教科版物理2第二章第3节圆周运动的实例分析1火车、汽车拐弯的动力学问题(讲义)
2020高中物理第二章第3节圆周运动的实例分析1火车、汽车拐弯的动力学问题学案

火车、汽车拐弯的动力学问题一、考点突破:二、重难点提示:重点:1. 掌握火车、汽车拐弯时的向心力来源;2. 会用圆周运动的规律解决实际问题。
难点:能从供需关系理解拐弯减速的原理。
一、火车转弯问题1. 火车在水平路基上的转弯(1)此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹力。
(2)外轨对轮缘的弹力提供向心力。
(3)由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质量很大,故轮缘和外轨间的相互作用力很大,易损害铁轨。
2. 实际弯道处的情况:外轨略高于内轨道(1)对火车进行受力分析:火车受铁轨支持力N的方向不再是竖直向上,而是斜向弯道的内侧,同时还有重力G。
(2)支持力与重力的合力水平指向内侧圆心,成为使火车转弯所需的向心力。
【规律总结】转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G和支持力N来提供,这样外轨就不受轮缘的挤压了。
3. 限定速度v分析:火车转弯时需要的向心力由火车重力和轨道对它的支持力的合力提供。
F 合=mgtan α=rv m 2①由于轨道平面和水平面的夹角很小,可以近似地认为 tan α≈sin α=h/d ② ②代入①得:mg dh=r v m 2d rgh v思考:在转弯处:(1)若列车行驶的速率等于规定速度,则两侧轨道是否受车轮对它的侧向压力。
(2)若列车行驶的速率大于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
(3)若列车行驶的速率小于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
二、汽车转弯中的动力学问题1. 水平路面上的转弯问题:摩擦力充当向心力 umg=mv 2/r 。
由于摩擦力较小,故要求的速度较小,否则就会出现离心现象,发生侧滑,出现危险。
2. 实际的弯道都是外高内底,以限定速度转弯,受力如图。
Mgtanθ=Mv2/r v=θtanrg当v >θtanrg,侧向下摩擦力的水平分力补充不足的合外力;v <θtanrg,侧向上摩擦力的水平分力抵消部分过剩的合外力;v =θtanrg,沿斜面方向的摩擦力为零,重力和支持力的合力提供向心力。
新教科版高中物理必修二第二章 匀速圆周运动第3节《圆周运动的实例分析》参考课件2(共21张PPT)

求汽车以速度v过半径为R的拱桥时对拱桥的压力
【解】G和N的合力提供汽车做圆周运动的
N
向心力,由牛顿第二定律得:
v2 GN m
v
r
v2 N Gm
r
G
( 1 )由牛顿第三定律可知汽车对桥的压力N´=
N<G (2)汽车的速度越大,汽车对桥的压力越小
(3)当汽车的速度增大到 v R时g,压力为零。
问题2:质量为m的汽车以速度v通过半径为R的凹型桥。它经桥的 最低点时对桥的压力为多大?比汽车的重量大还是小N?速度越大压 力越大还是越小?
能根据海鸥的飞行姿态判断出它正在做怎样的 运动吗?
三 圆周运动实例分析
11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2021/11/62021/11/6November 6, 2021 14、孩子在快乐的时候,他学习任何东西都比较容易。 15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 16、一个人所受的教育超过了自己的智力,这样的人才有学问。 17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2021年11月2021/11/62021/11/62021/11/611/6/2021 18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/11/62021/11/6
当火车行驶速率v<v规定时, 内轨对轮缘有向外侧的压力。
N
N’
G
火车行驶速率v>v规定
2019-2020年教科版物理必修二讲义:第2章+3. 圆周运动的实例分析及答案

3. 圆周运动的实例分析一、汽车过拱形桥 1.向心力来源:重力和桥面的支持力的合力提供向心力.2.动力学关系(1)如图甲所示,汽车在凸形桥的最高点时,满足的关系为mg -N =m v 2R ,N =mg -m v 2R ,由牛顿第三定律可知汽车对桥面的压力大小等于支持力,因此汽车在凸形桥上运动时,对桥的压力小于重力.当v =gR 时,其压力为零.甲 乙(2)如图乙所示,汽车经过凹形桥的最低点时,满足的关系为N -mg =m v 2R ,N=mg +m v 2R ,汽车对桥的压力大小N ′=N .汽车过凹形桥时,对桥的压力大于重力.二、“旋转秋千”“旋转秋千”运动可简化为圆锥摆模型,如图所示.1.向心力来源:重力和悬线的拉力的合力提供.2.动力学关系mg tan_α=mω2r ,又r =l sin_α,则ω=g l cos α,周期T =2πl cos αg所以cos α=g ω2l,由此可知,α与角速度ω和绳长l 有关,在绳长l 确定的情况下,角速度ω越大,α越大.三、火车转弯1.火车在弯道上的运动特点火车车轮上突出的轮缘在铁轨上起到限定方向的作用,如果火车在水平路基上转弯,外侧对轮缘的弹力就是火车转弯的向心力,轮缘与外轨间的作用力很大,铁轨与轮缘极易受损,故实际在转弯处,火车的外轨略高于内轨. 2.向心力的来源根据轨道半径和规定的行驶速度适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由重力和支持力的合力来提供.四、离心运动1.定义:物体沿圆周运动的切线方向飞出或远离圆心的运动.2.原因:合外力提供的向心力消失或不足.3.离心机械:利用离心运动的机械. 4.应用:脱水筒、离心机.1.思考判断(正确的打“√”,错误的打“×”)(1)汽车驶过凸形桥最高点时,对桥的压力可能等于零.( ) (2)汽车驶过凹形桥低点时,对桥的压力一定大于重力. ( )(3)体重越大的人坐在秋千上旋转时,缆绳与中心轴的夹角越小.( )(4)火车转弯时的向心力是车轨与车轮间的挤压提供的. ( )(5)火车按规定的速率转弯时,内外轨都不受火车的挤压作用.( )(6)做离心运动的物体一定不受外力作用. ( )(7)做圆周运动的物体只有突然失去向心力时才做离心运动.( )【提示】 (1)√ (2)√ (3)× (4)× (5)√ (6)× (7)×2.如图所示,在某次军事演习中,一辆战车以恒定的速度在起伏不平的路面上行进,则战车对路面的压力最大和最小的位置分别是( )A .A 点,B 点B .B 点,C 点 C .B 点,A 点D .D 点,C 点C [战车在B 点时由F N -mg =m v 2R 知F N =mg +m v 2R ,则F N >mg ,故对路面的压力最大,在C 和A 点时由mg -F N =m v 2R 知F N =mg -m v 2R ,则F N <mg 且R C >R A ,故F N C >F N A ,故在A 点对路面压力最小,故选C.]3.如图所示,“旋转秋千”中的两个座椅A 、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( )A .A 的速度比B 的大B .A 与B 的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小D[在转动过程中,A、B两座椅的角速度相等,但由于B座椅的半径比较大,故B座椅的速度比较大,向心加速度也比较大,A、B项错误;A、B两座椅所需向心力不等,而重力相同,故缆绳与竖直方向的夹角不等,C项错误;根据F=mω2r 判断A座椅的向心力较小,所受拉力也较小,D项正确.]4.(多选)公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处()A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小AC[汽车转弯时,恰好没有向公路内外两侧滑动的趋势,说明公路外侧高一些,支持力的水平分力刚好提供向心力,此时汽车不受静摩擦力的作用,与路面是否结冰无关,故选项A正确,选项D错误.当v<v c时,支持力的水平分力大于所需向心力,汽车有向内侧滑动的趋势,摩擦力向外侧;当v>v c时,支持力的水平分力小于所需向心力,汽车有向外侧滑动的趋势,在摩擦力大于最大静摩擦力前不会侧滑,故选项B错误,选项C正确.]1.轻绳模型如图所示,轻绳系的小球或在轨道内侧运动的小球,在最高点时的临界状态为只受重力,由mg=m v2r,得v=gr.即绳类模型中小球在最高点的临界速度为v临=gr.在最高点时:(1)v=gr时,拉力或压力为零.(2)v>gr时,物体受向下的拉力或压力,并且随速度的增大而增大.(3)v<gr时,物体不能达到最高点.(实际上球未到最高点就脱离了轨道)2.轻杆模型如图所示,在细轻杆上固定的小球或在管形轨道内运动的小球,由于杆和管能对小球产生向上的支持力,所以小球能在竖直平面内做圆周运动的条件是在最高点的速度大于或等于零,即杆类模型中小球在最高点的临界速度为v临=0.在最高点时:(1)v=0时,小球受向上的支持力N=mg.(2)0<v<gr时,小球受向上的支持力且随速度的增大而减小.(3)v=gr时,小球只受重力.(4)v>gr时,小球受向下的拉力或压力,并且随速度的增大而增大.【例1】(多选)如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图像如图乙所示.则()甲 乙A .小球的质量为aR bB .当地的重力加速度大小为R bC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等思路点拨: 由于杆既可以提供支持力,又可以提供拉力,故小球通过最高点时的速度可以不同,则通过F -v 2图像,可得到小球通过最高点时杆的弹力和小球速度大小的定量关系,从而找到解题的突破口.ACD [对小球在最高点进行受力分析,速度为零时,F -mg =0,结合图像可知a -mg =0;当F =0时,由牛顿第二定律可得mg =m v 2R ,结合图像可知mg=mb R ,联立解得g =b R ,m =aR b ,选项A 正确,B 错误.由图像可知b <c ,当v 2=c 时,根据牛顿第二定律有F +mg =mc R ,则杆对小球有向下的拉力,由牛顿第三定律可知,选项C 正确;当v 2=2b 时,由牛顿第二定律可得mg +F ′=m ·2b R ,可得F ′=mg ,选项D 正确.]竖直平面内圆周运动的分析方法物体在竖直平面内做圆周运动时:1.明确运动的模型,是轻绳模型还是轻杆模型.2.明确物体的临界状态,即在最高点时物体具有最小速度时的受力特点.3.分析物体在最高点及最低点的受力情况,根据牛顿第二定律列式求解.1.(多选)如图所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A .受到向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ⎝ ⎛⎭⎪⎫mg +m v 2R D .受到的合力方向斜向左上方CD [体在最低点时受到重力mg 、支持力F N 和摩擦力F f ,如图所示,其沿径向的合力F n 提供向心力,F n =m v 2R ,A 错误.由F n =F N -mg ,得F N =mg +m v 2R ,则物体受到的滑动摩擦力F f =μF N =μ⎝ ⎛⎭⎪⎫mg +m v 2R ,B 错误,C 正确.F f 水平向左,故物体受到的合力斜向左上方,D 正确.]物体在球壳最低点的受力分析1.明确圆周平面火车转弯处的铁轨,虽然外轨高于内轨,但整个外轨是等高的,整个内轨是等高的.因而火车在行驶的过程中,中心的高度不变,即火车中心的轨迹在同一水平面内.故火车的圆周平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平方向指向轨道的圆心.2.受力特点在实际的火车转弯处,外轨高于内轨,火车所受支持力的方向斜向上,火车所受支持力与重力的合力可以提供向心力.3.速度与轨道压力的关系(1)若火车转弯时,火车所受支持力与重力的合力充当向心力,则mg tan θ=m v20R,如图所示,则v0=gR tan θ,其中R为弯道半径,θ为轨道平面与水平面的夹角(tan θ≈hL,h为内外轨高度差,L为内外轨间距),v0为转弯处的规定速度.此时,内外轨道对火车均无挤压作用;(2)若火车行驶速度v0>gR tan θ,外轨对轮缘有侧压力;(3)若火车行驶速度v0<gR tan θ,内轨对轮缘有侧压力.【例2】有一列重为100 t的火车,以72 km/h的速率匀速通过一个内外轨一样高的弯道,轨道半径为400 m.(g取10 m/s2)(1)试计算铁轨受到的侧压力大小;(2)若要使火车以此速率通过弯道,且使铁轨受到的侧压力为零,我们可以适当倾斜路基,试计算路基倾斜角度θ的正切值.思路点拨:解答本题时可按以下思路进行分析:[解析](1)外轨对轮缘的侧压力提供火车转弯所需要的向心力,所以有N=m v2r=105×202400N=105 N.由牛顿第三定律可知铁轨受到的侧压力大小等于105 N.(2)火车的重力和铁轨对火车的弹力的合力提供向心力,如图所示,则mg tan θ=m v2r由此可得tan θ=v2rg=0.1.[答案](1)105 N(2)0.1火车转弯问题的两点注意(1)合外力的方向:火车转弯时,火车所受合外力沿水平方向指向圆心,而不是沿轨道斜面向下.因为,火车转弯的圆周平面是水平面,不是斜面,所以火车的向心力即合外力应沿水平面指向圆心.(2)规定速度的唯一性:火车轨道转弯处的规定速率一旦确定则是唯一的,火车只有按规定的速率转弯,内外轨才不受火车的挤压作用.速率过大时,由重力、支持力及外轨对轮缘的挤压力的合力提供向心力;速率过小时,由重力、支持力及内轨对轮缘的挤压力的合力提供向心力.2.(多选)铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关.下列说法正确的是( )A .v 一定时,r 越小则要求h 越大B .v 一定时,r 越大则要求h 越大C .r 一定时,v 越小则要求h 越大D .r 一定时,v 越大则要求h 越大AD [设轨道平面与水平方向的夹角为θ,由mg tan θ=m v 2r ,得tan θ=v 2gr ,又因为tan θ≈sin θ=h l ,所以h l =v 2gr .可见v 一定时,r 越大,h 越小,故A 正确,B 错误;当r 一定时,v 越大,h 越大,故C 错误,D 正确.]1.离心运动的实质:质是物体惯性的表现.做圆周运动的物体,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到指向圆心的力.2.离心运动、近心运动的判断:物体做离心运动还是近心运动,由实际提供的向心力F 与所需向心力(m v 2r 或mrω2)的大小关系决定.(如图所示)(1)若F =mrω2(或m v 2r )即“提供”满足“需要”,物体做圆周运动. (2)若F >mrω2(或m v 2r ),即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F<mrω2(或m v2r),即“提供”不足,物体做离心运动.(4)若F=0,物体做离心运动,并沿切线方向飞出.【例3】如图所示是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是()A.摩托车一直受到沿半径方向向外的离心力作用B.摩托车所受外力的合力小于所需的向心力C.摩托车将沿其线速度的方向沿直线滑去D.摩托车将沿其半径方向沿直线滑去B[摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,选项A 错误;摩托车正常转弯时可看作是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,选项B正确;摩托车将沿曲线做离心运动,选项C、D错误.]分析离心运动需注意的问题1.物体做离心运动时并不存在“离心力”,“离心力”的说法是因为有的同学把惯性当成了力.2.离心运动并不是沿半径方向向外远离圆心的运动.3.摩托车或汽车在水平路面上转弯,当最大静摩擦力不足以提供向心力时,即F max<m v 2r,做离心运动.3.如图所示,在光滑的水平面上,小球在拉力F作用下做匀速圆周运动,若小球到达P点时F突然发生变化,下列关于小球运动的说法正确的是()A.F突然消失,小球将沿轨迹Pa做离心运动B.F突然变小,小球将沿轨迹Pa做离心运动C.F突然变大,小球将沿轨迹Pb做离心运动D.F突然变小,小球将沿轨迹Pc逐渐靠近圆心A[F突然消失时,小球将沿该时刻线速度方向,即沿轨迹Pa做离心运动,选项A正确;F突然变小时,小球将会沿轨迹Pb做离心运动,选项B、D均错误;F突然变大时,小球将沿轨迹Pc做近心运动,选项C错误.]1.通过阅读课本,几个同学对生活中的圆周运动的认识进行交流.甲说:“洗衣机甩干衣服的道理就是利用了水在高速旋转时会做离心运动.”乙说:“火车转弯时,若行驶速度超过规定速度,则内轨与车轮会发生挤压.”丙说:“汽车过凸形桥时要减速行驶,而过凹形桥时可以较大速度行驶.”丁说:“我在游乐园里玩的吊椅转得越快,就会离转轴越远,这也是利用了离心现象.”你认为正确的是()A.甲和乙B.乙和丙C.丙和丁D.甲和丁D[甲和丁所述的情况都是利用了离心现象,D正确;乙所述的情况,外轨会受到挤压,汽车无论是过凸形桥还是凹形桥都要减速行驶,A、B、C选项均错.]2.(多选)如图所示,在匀速转动的洗衣机脱水桶内壁上,有一件湿衣服随圆桶一起转动而未滑动,则()A.衣服随圆桶做圆周运动的向心力由静摩擦力提供B.圆桶转速增大,衣服对桶壁的压力也增大C.圆桶转速足够大时,衣服上的水滴将做离心运动D.圆桶转速增大以后,衣服所受摩擦力也增大BC[衣服做圆周运动的向心力由桶壁的弹力提供,A错误.转速增大,衣服对桶壁压力增大,而摩擦力保持不变,B正确,D错误.转速足够大时,衣服上的水滴做离心运动,C正确.]3.(多选)火车在铁轨上转弯可以看做是做匀速圆周运动,火车速度提高易使外轨受损.为解决火车高速转弯时使外轨受损这一难题,你认为理论上可行的措施是()A.减小弯道半径B.增大弯道半径C.适当减小内外轨道的高度差D.适当增加内外轨道的高度差BD[当火车速度增大时,可适当增大转弯半径或适当增大轨道倾角,以减小外轨所受压力.]4.如图所示为模拟过山车的实验装置,小球从左侧的最高点释放后能够通过竖直圆轨道而到达右侧.若竖直圆轨道的半径为R,要使小球能顺利通过竖直圆轨道,则小球通过竖直圆轨道的最高点时的角速度最小为()A.gRB .2gR C.gR D.RgC [小球能通过竖直圆轨道的最高点的临界条件为重力提供向心力,即mg =mω2R ,解得ω=gR ,选项C 正确.]5.如图所示,小球A 质量为m ,固定在长为L 的轻细直杆一端,并随杆一起绕杆的另一端点O 在竖直平面内做圆周运动,如果小球经过最高位置时,杆对小球的作用力大小等于小球的重力.求:(1)小球的速度大小; (2)当小球经过最低点时速度为6gL ,此时,求杆对球的作用力的大小和球的向心加速度的大小.[解析] (1)小球A 在最高点时,对球受力分析:重力mg ,拉力F =mg 或支持力F =mg根据小球做圆周运动的条件,合外力等于向心力,得mg ±F =m v 2L① F =mg ②解①②两式,可得v =2gL 或v =0.(2)小球A 在最低点时,对球受力分析:重力mg 、拉力F ′,设向上为正方向根据小球做圆周运动的条件,合外力等于向心力,F ′-mg =m v ′2L ,解得F ′=mg+m v′2L=7mg,故球的向心加速度a=v′2L=6g. [答案](1)2gL或0(2)7mg6g。
2017_2018学年高中物理第二章匀速圆周运动第3节圆周运动的实例分析教学案教科版

第3节圆周运动的实例分析1.汽车通过拱形桥的运动可看做竖直平面内的圆周运动,在拱形桥的最高点,汽车对桥的压力小于汽车的重力。
2.旋转秋千、火车转弯、鸟或飞机盘旋均可看做在水平面上的匀速圆周运动,其竖直方向合力为零,水平方向合力提供向心力。
3.当合外力提供的向心力消失或不足时,物体将沿圆周运动的切线方向飞出或远离圆心而去的运动叫做离心运动。
一、汽车过拱形桥二、“旋转秋千”“旋转秋千”运动可简化为圆锥摆模型,如图231所示。
图2311.向心力来源物体做匀速圆周运动的向心力由物体所受的重力和悬线对它的拉力的合力提供。
2.动力学关系mg tan_α=mω2r,又r=l sin_α,则ω=gl cos α,周期T=2πl cos αg,所以cos α=gω2l,由此可知,α角度与角速度ω和绳长l有关,在绳长l确定的情况下,角速度ω越大,α越大。
三、火车转弯1.运动特点火车转弯时实际是在做圆周运动,因而具有向心加速度,由于其质量巨大,所以需要很大的向心力。
2.向心力来源在修筑铁路时,要根据弯道的半径和规定的行驶速度,适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由重力G和支持力N的合力提供。
如图232所示。
图232四、离心运动1.定义物体沿圆周运动的切线方向飞出或远离圆心而去的运动。
2.原因合外力提供的向心力消失或不足。
3.应用(1)离心机械:利用离心运动的机械。
(2)应用:洗衣机的脱水筒;科研生产中的离心机。
1.自主思考——判一判(1)汽车行驶至凸形桥顶时,对桥面的压力等于车的重力。
(×)(2)汽车过凹形桥底部时,对桥面的压力一定大于车的重力。
(√)(3)汽车过凸形桥或凹形桥时,向心加速度的方向都是向上的。
(×)(4)“旋转秋千”的缆绳与中心轴的夹角与所乘坐人的体重无关。
(√)(5)做离心运动的物体一定不受外力作用。
高中物理第二章3圆周运动的实例分析教案1教科版必修2

第3节圆周运动的实例分析本节教材分析(1)三维目标一、知识与技能1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,那么这个力或这个合力就是做匀速圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源.2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例.3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度.二、过程与方法1.通过对匀速圆周运动实例的分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力.2.通过匀速圆周运动的规律在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力.3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力.三、情感态度与价值观1.通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题.2.通过对离心现象的应用和防止的实例分析,使学生明白事物都是一分为二的,要学会用一分为二的观点来看待问题.3.养成良好的思维习惯,形成科学的价值观.(2)教学重点找出向心力的来源,理解并掌握在匀速圆周运动中合外力提供向心力,能用向心力公式解决有关圆周运动的实际问题。
(3)教学难点理解做匀速圆周运动的物体受到的向心力是由某几个力的合力提供的,而不是一种特殊的力;向心力来源的寻找;临界问题中临界条件的确定。
(4)教学建议1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力.2、培养学生运用物体知识解决实际问题的能力.通过例题的分析与讨论(结合动画或课件),引导学生从中领悟掌握运用向心力公式的思路和方法.即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体.第二:运用向心力公式计算做圆周运动所需的向心力.第三:由物体实际受到的力提供了它所需要的向心力,列出方程求解.3、可多举一些实例让学生分析.向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提供.4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象.新课导入设计导入一巩固知识导入新课师:复习匀速圆周运动的知识点(提问)①描述匀速圆周运动快慢的各个物理量及其相互关系.②从动力学角度回答对匀速圆周运动的认识.师:学以致用是学习的最终目的,本节课通过几个具体实例的探讨来深入理解相关知识点并学会应用.导入二1、复习提问:向心加速度a的公式怎样写?根据牛顿第二定律F=ma可得,对应的向心力公式有哪几个?2、引入:在生活当中很多圆周运动的实例:骑自行车、摩托车转弯,汽车、火车转弯,飞机作俯冲运动、汽车过拱桥等都是圆周运动或圆周运动的一部分,这些运动的向心力的来源是什么?这节课我们就来讨论在实际生活中的圆周运动几个问题。
新教科版高中物理必修2第二章第3节圆周运动的实例分析(49张ppt)

由
mgmv2 r
得v临
gr
讨论分析:1、过最高点时,v gr 球产生弹力FN 0 ,方向指向圆心;
,FN
mgmv2 r
绳、轨道对小
2、不能过最高点时 v gr 在到达最高点前小球已
经脱离了圆轨道;
2、“轻杆”模型(均是有物体支撑的小球)
过最高点的临界条件:
小球能运动即可, v临 0
讨减论小分析:21、、当当0v<=v0v<时 ,gFr N时=,mg,FFNN为支m持g力m,vr2沿,FN半背径离背圆离心圆,心随v的增大而
ν
提供水随衣服转动所需的向 心力 F,于是水滴做离心运 动,穿过网孔,飞到脱水桶
F<mrω 2 F
o
外面。
45
圆周运动中的临界问题
一、竖直面内的圆周运动 1、“轻绳”模型(均是没有支撑的小球)
绳 圆轨道
2、“轻杆”模型(均是有物体支撑的小球)
杆 光滑管道
1、“轻绳”模型(均是没有支撑的小球)
过最高点的临界条件:
方法技巧
汽车过凹形桥与凸形桥的动力学分析
(1)汽车通过凹形桥的最底端时做圆周运动,支持力克服重力提供向心力,即
N
mg
v2 m
可得 N mgmv2
,由此可知当汽车通过最低点时速度
R
RHale Waihona Puke 越快,对桥面的压力越大。(2)汽车通过凸形桥的最高点时做圆周运动,重力克服支持力提供向心力,即
mgN mv2 可得 N mgmv2 ,由此可知当汽车通过最高点时速度
实例5:汽车转弯
N F牵
F牵 俯视图:
v
f静
f静
f切
G
f切
高中物理 第二章 匀速圆周运动 3 圆周运动的实例分析教案2 教科版必修2(2021年最新整理)

高中物理第二章匀速圆周运动3 圆周运动的实例分析教案2 教科版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理第二章匀速圆周运动3 圆周运动的实例分析教案2 教科版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理第二章匀速圆周运动3 圆周运动的实例分析教案2 教科版必修2的全部内容。
第3节 圆周运动的实例分析一、探究并设计适合本节教学的教法、学法: 1、设计教法:(1)情景导学法:引入新课教学中创设问题情境,激发学习兴趣,调动学生的内在学习动力,促使学生积极主动学习;(2)目标导学法:让在学生在学前明确学习目标,学有方向,才能有的放矢,促使学生积极探索、发现;(3)实验演示法:学生通过参与实验操作、讨论分析实验现象,推理其内在的本质;(4)比较法:通过新旧对比,启发学生认识并获得新知等.最大限度地调动学生积极参与教学活动。
充分体现“教师主导,学生主体”的教学原则。
本节课采用了演示法和讲授法相结合的启发式综合教学方法。
教师边演示边让学生分折解题思路,充分调动学生的积极性和主动性. 2、设计学法:观察法,归纳法,阅读法,推理法 。
教学生用较简单的器材做实验,以发挥实验效益,提高教学效果的方法.通过设疑,启发学生思考.二、设计教学流程:三、具体教学过程设计:创设情景:(教学PPT 录像)在日常生活中有很多圆周运动的实例:骑自行车转弯,汽车、创设情景,激发学生学习兴趣和热情复习圆周运动的基本知识,为后面小球过最高点条件分析作铺垫明确圆周运动的解题思路,进一步加深对向心力的概念理解通过实例分析,进一步理解向心力的来源可以是一个力或几个力的合力汽车过拱桥,培养学生阅读和自学能力,知道向心力公式也适用变速圆周运动 O进一步熟练向心力来源分析,为后面绳子过最高点问题作铺堑 绳系小球过最高点及过山车过最高点的条件进行比较分析课后小结火车转弯等都是圆周运动或圆周运动的一部分,这些运动的向心力的来源是什么?这节课我们就来讨论在具体的问题中向心力的来源?实例分析一(匀速圆周运动):1、小球在光滑水平面上做匀速圆周运动。
2.3圆周运动的实例分析+教学设计-2024-2025学年高一下学期物理教科版(2019)必修第二册

《圆周运动的实例分析》教学设计一、教材依据本节课是教科版高中物理必修2第二章《研究圆周运动》的第3节《圆周运动的实例分析》。
二、设计思路(一)、指导思想①突出科学的探究性和物理学科的趣味性;②体现了以学生为主体的学习观念;注重了循序渐进性原则和学生的认知规律,使学生从感性认识自然过渡到理性认识。
(二)、设计理念本节对学生来说是比较感兴趣的,要使学生顺利掌握本节内容。
引导学生在日常生活经验的基础上通过观察和主动探究和归纳,就成为教学中必须解决的关键问题。
所以在本节课的设计中,结合新课改的要求,利用“六步教学法”:教师主导——提出问题;学生探求——发现问题;主体互动——研究问题;课堂整理——解决问题;课堂练习——巩固提高;反思小结——信息反馈,为学生准备了导学提纲,重视创设问题的情境,引导学生分析现象,归纳总结出实验结论。
(三)教材分析本节是《研究圆周运动》这一章的核心,它既是圆周运的向心力与向心加速度的具体应用,也是牛顿运动定律在曲线运动中的升华,它也将为学习后续的万有引定律应用、带电粒子在磁场中运动等内容作知识与方法上的准备。
本节通过对汽车、火车等交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。
在本节教学内容中,圆周运动与人们日常生活、生产技术有着密切的联系,本节教材从生活场景走向物理学习,又从物理学习走向社会应用,体现了物理与生活、社会的密切联系。
三、教学目标1.通过对自行车、交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。
2.将生活实例转换为物理模型进行分析研究。
3.通过探究性物理学习活动,使学生获得成功的愉悦,培养学生对参与物理学习活动的兴趣,提高学习的自信心。
4.通过对日常生活、生产中圆周运动现象的解释,敢于坚持真理、勇于应用科学知识探究生活中的物理学问题。
四、教学重点理解向心力不是一种特殊的力,同时学会分析实际的向心力来源。
五、教学难点能用向心力公式解决有关圆周运动的实际问题,其中包括分析汽车过拱桥、火车拐弯等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【二】重难点提示:
重点:1. 掌握火车、汽车拐弯时的向心力来源;
2. 会用圆周运动的规律解决实际问题。
难点:能从供需关系理解拐弯减速的原理。
【一】火车转弯问题
1. 火车在水平路基上的转弯
〔1〕此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹力。
〔2〕外轨对轮缘的弹力提供向心力。
〔3〕由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质量很大,故轮缘和外轨间的相互作用力很大,易损害铁轨。
2. 实际弯道处的情况:外轨略高于内轨道
〔1〕对火车进行受力分析:
火车受铁轨支持力N 的方向不再是竖直向上,而是斜向弯道的内侧,同时还有重力G 。
〔2〕支持力与重力的合力水平指向内侧圆心,成为使火车转弯所需的向心力。
【规律总结】转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G 和支持力N 来提供,这样外轨就不受轮缘的挤压了。
3. 限定速度v
分析:火车转弯时需要的向心力由火车重力和轨道对它的支持力的合力提供。
F 合=mgtan α=r
v m 2 ① 由于轨道平面和水平面的夹角很小,可以近似地认为
tan α≈sin α=h/d ②
②代入①得:
mg d h =r v m 2 思考:在转弯处:
〔1〕假设列车行驶的速率等于规定速度,那么两侧轨道是否受车轮对它的侧向压力。
〔2〕假设列车行驶的速率大于规定速度,那么___轨必受到车轮对它向___的压力〔填〝内〞或〝外〞〕。
〔3〕假设列车行驶的速率小于规定速度,那么___轨必受到车轮对它向___的压力〔填〝内〞或〝外〞〕。
【二】汽车转弯中的动力学问题
1. 水平路面上的转弯问题:摩擦力充当向心力umg=mv2/r。
由于摩擦力较小,故要求的速度较小,否那么就会出现离心现象,发生侧滑,出现危险。
2. 实际的弯道都是外高内底,以限定速度转弯,受力如图。
Mgtanθ=Mv2/r v=θ
rg
tan
当v >θ
rg,侧向下摩擦力的水平分力补充不足的合外力;
tan
v <θ
rg,侧向上摩擦力的水平分力抵消部分过剩的合外力;
tan
v =θ
rg,沿斜面方向的摩擦力为零,重力和支持力的合力提供向
tan
心力。
例题1 在用高级沥青铺设的高速公路上,汽车的最大速度为108 km /h。
汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.4倍。
〔g取10 m/s2〕
〔1〕如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?
〔2〕如果高速公路上设计了圆弧拱桥,要使汽车能够安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?
思路分析:〔1〕汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供。
当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,
有m2v
≤0.4mg,由速度v=30 m/s,得:r≥225m。
r
〔2〕汽车过拱桥,看做在竖直平面内做匀速圆周运动,到达最高点时,
根据向心力公式有mg-N=m2v
,
R
为了保证安全,车对路面的压力必须大于零。
,v=30 m/s,那么R≥90 m。
有mg≥m2v
R
答案:〔1〕225m〔2〕90m
例题2 如下图为一辆箱式货车的后视图。
该箱式货车在水平路面上做弯道训练。
圆弧形弯道的半径为R=8m,车轮与路面间的动摩擦因数为
μ=0.8,滑动摩擦力等于最大静摩擦力。
货车顶部用细线悬挂一个小球P ,在悬点O 处装有拉力传感器。
车沿平直路面做匀速运动时,传感器的示数为F0=4N 。
取g=10m/s2。
〔1〕该货车在此圆弧形弯道上做匀速圆周运动时,为了防止侧滑,车的最大速度vm 是多大?
〔2〕该货车某次在此弯道上做匀速圆周运动,稳定后传感器的示数为F=5N ,此时细线与竖直方向的夹角θ是多大?此时货车的速度v 是多大?
思路分析:〔1〕车沿平直路面做匀速运动时,小球处于平衡状态,传感器的示数为04F mg N ==,得到0.4m kg =。
该货车在此圆弧形弯道上做匀速圆周运动时,地面对其摩擦力提供向心力,为了防止侧滑,向心力不能超过最大静摩擦力即2mv mg R
μ≥,带入计算得
8/v m s ≤=。
〔2〕小球受力如以下图,一个重力4mg N =方向竖直向下,一个拉力5F N =,二者的合力沿水平方向提供向心力,根据几何关系得到2
3mv N R
==,带入计算得//8/v s s m s ==<。
所以没有侧滑,运动半径不变,分析正确。
23tan ()4
mv mg R θ==得到37θ=o 。
答案:〔1〕
8/m s 〔2〕37θ=o /s
知识脉络
总分值训练:火车轨道在转弯处,外轨高于内轨,其高度差由转弯半径与火车速度确定。
假设在某转弯处规定行驶的速度为v ,那么以下说法中正确的选项是〔 〕
① 当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力
② 当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力
③ 当速度大于v 时,轮缘挤压外轨
④ 当速度小于v 时,轮缘挤压外轨
①③ B. ①④ C. ②③ D. ②④
思路分析:在某转弯处规定速度行驶,重力和支持力的合力充当向心力,轮、轨之间无侧压力。
速度过大,由外轨对外轮产生向内的侧压力;速度过小,内轨对内轮产生向外的侧压力。
故答案为A。
答案:A。