(完整版)高一物理必修2圆周运动复习知识点总结及经典例题详细剖析
高一物理必修2圆周运动复习知识点总结

高一物理必修2圆周运动复习知识点总结一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度v平=st(定义式)2.有用推论vt2cv02=2as3.中间时刻速度v平=vt2=vt+v024.末速度vt=v0+at5.中间边线速度vs2=v02+vt22126.加速度s=v平t=v0t+at22=vt2t7.加速度a=(vt-vo)/t以vo为正方向,a与vo同向(加速)a>0;反向则a<08.实验用推论δs=at^2δs为相邻连续相等时间(t)内位移之差9.主要物理量及单位:初速(vo):m/s 加速度(a):m/s^2末速度(vt):m/s时间(t):秒(s)加速度(s):米(m)路程:米速度单位折算:1m/s=3.6km/h注:(1)平均速度是矢量。
(2)物体速度大,加速度不一定大。
(3)a=(vt-vo)/t只是量度式,不是决定式。
(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/2)自由落体1.初速度vo=02.末速度vt=gt3.下落高度h=gt^2/2(从vo位置向下计算)4.推论vt^2=2gh备注:(1)自由落体运动就是初速度为零的坯快速直线运动,遵从匀变速度直线运动规律。
(2)a=g=9.8m/s^2≈10m/s^2重力加速度在赤道附近较小,在高山处比平地大,方向直角向上。
3)直角上甩1.位移s=vot-gt^2/22.末速度vt=vo-gt(g=9.8≈10m/s2)3.有价值推断vt^2cvo^2=-2gs4.下降最小高度hm=vo^2/2g(抛出点算是起至)5.来往时间t=2vo/g(从甩老迈回原边线的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。
(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动万有引力1)元显恭甩运动1.水平方向速度vx=vo2.竖直方向速度vy=gt3.水平方向位移sx=vot4.竖直方向位移(sy)=gt^2/25.运动时间t=(2sy/g)1/2(通常又表示为(2h/g)1/2)6.合速度vt=(vx^2+vy^2)1/2=[vo^2+(gt)^2]1/2合速度方向与水平夹角β:tgβ=vy/vx=gt/vo7.合位移s=(sx^2+sy^2)1/2,加速度方向与水平夹角α:tgα=sy/sx=gt/2vo注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。
必修2第二章《 圆周运动》知识要点

高一必修2《第二章 圆周运动》知识要点一、圆周运动01.定义:物体的运动轨迹是圆周的运动,叫做圆周运动。
02.条件:物体受到向心力的作用 向心力始终与速度方向垂直,沿半径指向圆心。
03.特点:⑴、物体上各点围绕某点(即圆心)或某一轴线转动⑵、瞬时速度方向时刻改变——圆周运动是一种变速运动⑶、运动轨迹(或相对起点的位移)具有重复性(周期性)二、匀速圆周运动01.定义:运动速度大小恒定的圆周运动,叫做匀速圆周运动。
(有多种定义) 02.描述物理量设R 为圆周运动的轨道半径,φ为半径转过的圆心角,N 为圆周运动的圈数。
⑴.线速度:V=t S =TR π2 =R ω 单位:m/s ⑵.角速度:ω=t ϕ=Tπ2=2n π 单位:rad/s ⑶.周期:T=ωπ2=n1 单位:s ⑷.转速:n=tN 单位:r/s 或r/min 03.匀速圆周运动的特点:F (或a )和V 的大小、ω、T 、n 恒定不变,但F (或a )和V 的方向时刻改变。
04.特性:同一转动物体上各点的角速度相同 ★:传动装置中,两转动物体边缘上各处的线速度大小相等。
三、向心力01.定义:使物体做圆周运动的力,叫做向心力。
02.特点:是效果力,不是性质力,方向时刻改变。
03.作用:只改变V 的方向,不改变V 的大小。
04.大小:F==ma 2ϖmr =r V m 2=ϖmV =224T mr π=mr n 224π 注意:⑴当m 、V 不变时,F ∝r1 ;⑵当m 、ω不变时,F ∝r 05.方向:总是沿半径指向圆心06.来源:来源于某一个力或某一个力的分力或某几个力的合力四、向心加速度01.定义:由向心力产生的加速度,叫做向心加速度。
02.大小:a=2ϖr =r V 2=ϖV =r T 224π =r n 224π 注意:⑴当V 不变时,a ∝r1 ;⑵当ω不变时,a ∝r 03.方向:总是沿半径指向圆心04.意义:反映V 方向改变的快慢五、分析和解决匀速圆周运动问题的步骤01.明确研究对象,确定圆心位置及半径大小;02.对研究对象进行受力分析03.找出向心力的来源及大小;04.代入向心力公式列出方程05.结合其它条件列出相关方程;06.解联合方程组,求出所求物理量。
(完整word版)高一物理必修二-第二章圆周运动知识点与例题练习

1 .物体的运动轨迹是圆的运动叫圆周运动圆周运动 圆周运动是变.速.运动,“速”特.指.速率匀速圆周运动:质点沿圆周运动,任.意.相等时间内通过的圆弧长度相等(但任意相等时间内,位移大.小.相等)2.线速度: 方向:切线方向 单位: m/s角速度: 方向:右手螺旋定则 单位: rad/s转速 (n ) :质点在单位时间内转过的圈数。
单位: r/s 或 r/min周期 (T ) :质点转动一周所用的时间。
单位: s 3.几个有用的结论:① 同轴转动的物体上各点转动的周期和角速度均相同② 皮带不打滑时,皮带上各点和轮子边缘..各点的线速度大小相等③ 两齿轮间不打滑时,两轮边缘..各点的线速度大小相等4. 向心力狭隘定义: 物体做圆周运动时,所受的沿半径指向圆心方向的力 ( 合力) 。
向心力广义定义: 质点(或物体)作曲线运动时所需的指向曲率中心的力,又称法向力。
向心力简单定义:改变.物.体.运.动.方.向.的.力.. 。
5. 对向心力的理解:① 向心力是物体所受到的指向圆心方向的合力的新名字...,故受力分析时,不能 “强迫”物体再受.一.个.向.心.力.. ,只能思考,是由哪些力去“充当”“提供”向心力。
② 不是因为物体做圆周运动而产生了向心力, 而是因为物体受到指向圆心的力 (向心力 )才做圆周运动。
③ 向心力是从力的作用效果..角度来命名的,它不是具有确定性质的某种类型的力。
相反,任何性质的力都可 以作为向心力。
④ 向心力来源:它可是某种性质的一个力,或某个力的分力, 还可以是几个不同性质的力沿着半径指向圆心的合外力。
⑤ 向心力总指向圆心,时刻垂直于速度方向, 故向心力只能改变速度的方向 ,不能改变速度的大小。
6. 向心加速度:与向心力相呼应的加速度,指向圆心,总垂直于速度方向。
匀速圆周运动是变速运动,是变加速...运动(加速度方向在变)。
7. 变速圆周运动和匀速圆周运动的特点:8.圆周运动方程F 合== 的理解:左边F合是外界(如绳子)实际提供的力右边是物体做圆周运动需要的.力的大小等号的含义是:“满足”、“提供”、“充当”① F 合= 时,物体刚.好.能做圆周运动;②F合< 时,物体做离心运动;③F合> 时,物体做近心运动。
新教材 人教版高中物理必修第二册 第六章 圆周运动 知识点考点重点难点提炼汇总

第六章圆周运动6.1圆周运动 ........................................................................................................................... - 1 -6.2向心力 ............................................................................................................................... - 9 -6.3向心加速度 ..................................................................................................................... - 16 -6.4生活中的圆周运动 ......................................................................................................... - 21 -专题课向心力的应用和计算............................................................................................ - 32 - 专题课生活中的圆周运动................................................................................................ - 36 -6.1圆周运动一、圆周运动及线速度1.圆周运动的概念运动轨迹为圆周或一段圆弧的机械运动,称为圆周运动。
部编版高中物理必修二第六章圆周运动带答案知识点总结归纳完整版

(名师选题)部编版高中物理必修二第六章圆周运动带答案知识点总结归纳完整版单选题1、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。
则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R2、下列说法正确的是()A.做曲线运动的物体所受的合力一定是变化的B.两个匀变速直线运动的合运动一定是曲线运动C.做匀速圆周运动的物体的加速度大小恒定,方向始终指向圆心D.做曲线运动的物体,其速度方向与加速度方向可能在同一条直线上3、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,此时牵引秋千的轻绳绷直,小明相对秋千静止,下列说法正确的是()A.此时秋千对小明的作用力可能不沿绳的方向B.此时秋千对小明的作用力小于mgC.此时小明的速度为零,所受合力为零D.小明从最低点摆至最高点过程中先处于失重状态后处于超重状态4、做匀速圆周运动的物体,它的加速度大小必定与()A.线速度的平方成正比B.角速度的平方成正比C.运动半径成正比D.线速度和角速度的乘积成正比5、如图所示,一个随水平圆盘转动的小物块,当圆盘加速转动时,小物块相对于圆盘保持静止。
关于小物块的受力,下列说法正确的是( )A.支持力增大B.向心力变大C.摩擦力大小不变D.合力指向圆心6、火车以某一速度v通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是()A.轨道半径R=v2gB.若火车速度大于v时,外轨将受到侧压力作用,其方向平行轨道平面向外C.若火车速度小于v时,外轨将受到侧压力作用,其方向平行轨道平面向内D.当火车质量变大时,安全速率应适当减小7、下列说法中正确的是()A.因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力B.因向心力指向圆心,且与线速度的方向垂直,所以它不能改变线速度的大小C.物体因为做匀速圆周运动才受到向心力D.做圆周运动的物体所受各力的合力一定是向心力8、如图所示为一皮带传动轮,大轮直径是小轮直径的3倍,A是大轮边缘上一点,B是小轮边缘上一点,C是大轮上一点,C到圆心O1的距离等于小轮半径,转动时皮带不打滑。
高中物理必修二第六章圆周运动基础知识点归纳总结(带答案)

高中物理必修二第六章圆周运动基础知识点归纳总结单选题1、将火车在铁轨上转弯的过程近似看作水平面内的匀速圆周运动,下列说法正确的是()A.转弯时内轨一定不受力B.转弯时外轨一定不受力C.转弯时火车速度越小越好D.转弯处应内轨低外轨高答案:D根据匀速圆周运动的规律,做匀速圆周运动的物体的向心力由其合力提供。
对火车进行受力分析,火车受到重力和轨道对火车的支持力,若火车轨道内轨低外轨高,设与水平方向夹角为θ,则满足mgtanθ=m v2 r即当v=√grtanθ时火车内、外两侧铁轨所受轮缘对它们的侧向压力均恰好为零,火车的重力和轨道对火车的支持力的合力提供向心力。
当火车速率大于v时,所需要的向心力增大,车轮轮缘对外轨施加压力;当火车速率小于v时,所需要的向心力减小,车轮轮缘对内轨施加压力;所以火车的速率过大或者过小都不好;综上所述选项ABC 错误,D正确。
故选D。
2、如图所示是“陀螺旋转醒酒器”,它可以绕底座的支点旋转,当其转动醒酒时,瓶上的A、B两点,下列说法正确的是()A.AB杆上各点角速度大小都相同B.AB杆上各点线速度大小都相同C.AB杆上各点加速度大小都相同D.以上关于AB杆的说法都不正确答案:AA.AB杆上各点,相同时间内转过的角度相同,所以角速度大小相同,故A正确;B.AB杆上各点做圆周运动的半径不同,角速度相同,根据v=ωr可知,各点的线速度大小不同,故B错误;CD.根据a=ω2r可知,各点的加速度大小不同,故CD错误;故选A。
3、如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,重力加速度为g,则下列说法正确的是()A.小球在水平线ab以上的管道中运动时,内侧管壁对小球可能有作用力)B.小球通过最高点时的最小速度v min=√g(R+r2C.小球在水平线ab以下的管道中运动时,外侧管壁对小球一定无作用力D.小球通过最高点时的最小速度v min=√g(R+r)答案:ABD.在最高点,由于外管或内管都可以对小球产生弹力作用,当小球的速度等于0时,内管对小球产生弹力,大小为mg,故最小速度为0,故BD错误;C.小球在水平线ab以下的管道中运动时,由于沿半径方向的合力提供做圆周运动的向心力,所以外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力,故C错误;A.小球在水平线ab以上的管道运动,由于沿半径方向的合力提供做圆周运动的向心力,当速度非常大时,内侧管壁没有作用力,此时外侧管壁有作用力,当速度比较小时,内侧管壁对小球有作用力,故A正确。
部编版高中物理必修二第六章圆周运动带答案重点归纳笔记

(名师选题)部编版高中物理必修二第六章圆周运动带答案重点归纳笔记单选题1、如图为某一皮带传动装置,主动轮M的半径为r1,从动轮N的半A径为r2,已知主动轮做顺时针转动,转速为n1,转动过程中皮带不打滑。
下列说法正确的是()A.从动轮做顺时针转动B.从动轮的角速度大小为2πn1r1r2n1C.从动轮边缘线速度大小为r2r1n1D.从动轮的转速为r2r12、如图所示,轻杆一端与一质量为m的小球相连,另一端连在光滑固定轴上,轻杆可在竖直平面内自由转动。
现使小球在竖直平面内做完整的圆周运动,不计空气阻力,重力加速度为g。
下列说法正确的是()A.小球在运动过程中的任何位置对轻杆的作用力都不可能为0B.当轻杆运动到水平位置时,轻杆对小球的拉力大小不可能等于mgC.小球运动到最低点时,对轻杆的拉力可能等于4mgD.小球运动到最低点时,对轻杆的拉力一定不小于6mg3、如图所示,底部装有4个轮子的行李箱a竖立、b平卧放置在公交车上,箱子四周均有一定空间。
当公交车()A.缓慢启动时,a、b均相对于公交车向后运动B.急刹车时,行李箱a相对于公交车向前运动C.缓慢转弯时,a、b均相对于公交车向外侧运动D.急转弯时,行李箱a相对于公交车向内侧运动4、如图所示,轻质细杆的一端与小球相连,可绕过O点的水平轴自由转动,细杆长1m,小球质量为1kg,现使小球在竖直平面内做圆周运动,小球通过轨道最低点A的速度为v A=7m/s,通过轨道最高点B的速度为v B=3m/s,g取10m/s2,则小球通过最低点和最高点时,细杆对小球的作用力(小球可视为质点)为()A.在A处为推力,方向竖直向下,大小为59NB.在A处为拉力,方向竖直向上,大小为59NC.在B处为推力,方向竖直向下,大小为1ND.在B处为拉力,方向竖直向下,大小为1N5、做曲线运动的物体在运动过程中,下列说法正确的是()A.做匀速圆周运动的物体处于平衡状态B.平抛运动速度变化快慢不变C.曲线运动它所受的合外力一定是恒力D.曲线运动加速度大小一定改变6、过山车的部分轨道可简化为半径为R1、R2的圆,其底部位于同一水平面上,R1=3R2。
高一物理必修2圆周运动知识点归纳

⾼⼀物理必修2圆周运动知识点归纳 圆周运动是⾼考的重点内容和命题频率最⾼的知识点。
下⾯店铺给⼤家带来⾼⼀物理必修2圆周运动知识点,希望对你有帮助。
⾼⼀物理必修2圆周运动知识点 ⼀、考点理解 1、关于匀速圆周运动 (1)条件:①物体在圆周上运动;②任意相等的时间⾥通过的圆弧长度相等。
(2)性质:匀速圆周运动是加速度变化(⼤⼩不变⽽⽅向不断变化)的变加速运动。
(3)匀速圆周运动的向⼼⼒: ①是按⼒的作⽤效果来命名的⼒,它不是具有确定性质的某种⼒,相反,任何性质的⼒都可以作为向⼼⼒。
例如,⼩铁块在匀速转动的圆盘上保持相对静⽌的原因是,静摩擦⼒充当向⼼⼒,若圆盘是光滑的,就必须⽤线细拴住⼩铁块,才能保证⼩铁块同圆盘⼀起做匀速转动,这时向⼼⼒是由细线的拉⼒提供。
②向⼼⼒的作⽤效果是改变线速度的⽅向。
做匀速圆周运动的物体所受的合外⼒即为向⼼⼒,它是产⽣向⼼加速度的原因,其⽅向⼀定指向圆⼼,是变化的(线速度⼤⼩变化的⾮匀速圆周运动的物体所受的合外⼒不指向圆⼼,它既要改变速度⽅向,同时也改变速度的⼤⼩,即产⽣法向加速度和切向加速度)。
③向⼼⼒可以是某⼏个⼒的合⼒,也可以是某个⼒的分⼒。
例如,⽤细绳拴着质量为m的物体,在竖直平⾯内做圆周运动到最低点时,其向⼼⼒由绳的拉⼒和重⼒(F向 = T拉 - mg)两个⼒的合⼒充当。
⽽在圆锥摆运动中,⼩球做匀速圆周运动的向⼼⼒则是由重⼒的分⼒(F向= mg*tanθ),其中θ为摆线与竖直轴的夹⾓)充当,因此决不能在受⼒分析时沿圆⼼⽅向多加⼀个向⼼⼒。
④物体做匀速圆周运动所需向⼼⼒⼤⼩可以表⽰为: F = ma = mv^2/r = mrω^2 = mr*4π^2/(T^2) 2、描述圆周运动的物理量 (1)线速度:v = s/t(s是物体在时间t内通过的圆弧长),⽅向沿圆弧上该点处的切线⽅向。
描述了物体沿圆弧运动的快慢程度。
(2)⾓速度:ω = θ/t(θ是物体在时间t内绕圆⼼转过的⾓度),描述了物体绕圆⼼转动的快慢程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀速圆周运动专题从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。
(一)基础知识1. 匀速圆周运动的基本概念和公式(1)线速度大小,方向沿圆周的切线方向,时刻变化;(2)角速度,恒定不变量;(3)周期与频率;(4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同;(5)线速度与角速度的关系为,、、、的关系为。
所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。
2. 质点做匀速圆周运动的条件(1)具有一定的速度;(2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。
合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。
3. 向心力有关说明向心力是一种效果力。
任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。
做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。
(二)解决圆周运动问题的步骤1. 确定研究对象;2. 确定圆心、半径、向心加速度方向;3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向;4. 根据向心力公式,列牛顿第二定律方程求解。
基本规律:径向合外力提供向心力(三)常见问题及处理要点1. 皮带传动问题例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则()A. a点与b点的线速度大小相等B. a点与b点的角速度大小相等C. a点与c点的线速度大小相等D. a点与d点的向心加速度大小相等图1解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向心加速度,由,,所以,故,D 正确。
本题正确答案C、D。
点评:处理皮带问题的要点为:皮带(链条)上各点以及两轮边缘上各点的线速度大小相等,同一轮上各点的角速度相同。
2. 水平面内的圆周运动转盘:物体在转盘上随转盘一起做匀速圆周运动,物体与转盘间分无绳和有绳两种情况。
无绳时由静摩擦力提供向心力;有绳要考虑临界条件。
例1:如图2所示,水平转盘上放有质量为m的物体,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间的最大静摩擦力是其正压力的倍。
求:(1)当转盘的角速度时,细绳的拉力。
(2)当转盘的角速度时,细绳的拉力。
图2解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为,则,解得(1)因为,所以物体所需向心力小于物与盘间的最大摩擦力,则物与盘产生的摩擦力还未达到最大静摩擦力,细绳的拉力仍为0,即。
(2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力,由牛顿第二定律得,解得。
点评:当转盘转动角速度时,物体有绳相连和无绳连接是一样的,此时物体做圆周运动的向心力是由物体与圆台间的静摩擦力提供的,求出。
可见,是物体相对圆台运动的临界值,这个最大角速度与物体的质量无关,仅取决于和r。
这一结论同样适用于汽车在平路上转弯。
圆锥摆:圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动。
其特点是由物体所受的重力与弹力的合力充当向心力,向心力的方向水平。
也可以说是其中弹力的水平分力提供向心力(弹力的竖直分力和重力互为平衡力)。
例2:小球在半径为R的光滑半球内做水平面内的匀速圆周运动,试分析图3中的(小球与半球球心连线跟竖直方向的夹角)与线速度v、周期T的关系。
(小球的半径远小于R)。
图3解析:小球做匀速圆周运动的圆心在和小球等高的水平面上(不在半球的球心),向心力F是重力G和支持力的合力,所以重力和支持力的合力方向必然水平。
如图3所示有由此可得,可见,越大(即轨迹所在平面越高),v越大,T越小。
点评:本题的分析方法和结论同样适用于火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。
共同点是由重力和弹力的合力提供向心力,向心力方向水平。
3. 竖直面内的圆周运动竖直面内圆周运动最高点处的受力特点及题型分类(图4)。
图4这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,所以物体在最高点处的速率最小,在最低点处的速率最大。
物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。
(1)弹力只可能向下,如绳拉球。
这种情况下有,即,否则不能通过最高点;(2)弹力只可能向上,如车过桥。
在这种情况下有,,否则车将离开桥面,做平抛运动;(3)弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。
这种情况下,速度大小v可以取任意值。
但可以进一步讨论:a. 当时物体受到的弹力必然是向下的;当时物体受到的弹力必然是向上的;当时物体受到的弹力恰好为零。
b. 当弹力大小时,向心力有两解;当弹力大小时,向心力只有一解;当弹力时,向心力等于零,这也是物体恰能过最高点的临界条件。
结合牛顿定律的题型例3:如图5所示,杆长为,球的质量为,杆连球在竖直平面内绕轴O自由转动,已知在最高点处,杆对球的弹力大小为,求这时小球的瞬时速度大小。
图5解析:小球所需向心力向下,本题中,所以弹力的方向可能向上也可能向下。
(1)若F向上,则,;(2)若F向下,则,点评:本题是杆连球绕轴自由转动,根据机械能守恒,还能求出小球在最低点的即时速度。
需要注重的是:若题目中说明小球在杆的带动下在竖直面内做匀速圆周运动,则运动过程中小球的机械能不再守恒,这两类题一定要分清。
结合能量的题型例4:一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),在圆管中有两个直径与细管内径相同的小球A、B,质量分别为、,沿环形管顺时针运动,经过最低点的速度都是,当A球运动到最低点时,B球恰好到最高点,若要此时作用于细管的合力为零,那么、、R和应满足的关系是。
解析:由题意分别对A、B小球和圆环进行受力分析如图6所示。
对于A球有对于B球有根据机械能守恒定律由环的平衡条件而,由以上各式解得图6点评:圆周运动与能量问题常联系在一起,在解这类问题时,除要对物体受力分析,运用圆周运动知识外,还要正确运用能量关系(动能定理、机械能守恒定律)。
连接问题的题型例5:如图7所示,一根轻质细杆的两端分别固定着A、B两个质量均为m的小球,O 点是一光滑水平轴,已知,,使细杆从水平位置由静止开始转动,当B 球转到O点正下方时,它对细杆的拉力大小是多少?图7解析:对A、B两球组成的系统应用机械能守恒定律得因A、B两球用轻杆相连,故两球转动的角速度相等,即设B球运动到最低点时细杆对小球的拉力为,由牛顿第二定律得解以上各式得,由牛顿第三定律知,B球对细杆的拉力大小等于,方向竖直向下。
说明:杆件模型的最显著特点是杆上各点的角速度相同。
这是与后面解决双子星问题的共同点。
(四)难点问题选讲1. 极值问题例6:如图8所示,用细绳一端系着的质量为的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O吊着质量为的小球B,A的重心到O点的距离为。
若A与转盘间的最大静摩擦力为,为使小球B保持静止,求转盘绕中心O旋转的角速度的取值范围。
(取)图8解析:要使B静止,A必须相对于转盘静止——具有与转盘相同的角速度。
A需要的向心力由绳拉力和静摩擦力合成。
角速度取最大值时,A有离心趋势,静摩擦力指向圆心O;角速度取最小值时,A有向心运动的趋势,静摩擦力背离圆心O。
对于B:对于A:,联立解得,所以点评:在水平面上做圆周运动的物体,当角速度变化时,物体有远离或向着圆心运动的(半径有变化)趋势。
这时要根据物体的受力情况,判定物体受的某个力是否存在以及这个力存在时方向朝哪(非凡是一些接触力,如静摩擦力、绳的拉力等)。
2. 微元问题例7:如图9所示,露天娱乐场空中列车是由许多完全相同的车厢组成,列车先沿光滑水平轨道行驶,然后滑上一固定的半径为R的空中圆形光滑轨道,若列车全长为(),R远大于一节车厢的长度和高度,那么列车在运行到圆环前的速度至少要多大,才能使整个列车安全通过固定的圆环轨道(车厢间的距离不计)?图9解析:当列车进入轨道后,动能逐渐向势能转化,车速逐渐减小,当车厢占满环时的速度最小。
设运行过程中列车的最小速度为v,列车质量为m,则轨道上的那部分车的质量为由机械能守恒定律得由圆周运动规律可知,列车的最小速率,联立解得3. 数理问题例8:如图10,光滑的水平桌面上钉有两枚铁钉A、B,相距,长的柔软细线一端拴在A上,另一端拴住一个质量为500g的小球,小球的初始位置在AB连线上A的一侧,把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动,由于钉子B的存在,使细线逐步缠在A、B上,若细线能承受的最大拉力,则从开始运动到细线断裂的时间为多少?图10解析:小球转动时,由于细线逐步绕在A、B两钉上,小球的转动半径逐渐变小,但小球转动的线速度大小不变。
小球交替地绕A、B做匀速圆周运动,线速度不变,随着转动半径的减小,线中拉力不断增大,每转半圈的时间t不断减小。
在第一个半圆内,在第二个半圆内,在第三个半圆内,在第n个半圆内,令,得,即在第8个半圆内线还未断,n取8,经历的时间为【模拟试题】1. 关于互成角度(不为零度和180°)的一个匀速直线运动和一个匀变速直线运动的合运动,下列说法正确的是()A. 一定是直线运动B. 一定是曲线运动C. 可能是直线,也可能是曲线运动D. 以上答案都不对2. 一架飞机水平匀速飞行,从飞机上每隔1s释放一个铁球,先后释放4个,若不计空气阻力,则这4个球()A. 在空中任何时刻总是排列成抛物线,它们的落地点是等间距的B. 在空中任何时刻总是排列成抛物线,它们的落地点是不等间距的C. 在空中任何时刻总是在飞机的正下方排列成竖直直线,它们的落地点是不等间距的D. 在空中任何时刻总是在飞机的正下方排列成竖直直线,它们的落地点是等间距的3. 图1中所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为,小轮的半径为、点在小轮上,到小轮中心的距离为。