数构造一个三阶幻方.例2、将1,3,5,7,…17填入3×3的方格中,使它成为一个三阶幻方.分析与解将图12—2中的1,2,3,…,9分别用1,3,5,…,17代替,得到图12—3.它就是所求的三阶幻方,每行、每列、每条对角线上的和都是27.1511159137173图12-3随堂练习2 将2,4,6,…,18填入3×3的方格中,使它成为一个三阶幻方.例3、如果l、4、7、10、13、16、19、22、25这9个数组成三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央的那个数是多少?分析与解总和是1+4+7+…+25=(1+25)×9÷2=117.由于三行的和相等,所以每一行的和是117÷3=39.。
每一列、每一条对角线的和也是39.两条对角线、第二列的总和是39×3,它也是第一行加第三行再加中央那个数的3倍.所以中央的那个数是(39×3—39 × 2)÷3=13.随堂练习3 如果2、6、10、1 l、15、19、20、24、28可以组成一个三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央的那个数是多少?例4、图12—4是一个三阶幻方,已知3个数,请根据幻方的性质填出其他的数.62815图12-4分析与解首先注意在例3中实际上已经得出每一行(每一列、每条对角线)的和是中央那个数的3倍.因此,现在每一行的和是15×3=45.这样,就可以得出第三行第一个数是45—6—28=11.第三行第三个数是45—6—15=24.第三行第二个数是45—11—24=10.同样,可得其他的数.最后得出三阶幻方如图12—5.6201928152111024图12-5随堂练习4图1 2—6是一个三阶幻方,请填出其他的数.15423图12-6例5、已知图12—7中,每一行、每一列、每条对角线上3个数的乘积都相等.请填出其他的数.11263图12-7分析及解每一行、每一列、每条对角线的乘积都是3×6×12。
小学数学奥林匹克辅导及练习三阶幻方含答案

三阶幻方二同学们:我们今天继续学习三阶幻方,通过上次学习,同学们初步掌握了求三阶幻方的方法;下面我们就利用这些方法求三阶、四阶等幻方;一学习指导与解答例1. 在下图的33⨯的阵列中填入了1~9的自然数,构成了大家熟悉的三阶幻方;现在另有一个33⨯的阵列,请选择九个不同的自然数填入九个方格中,使其中最大者为20,最小者大于5,且每一横行,每一竖行及每条对角线上三个数的和都相等;492357816152013141618191217图1 图2分析:所给的三阶幻方中填入的是1~9这九个不同的自然数,其中最大的为9,最小的为1,要使新编制的幻方中最大数为20,而91120+=,因此,如果在所给幻方中各数都增加11,就能构成一个新幻方,并且满足最大数为20,最小数大于5;见图;例2. 在33⨯的阵列中,第一行第三列的位置上填5,第二行第一列的位置上填6,如图3,请你在其它方格中填上适当的数,使方阵横、纵、斜三个方向的三个数之和为36;56A B C D E FG56 图3图4分析:为了叙述方便,我们将其余空格的数字用字母表示,如图4;因为幻和为36,所以可求出中心数为:36312÷=,即C =12从第二行可求出D =-+=3612618() 从对角线中可求出E =-+=3612519() 从第一列可求出A =-+=3661911() 从第一行可求出B =-+=3651120() 从第二列可求出F =-+=3620124() 从第三列可求出G =-+=3651813() 得到三阶幻方如下:112056121819413从上面的例题我们不难看出:要填出一个三阶幻方,中心数起着至关重要的作用;利用幻和=中心数×3这个关系式,在已知幻和的情况下,可先求出中心数,在已知中心数的情况下,可求出幻和,以便其它数的求出;例3. 将1~9这九个数字分别填入图1中所示的空格中,使得前两行所构成的两个三位数之和等于第三行的三个数,并且相邻上下或左右的两个数奇偶性不同;分析:由于1、5已填好,按照奇偶相间的要求,五个奇数应在四个角及中心,如图2;例4. 写出一个三阶幻方,使其幻和为24;因为三阶幻方,幻和为24,所以其9个数的和为24372⨯=,假设这9个数为n n n n n n n n n----++++43211234,,,,,,,,,所以9728n n==,,这9个数为4、5、6、7、8、9、10、11、12用这9个数排成一个三阶幻方,如图:512710869411例5. 从1~13这13个数中挑出12个数,填入图1中的方格中,使每一横行,四数之和相等,每一竖列三个数之和相等;如图:1 11 91310423126851335141012112869图1 图2分析:在1~13这13个数中,因为1231391++++=……,911277÷=……,所以1~13中去掉7,由()()917328917421-÷=-÷=,,所以要求横行和为28,竖列和为21,先将除7外的12个数分为4组,每组中3个数之和为21,然后再调整,使每横行四个数的和为28,这样可得出解,如图1、2;答题时间:30分钟 二认真审题,独立完成 1将121314162334112512712,,,,,,,,这九个数分别填入图1中,使每一横行,每一竖行,两条对角线中三个数的和都相等;2将九个连续自然数填入3行3列的九个空格中,使每一横行,每一竖行及每一条对角线上三个数的和都等于45;3将从1开始的九个连续奇数填入三行三列的九个空格中,使每一横行,每一竖列及两条对角线上的三个数之和都相等;试题答案二认真审题,独立完成1将121314162334112512712,,,,,,,,这九个数分别填入图1中,使每一横行,每一竖行,两条对角线中三个数的和都相等;由于2、3、4、6、12的最小公倍数为12,所以将9个分数分别扩大12倍,得到6、4、3、2、8、9、1、5、7,而33⨯的幻方是熟知的,如图,再将图中的每个数除以12就是所求;2将九个连续自然数填入3行3列的九个空格中,使每一横行,每一竖行及每一条对角线上三个数的和都等于45;根据幻和为45,可知中心数为45315÷=,又由于141630171330+=+=,,121830191130+=+=,;经验证,可排出三阶幻方;1413181915111217163将从1开始的九个连续奇数填入三行三列的九个空格中,使每一横行,每一竖列及两条对角线上的三个数之和都相等;把1~9填在幻方中的每个数乘以2再减1,就得到1~17这九个奇数所填的三阶幻方是:492 357 8167173 5913 15111图1 图2。
小学数学奥林匹克竞赛三阶幻方(含答案)-

三阶幻方同学们:在33⨯(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44⨯(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
ab c de f ghi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15所以:()()()()+++++++++++a e ib e hc e gde f1515151560=+++=也就是:()a b c d e f g h i e360+++++++++⨯=又因为:a b c d e f g h i++++++++=45所以45360+⨯=ee36045⨯=-e=5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
小学奥数之三阶幻方讲义

三阶幻方同学们:在33⨯(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44⨯(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
ab c def g hi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15 所以:()()()()a e i b e h c e g d e f +++++++++++ =+++=1515151560也就是:()a b c d e f g h i e +++++++++⨯=360 又因为:a b c d e f g h i ++++++++=45 所以45360+⨯=e36045⨯=-e e =5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
小学奥数之三阶幻方讲义

三阶幻方同学们:在33⨯(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44⨯(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
a bc def g hi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15 所以:()()()()a e i b e h c e g d e f +++++++++++ =+++=1515151560也就是:()a b c d e f g h i e +++++++++⨯=360 又因为:a b c d e f g h i ++++++++=45 所以45360+⨯=e36045⨯=-e e =5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
小学奥数专题巧解三阶幻方APPT课件

7、 用3~11这九个数补全图2中的幻方,并求幻和。
48
6、 用1~9这九个数补全图1中的幻方,并求幻和。
5 26
图1
图3
5
图2
8、 在图3的空格中填入不大于15且互不相同 的自然数使每一横行、竖行和对角线上的三个 数之和都等于30。
9
12 3 8 94 76 5
方案一
12 3 654 789
方案二
五、练习
1、在图1中3×3的阵列里,第一行第三列的 位置上填5,第二行第一列的位置上填6,请 你在其它方格中填上适当的数,使方阵横、 纵、斜三个方向的三个数之和为36。
5
6
3、写出一个三阶幻方,使其幻和为24
图1
2、将 1 , 1 , 1 , 1 , 2 , 3 , 1 , 5 , 7 这九
2、中间数=与中间数同一直线上(含对角线)相邻两数的和÷ 2
M= (A+F)÷2 =(D+C)÷2 =(H+E)÷2 =(G+B)÷2
3、A=(B+C)÷2
E=(B+D)÷2
F=(G+D)÷2
H=(C+G)÷2
AG E DM C HBF
四、反三阶幻方及解法
反三阶幻方是在3×3的方格子里(即三行三列),按一定的要求填上九 个数,使每行、每列、及两条对角线上各自三数之和均不相等,这样的 3×3的数阵阵列称为反三阶幻方
赵老师教你学奥数
小学奥数专题
第一讲 三阶幻方
276 951 4 38
.
一、三阶幻方的定义
有关幻方问题的研究在我国已流传了两千多年,它是具有独特形式的 填数字问题.宋朝的杨辉将幻方命名为“纵横图.”并探索出一些解答幻方问 题的方法.随着历史的进展,许多人对幻方做了进一步的研究,创造了许 多绚丽多彩的幻方.
小学奥数之三阶幻方讲义

三阶幻方同学们:在33⨯(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44⨯(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
ab c def g hi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15 所以:()()()()a e i b e h c e g d e f +++++++++++ =+++=1515151560也就是:()a b c d e f g h i e +++++++++⨯=360 又因为:a b c d e f g h i ++++++++=45 所以45360+⨯=e36045⨯=-e e =5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
小学奥林匹克辅导与练习15三阶幻方

三阶幻方同学们:在33⨯(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44⨯(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
ab c def g hi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15 所以:()()()()a e i b e h c e g d e f +++++++++++ =+++=1515151560也就是:()a b c d e f g h i e +++++++++⨯=360 又因为:a b c d e f g h i ++++++++=45 所以45360+⨯=e36045⨯=-e e =5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级奥林匹克数学专题讲解——三阶幻方理论A 篇
幻方实际上是一种填数游戏,它不仅有三阶,还有四阶、五阶……直到任意阶。
一般
地,在n 行n 列的方格里,既不重复也不遗漏地填上n n ⨯个连续的自然数,每个数占一格,并使排在每一行、每一列以及每条对角线上n 个自然数的和相等,我们把这几个相等的和叫做幻和,n 叫做阶,这样排成的图形叫做n 阶幻方。
三阶幻方:在三行三列的正方形方格中,既不重复也不遗漏地填上33⨯个连续的自然数,每个数占一格,并使排在每一行、每一列以及每条对角线上3个自然数的和均相等。
通常这样的图形叫做三阶幻方。
三阶幻方的一些基本规律:
幻和=九个数之和÷3,中间数=幻和÷3。
九个连续的自然数中,第五个数是中间数,第二、四、六、八个数是四个角上的数。
例题1 在下面的方格中填上适当的数,使每行、每列和每条对角线上的三个数的和都等
于24。
分析: 解决问题的突破口:找出每行、每列和每条对角线上的任意两个数,就可以根据
幻和求出第三个数。
例题2 下图中,每个字母代表一个数。
已知每行、每列、每条对角线上的三个数和都相
等,若4,16,17,5a l d h ====。
求b 与f 为多少?
分析: 根据幻和相等:a e l c e g b e h d e f ++=++=++=++,这4个算式中都有中间数
e ,所以有:a l c g b h d
f +=+=+=+。
再代入4,16,17,5a l d h ====即可。
一、知识介绍
二、例题讲解
例题3 编出一个三阶幻方,使其幻和为27。
分析: 先根据幻和求中间数,然后填其他数。
请你试一试:调换数的位置,还可以得到
几种答案?
例题4 将1~9这九个自然数填在下面图中的九个方格里,使每行、每列、两条对角线上
的三个数的和都相等。
分析: 先求幻和,再根据幻和求中间数,然后填其他数。
例题5 下图中,a g 7个字母,各代表7个数字,要使三阶幻方成立,“a ”所代表的数字
是多少?
分析: 根据幻方的概念:每一行、每一列以及每条对角线上3个自然数的和均相等。
可
以得到:1218a d f a e g f g d e +++++=+++++,可求得:15a =。
三年级奥林匹克数学专题讲解——三阶幻方练习B 篇
EX 1 用1~9这9个数字补全图中的幻方,并求出幻和。
EX 2 用3~11这9个数补全下图中的幻方,并求幻和。
EX 3 下图的三阶幻方中,填入了1~9的自然数,构成了大家熟知的三阶幻方。
现在另有
一个三阶幻方,请选择不同的自然数填入9个方格中,使得其中最大数为20,最小数大于5,且每一行、每一列、每一条对角线方格内的三个数的和都相等。
EX 4 在下图中填上适当的数,使每行、每列、每条对角线上的三个数的和都相等。
EX 5 在下图的空格里填入不大于15且不相同的自然数,使每一行、每一列和每一条对角
线上的三个数的和都等于30。
EX 6 在图中填上合适的数,使每行、每列、每一条对角线的三个数的和都相等。
EX 7 在下图的方格中填上适合的数,使每行、每列、每一条对角线的三个数的和都等于21。
EX 8把4~12九个数填入方格中,使每行、每列、每一条对角线的三个数的和都相等。
EX 9使下图每行、每列、每一条对角线的三个数的和都相等,且等于45。
EX 10请编写下列三阶幻方。
①用6,8,10,12,14,16,18,20,22这九个数构成一个三阶幻方。
②把2,6,10,14,18,22,26,30,34这九个数构成一个三阶幻方。
③把3,5,7,9,11,13,15,17,19这九个数构成一个三阶幻方。