IGBT剩余寿命预测(2013)

合集下载

设备剩余寿命的预测与分析

设备剩余寿命的预测与分析

结论与展望
通过实验设计与实施,我们发现方法在预测设备剩余寿命方面具有更高的预 测精度和稳定性。深度学习算法中的CNN、RNN和LSTM等算法可以更好地处理时序 数据,捕捉设备性能变化的趋势和模式。而传统预测方法在处理复杂设备和长周 期数据时预测精度可能受到影响。
展望未来,我们认为设备剩余寿命预测将成为工业互联网领域的一个重要应 用场景。通过结合物联网、大数据和技术,我们可以实现设备的实时监控、故障 预警和智能维护等功能,为ห้องสมุดไป่ตู้业提供更加高效、智能的设备管理和维护解决方案。 我们还需要进一步研究和改进预测方法,提高预测精度和稳定性,以更好地满足 企业的实际需求。
引言
在现代化工业生产中,设备运行的安全性和稳定性对于生产效率和生产质量 具有至关重要的影响。然而,设备在长时间使用过程中可能会受到各种因素的影 响,导致其性能下降,甚至发生故障。因此,预测设备的剩余寿命成为了关键问 题。近年来,随着大数据技术的发展,基于数据驱动的设备剩余寿命预测方法越 来越受到。本次演示将探讨基于数据驱动的设备剩余寿命预测关键技术,旨在为 提高设备运行效率和安全性提供理论支持。
4、算法模型
在基于数据驱动的设备剩余寿命预测中,常用的算法模型包括线性回归、支 持向量回归、随机森林回归、神经网络等。这些模型各有优劣,在实际应用中需 要根据具体问题和数据特征进行选择。例如,线性回归模型简单易用,适用于线 性关系的数据,但可能无法处理非线性关系的数据;神经网络模型能够处理复杂 的非线性关系,但需要大量的数据进行训练,且易受过度拟合等问题影响。
展望未来,我们期望看到更加完善和智能化的设备剩余寿命预测技术。未来 的研究可以以下几个方面:提高数据的质量和完整性,以进一步提高预测模型的 准确性;研究更加有效的特征选择方法,以减少特征冗余和模型过拟合的问题; 探索更加智能化的算法模型,以适应更复杂的设备运行环境和工况;结合设备的 维护和维修策略,制定更加精细化的管理方案,以提高设备的整体使用寿命和生 产效率。

IGBT模块寿命分析

IGBT模块寿命分析

图1 某IGBT的失效率数据分析
IGBT与封装相关的失效
模块具有多层结构,不同部件具有不同的热膨胀系数,不同板层受热膨胀的大小有偏差,长期在热循环冲击作用下引起其焊接材料和键合线的疲劳老化,最终造成器件失效。

与封装相关失效主要包括键合线疲劳脱落、键合线疲劳受损、焊层疲劳受损引起芯片温度增加和或承受机械应力而失效。

与环境
封装失效有:由于设计或安装不良
(3)机械应力
机械应力引起的IGBT封装失效主要有
率端子对外连接承受过大机械应力,或者安装时操作不规范,导致端子和焊层之间出现裂纹,载流量下降;②散热器过于粗糙,导致IGBT底板变形受损,热阻增大导致芯片结温增加过热损坏,或直接导致芯片机械受损。

(4)环境应力
IGBT功率循环试验,χ表示失效的周期数,
数,表征分布的范围,β是形状参数,表征曲线的基本形状。

由失效机制决定,不同的失效机制β不同。

β越大,试验数据越集中,表明失效更能被某一种失效机制描述。

Weibull
函数是拓展的指数分布函数,β=1是指数分布函数,
(3)参数最低值参数最高值系数
2,03E+14k。

功率IGBT模块的寿命预测

功率IGBT模块的寿命预测

个 试验 , 直到 5 个 样 品失效 。 将J V 排序 , 计算相 应 的 F
作 出图 1 , 对数据 进行线 性拟合 , 得到 和 。
基 于 寿命 的统 计分 布特 性 , 通 常采用 累积 失效 率 为1 0 %( 或5 %, 1 %等 ) 的寿命作 为模 块在该试验条件
下 的寿命 , 称 为 寿命 ( 或B , B 等) 。 B 寿命 可 以由
增 高 电压 ( 电场 、 电流 ) 和温度 等 , 加快产 品 老化失 效
的进程 。
试验 数据 分 析要 利用 概率 统计 方法 ,以获 得产 品可 靠 性 的数 量 指 标 , 估 计 该 类 产 品 的 寿命 。 目前 , 威布 尔( We i b u l 1 )分布 函数是 失效数据 分析
We i b u l l 曲线 获得 , 或 者通过式 ( 2) 计算。 P C试 验所需
型 的寿命 模 型 ;研 究模 块 寿命 预 测 过程 , 包括 线性 疲 劳 损伤 积 累理论 和 任务 曲线 的讨 论 ,由任 务 曲线 获得
温度 曲线 , 温度 曲线 的处 理方法 一雨流法 ;最后 对应用 于 HXD I C电力机 车逆变器 系统 的株 洲南车 代 电气股 份有 限公 司 ( 以下 简称南车时代 电气 ) 3 3 0 0 V / 1 2 0 0 A I G B T模块 的功率循 环寿命进行 预测 。





预测 应用状 态 下模块 的工作 寿命 , 除寿命模 型外 ,
还要知道 任务曲线 ( Mi s s i o n P r o f i l e ) , 通过该 曲线 , 计 算 模 型数 据 , 可作 出寿命 预 测 。 本 文讨论 1 GB T模块 功率循 环数据 的分析方法 , 典

浅谈IGBT常见故障及使用寿命

浅谈IGBT常见故障及使用寿命

浅谈IGBT常见故障及使用寿命发布时间:2021-06-22T02:54:41.320Z 来源:《中国科技教育》2021年第2期作者:刘晓青[导读] 对IGBT的常见故障及使用寿命进行分析,为后续部件选型提供数据参考和建议。

深圳地铁运营集团有限公司摘要:因IGBT模块具有节能、安装更换方便、散热稳定等特点,已成为轨道交通行业的主流开关器件,地铁列车牵引、辅助系统大多使用英飞凌、三菱、日立品牌的IGBT模块。

本文对牵引系统的控制方式和列车常见IGBT故障情况,对IGBT的常见故障及使用寿命进行分析,为后续部件选型提供数据参考和建议。

关键词:IGBT;牵引系统;常见故障;使用寿命1.引言自20世纪80年代以来,IGBT技术迅猛发展。

IGBT模块作为电能变换的核心部件,具有节能、安装更换方便、散热稳定等特点,已成为轨道交通行业的主流开关器件。

地铁列车牵引、辅助系统大多使用英飞凌、三菱、日立品牌的IGBT模块。

结合牵引系统的控制方式和列车常见IGBT故障情况,对IGBT的常见故障及使用寿命进行分析,为后续部件选型提供数据参考和建议。

2.IGBT概述IGBT(绝缘栅双极型晶体管),是由 BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,如图1所示。

兼有驱动功率小而饱和压降低的优势。

地铁车辆中广泛使用了大功率的IGBT,目前大功率IGBT的主要厂商有英飞凌、三菱、日立、富士、东芝、ABB等,国内大功率IGBT的设计、生产、制造还不成熟,只有部分厂商有IGBT的封装能力,如中国北车永济,而中国南车株洲时代收购了丹尼克斯,具备了生产设计制造能力。

图2.IGBT常见故障图驱动电路的性能是影响IGBT使用寿命的重要因素,在IGBT过压、过流等情况下,驱动电路应快速采取保护措施,否侧IGBT就很可能会损坏。

列车MCM模块中的GDU板为IGBT的驱动电路,GDU配有1个反馈,GDU可将IGBT的状态反馈至DCU/M,DCU/M快速反应,对IGBT采取适当的措施(如软封锁),可有效避免IGBT过压、过流等故障。

IGBT可靠性与寿命评估分析

IGBT可靠性与寿命评估分析

IGBT可靠性与寿命评估分析摘要:IGBT是新能源汽车电器控制器中十分重要的一项部件,与电动汽车安全性和可靠性有关。

在本篇文章中主要论述了使用热敏感电参数方式提取IGBT结晶。

通过具体的实验获得实际情况,以此分析和判断该项模块的热疲劳寿命,按照电机控制器总成的实验情况提出了可行性方案。

关键词:IGBT可靠性;寿命评估;研究要点IGBT是能源变换和传输的一项核心器件,被称之为电力电子装置中的CPU。

在新能源汽车中,IGBT决定了驱动系统的交电流转换情况,同时也和车辆最大输出功率有关,是汽车动力总成系统中非常重要的一方面。

由于新能源汽车中对于IGBT功率器件应用极为普遍。

因此该项功率在整个车的成本中占据比例是特别大的。

在电机控制器中,IGBT把动力电池的高压直流电转变为驱动三相电机的交流电,为电机提供充足的动力。

在汽车运行状态下,启停和频繁加减速都会使IGBT模块工具发生改变,IGBT结温也呈现出了循环变化状态,温度变化形成的热应力,使模块内部焊层之间形成热疲劳或者失效。

从中来看,IGBT模块的结晶变化决定了工作的寿命和可靠性体现。

在本篇文章中利用热敏感电参数方式提取IGBT的结温,通过具体的分析评估整车寿命周期内的IGBT模块热疲劳寿命。

1、对于IGBT的论述IGBT主要是指复合类型的结构,本身组成部分为金属氧化物半导体场效应晶体管,本身具备的优势特别高,呈现出了功率小、热稳定性良好、载流密度大的一系列优势。

一般情况下,经过芯片、基板以及散热器进行焊接形成,热特性是IGBT功率器件的重点,芯片工作形成的热量通过不同的介质和界面传递到散热器,把热量全面挥发出来。

该项模块的发热来源渠道为功率损耗,功率损耗包含了IGBD损耗以及wd损耗,同时也表现为开关损耗和导通损耗。

功率损耗和电流饱和压降开关频率等多项因素有着密切的联系性。

2、IGBT的可靠性基本要求第一,针对于车规划级ICBT模块来讲,因为周围使用环境条件极为恶劣,工况特别复杂,寿命要求高,因此对于该项模块性能和可靠性提出了十分严格的要求。

提高IGBT开关速度的技术

提高IGBT开关速度的技术

3国家自然科学基金资助项目器件研究与制造提高IGBT 开关速度的技术3袁寿财 朱长纯(西安电力电子技术研究所,西安710061) 摘要 简要分析了IGBT (绝缘栅双极晶体管)的工作机理,制作了20A 1050V 的IGBT 芯片,给出了测试结果,并对试制样品中子辐照前后的关断特性作了详细的比较和讨论。

关键词 绝缘栅双极晶体管 开关时间 辐照Speed i ng up IGBT πs Sw itch i ng Capab il itiesYuan Shoucai ,Zhu Changchun(X i πan P o w er E lectron ic T echnology Institu te ,X i πan 710061) Abstract T he operati on m echan is m of IGB T devices is si m p ly analyzed .20A 1050V IGB T sam p les are fab ricated and the experi m en tal and tested resu lts are given .T he tu rn 2off characters of IGB T sam p les w ith and o r no neu tron s radiati on exp eri m en tsare com pared and discu ssed in detail.Keywords IGB T Sw itch ing ti m e R adiati on1 引 言对于击穿电压在200V 以下的器件,最近的设计和加工技术已使芯片的导通电阻有了明显的降低,虽然减少到目前导通电阻的四分之一听起来似乎不大现实,但是新一代的低压M O SFET 确实达到了这种变化[1]。

不足的是,同样的改进应用到高压M O SFET 却不能带来同样惊人的效果。

试论机械的安全性及可靠性

试论机械的安全性及可靠性

科研仪器设备每年获得高达 20%的维护费用,因此需要建立 仪 器 设 备 运 行 维 护 专 项 基 金 和 相 应 的 保 障 制 度 [4]。 通 常 情 况 下 由 设 备 管 理 部 门 统 一 掌 握 和 使 用 这 笔 专 项 资 金 ,将 其 用 于 仪器设备的保养、维修、升级改造和人员培训。维护专项资金 主 要 来 源 于 仪 器 购 置 经 费 中 预 留 的 部 分 资 金 ,每 年 按 一 定 比 例在科研经费中提出的资金以及通过对外单位服务收取的 仪器测试费。 2.4 建立并不断完善仪器设备报废制度
1 机械安全性与可靠性概念解析 机械的安全性与可靠性,具体是指机械的操作安全性与可
靠性的性能指标。按照国际标准,机械安全性与可靠性主要包含 以下内容:
(1)操作安全。具有安全保障的装置或设施,因操作原因发 生的事故在机械安全事故率中占比较高,达到 15%左右,因此 规范的操作可以提升机械的安全性与可靠性。
表 1 部分国家对违反机械安全法律法规的处罚
国名
罚金
禁闭(法人代表)
澳大利亚
350 000 澳元

法国
-
6 个月禁闭
德国
100 000 马克
-
西班牙
10 000 000 比塞塔
-
英国
5000 英镑
3 个月禁闭
2.2 新技术的研发与应用 目前,许多先进科学技术广泛应用于机械设备中,其中具有
代表性的技术主要包含以下方面: (1)安全防护预警传感器。为了解决机械作业时无法观察到
(4)继电器技术。欧洲国家为了防止机械在作业中发生侧翻 事故,通过在机械设备支撑部件中安装压力继电器来提升安全 性与可靠性。当支撑部件荷载过重时液压缸中的压力会不断升 高,这时继电器会发挥作用,迫使机械设备停止工作,由此提升 机械的安全性及可靠性。

IGBT部品寿命评估测试-Power Cycle

IGBT部品寿命评估测试-Power Cycle

IGBT寿命评价Power Cycle实验和高温高湿偏压
所谓Power Cycle实验,即对IGBT大功率电子部件施加额定满负荷推测部品寿命的试验。

在给IBGT部品设定接近破坏的最大限度的电压、电流、温度的负荷的同时,又必须控制不超过界限。

敝司使用的评价系统都是自主研发,可以对应市场上的试验设备难以对应的复杂条件设定。

Qualtec除了接受Power cycle试验委托,还可以对应Power cycle试验和其他环境试验的组合性试验评价的委托。

阔智科技日本总社研发结果。

1.Power cycle试验:对半导体的顺方向施加连续性·间歇性接通400A以上的电流。

2.高温高湿偏压实验:通过对半导体的逆方向反复施加3,000V以下的印加高电压,整个动作状态中顺方向中大电流导致的劣化,以及针对engineroom的高温高湿环境下逆方向高电压印加导致的劣化,进行组合试验
作者:Qualtec 检测中心
Power cycle试验机(气冷式)
高温高湿偏压试验机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A Simple State-Based Prognostic Model for Predicting Remaining UsefulLife of IGBT Power ModuleAlireza Alghassi1, Suresh Perinpanayagam2, Ian K Jennions3IVHM CENTER, CRANFIELD UNIVERSITYIVHM center, Cranfield UniversityConway House, Medway Court, University Way, Cranfield Technology Park,MK43 0FQ eMilton Keynes, UKTel.: +44 (0)1234 75111 EXT 2870Fax: +44 (0)1234 758331E-Mail: a.alghassi@URL: /ivhm/Keywords«IGBT», «Reliability», «Prognosis», «SSBP»AbstractHealth management and reliability are fundamental aspects of the design and development cycle of power electronic products. This paper presents the prognostic evaluation of a power electronic IGBT module. To achieve this aim, a simple state-based prognostic (SSBP) method has been introduced and applied on the data which was extracted from an aged power electronic IGBT and its remaining useful life was determined.IntroductionThe trend toward More Electric Aircraft (MEA) and Electric Vehicle Systems are fostering increasing requirements for higher performance power electronic systems. More Electric Vehicles propose to use more electrical power to drive vehicle subsystems such as Traction Motors/Inverters, Auxiliary Motors/Inverters, Energy Storage, etc. Power electronic converters have recently generated great interest among researchers and industrialists working in this area[1].On the other hand, the inherent advantages of Insulated Gate Bipolar Transistor (IGBT) provide lower on-state resistance, higher breakdown voltage and thermal conductivity, and closer thermal expansion coefficients with better mechanical characteristics resulting in it as the main power electronic switch that is employed in power converters [2].Since IGBT power semiconductors is one of the most costly components in power electronic converters, it is beneficial to investigate the long-term reliability and the sizing of the semiconductors used in power converters. On the other hand, it is important to use a reliability assessment method that can take into account the actual operational and environmental conditions. So by employing a prognostic and health management system which assesses and predicts the reliability of a product in its actual application environment and in real time, it is possible to determine the reliability and the end-of-life period of power converters [3].Therefore, it can be stated that the aim of this work is to estimate the life consumption of a power converter which is employed in electric aircraft applications. Firstly, reliability prediction methods are investigated. Secondly, the simple state-based prognostic method is presented and then, the results of predicting remaining useful life of the power electronic IGBT is indicated.Reliability Prediction MethodsPrognostic and health management is a system which integrates the sensing and interpretation of relevant recorded data for assessing and predicting the reliability of a product in its actual application environment. It is needed to identify the failure modes and mechanisms that can take place in electrical components in the first step for employing a prognostic and health management (PHM) system [2, 4]. To identify the main failure mechanisms, the precursor parameters such as voltage, current, temperature, amongst others, have to be identified and monitored. The recorded data is then used in a PHM system to help predict the remaining life time. In this section, a review of the concept of prognostic and health management of systems is presented.Prognostic and Health ManagementPrognostics and diagnostics are the key players in service planning, maintenance and minimizing the down state of equipment. Diagnostics focuses on the detection, isolation and identification of failure when they occur whilst prognosis focuses on predicting failure before it occurs. This means that technical prognostics could be understood as an extending/complementary element of technical diagnosis. Prognosis can be referred to as the ability to predict how much time is left or remaining useful life (RUL) before a failure occurs given an observed machine condition variable and past operational profile. The observed condition can be attributed from physical characteristics or process performance of its failure. For instance, some condition parameters that can be used in prognostics are acoustic data, temperature, moisture, humidity, weather, voltage and current[5].Technical prognosis, which is being considered as a part of PHM, is a relatively new field of research and it is still considered as the weakest point in the condition-based maintenance processing chain. There are several applications of prognostics methods but the results and accuracy vary and are not always sufficient even if researchers claim so. Although several patents have been registered and many journal and conference papers have been published, the field of technical prognosis is still quite new and not well researched. In particular, robust real system applications are still missing[6]. Precursor Parameters of IGBTA few failure precursors have been reviewed for packing level-failures in [6] and it has been wildly reported that wire bond degradation can be monitored by the drifts in the voltages V CE(on) solder layer degradation causes an increment of thermal resistance R th [6, 8]. To date, measurements could only take place in a laboratory environment when the power module is disconnected from the power converter. Once the power module has become an integral part of the converter, measurements become unattainable. Hence, the challenges posed for in-situ monitoring was discussed and a hardware solution was presented in [7]. In fact, a system has been designed and set up to be capable performing robust experiments on IGBT to induce and analyze prognostic indicators. The overview of the electrical test system is shown in Fig. 1. The data collection was done on the thermal overstress ageing test and the temperature was controls within the range beyond the rated temperature (150° ) of the IGBTs IRG4BC30K which is measured individually and relays determine the sequence of the measurement. The parameters characterized are threshold voltage, breakdown voltage and leakage current.The V CE (on) was measured across the collector-emitter terminals of the transistor where the emitter is directly connected to the ground of the power supply and the collector with resistor is in series to the positive lead of the power supply. And also configuration consists at gate voltage of 15 V and Gate switching Frequency of 1 with duty cycle of %40 which the gate was driven by an independent power supply. From the results, we observe that the V CE (on) reduces with aging. There is an increased scatter in the voltage values as a result of variation in the time taken for each transistor to latch-up. The lowered voltage drop across the transistor with aging indicates reduced effectiveresistance of the transistor as this parameter is measured at a constant current. The reduction in the effective resistance of the transistors with aging is indicated by the reduction in V CE (on) results.Fig.1: overview of the electrical test system for measuring precursor parameters of IGBT [7] Remaining Useful Life (RUL)RUL and its attributes are the outcome of prognostics and are used in prognostic assessment by applying appropriate metrics and additional criteria. There is a wide range of methods dealing with RUL computation and calculation.A significant amount of research has been undertaken to develop prognostics models over recent years. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Selection of an appropriate method is crucial for success in condition-based program deployment and is related to the previously-mentioned return on investment attribute. Adequate model selection necessarily requires mathematical understanding of each model type and its basic advantages and disadvantages.Each of the prognostics methods and approaches independently has its strengths and weaknesses and sometimes, a hybrid methodology is used, which profits from the advantages of all methods. Furthermore, it is quite common that the prognostics framework is part of the diagnostics framework and cannot be always isolated. Several prognostics frameworks have been developed and described and one of the best methods is data-driven approaches. A data-driven approach uses the ordinarily-observed operating data (power, vibration and acoustic signals, temperature, pressure, oil debris, currents, voltages, calorimetric data, frequency response) to track, approximate and forecast the system degradation behavior [8]. Measured input/output data is the major source for getting a better understanding of the system degradation behavior. The data-driven approaches rely on assumptions that the statistical data are relatively unchanged unless a failure occurs in the system. Data-driven prognosis is based on statistical and learning techniques from the theory of pattern recognition. These range from multivariate statistical methods (static and dynamic principle component, linear andquadratic discriminants, partial least squares and canonical variance analysis) to black-box methods based on artificial neural networks (probabilistic neural networks, multi-layer perceptron, radial basis functions), graphical models (Bayesian networks, hidden Markov model), self-organizing feature maps, signal analysis (filters, auto-regressive models, FFT, decisions trees) and fuzzy rule based systems [7].Most of the work in data-driven prognostics has been for structural prognostics. Many of those systems use vibration sensors to monitor the health of rotating machinery, such as helicopter gearboxes. Some systems monitor the exhaust gases or the oil stream from the engine for contamination that could indicate a fault[9].Dynamic Wavelet Neural Network (DWNN) utilization and RUL estimation of bearings are other examples of the current research in this area. Neural networks were trained by using vibrations signals from the damaged bearings with different levels and signs of wear. This approach appears to be accurate enough for diagnostic and prognostic purposes [6].The ability to transform and to reduce large amount of noisy data into a smaller valid and meaningful data set is the major advantage of data-driven approaches. The major disadvantage is the dependency on quality and quantity of operating data, which is a driving key element of prognostic accuracy and reliability. In summary, the data-driven approaches are preferred in the case when large amounts of run-to failure data sets are available in the required operational range and system models are not availableRemaining Useful Life Prediction by Simple State-Based Prognostic Model A simple state-based prognostic (SSBP) method is a statistical model for modeling systems that evolve through a finite number of discrete states [10]. The SSBP process basically has three steps. These are clustering, cluster evaluation, and RUL calculation. Procedures of calculating RUL by SSBP method is shown in Fig. 2. In this method, data from the different health states of multiple systems are using any clustering method in clustering stage of method. Then the RUL is estimated using the transition probabilities between health states.Fig. 2: Prognostic StepsThe IGBT dataset has seven run-to-failure samples. The dataset was separated into training and testing divisions. Five of them were used for the training and the rest were used for testing the model. Collector-emitter voltage (V CE) data was selected as a precursor parameter among the other sensory data collected, such as gate-emitter voltage or collector emitter-current, since the V CE degradation follows a monotonic trajectory and it was utilized in k-means clustering. Various numbers of health states representing the degradation starting from two to ten were tested. In the cluster evaluation part, a MATLAB(R) function (i.e. silhouette) was used in order to determine the best number of health states. Seven different health states was the best representative of the degradation process which was determined by using the silhouette function. In this scenario, IGBTs are considered to be failed when they are beyond the seven discrete health states. The first health state represents the brand new IGBT whereas the seventh one is observed to be close to failure. The testing collector-emitter voltage measurements are depicted in Fig. 2. K-means clustering basically defines discrete states whereas it is proposed to give discrete health states. Once the health states have been obtained, transition probabilities in between health states are calculated. Details of the transition probability calculation are given in [10].The testing process again starts with estimating the current health state of the IGBT. It is calculated using the cluster centroids obtained from the k-means results of the training dataset. Once the current health state of the IGBT has been obtained, the expected RUL is calculated simulating the transition probabilities obtained from the training dataset. Basically, a transition probability is the probability of changing the current state to another state. Transition probability information can be stated as a model for the calculation of the expected RUL of testing IGBTs. RUL estimation results for the testing IGBTs are shown in Fig. 4. The x-axis represents the life of each IGBT and the y-axis values represent the corresponding RUL values estimated using the SSBP model.Fig. 3: The IGBT collector-emitter voltage measurementsFig. 4: RUL estimation for the testing IGBTS .ConclusionFailure occur several states before making the system unusable. It is critical to identify and forecast these health states as the failure progresses for effective usage of the system. IGBT power electronic modules are one of the most important components of power converters. Although several studies on failure identi fication of IGBT power module are present in the literature, health state estimation and forecasting have not been reported. One of the most important dif ficulties in failure progression analysis is the inability to observe the natural progression of failures due to time constraint. Failures occur slowly and obtaining statistically enough failure progression data may take years. This paper has presented a simple state-based prognostic method (SSBP) for estimating RUL of IGBT power modules. SSBP method has been applied to data obtained from aged IGBT power electronic modules which is used in H-bridge and the RUL of an IGBT power module has been estimated.References[1]A. Kabir, C. Bailey, L. Hua, and S. Stoyanov, "A review of data-driven prognostics in power electronics," in Electronics Technology (ISSE), 2012 35th International Spring Seminar on , 2012, pp. 189-192. [2] C. Bailey, H. Lu, C. Yin, and T. Tilford, "Integrated reliability and prognosticsprediction methodology for power electronic modules," in Aircraft HealthManagement for New Operational and Enterprise Solutions, 2008 IET Seminar on , 2008, pp. 1-39.[3] B. Saha, J. R. Celaya, P. F. Wysocki, and K. F. Goebel, "Towards prognostics forelectronics components," in Aerospace conference, 2009 IEEE , 2009, pp. 1-7.[4]Y. Xiong, X. Cheng, Z. J. Shen, C. Mi, H. Wu, and V. Garg, "A Prognostic andWarning System for Power Electronic Modules in Electric, Hybrid, and Fuel CellVehicles," in Industry Applications Conference, 2006. 41st IAS Annual Meeting.Conference Record of the 2006 IEEE , 2006, pp. 1578-1584. Time (hour)L i f e T i m e (h o u r )[5] M. Musallam, C. M. Johnson, Y. Chunyan, L. Hua, and C. Bailey, "In-service lifeconsumption estimation in power modules," in Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th, 2008, pp. 76-83.[6] N. Patil, J. Celaya, D. Das, K. Goebel, and M. Pecht, "Precursor ParameterIdentification for Insulated Gate Bipolar Transistor (IGBT) Prognostics," Reliability, IEEE Transactions on, vol. 58, pp. 271-276, 2009.[7] G. Sonnenfeld, K. Goebel, and J. R. Celaya, "An agile accelerated aging,characterization and scenario simulation system for gate controlled power transistors,"in AUTOTESTCON, 2008 IEEE, 2008, pp. 208-215.[8] C. Y. Yin, H. Lu, M. Musallam, C. Bailey, and C. M. Johnson, "A prognosticassessment method for power electronics modules," in Electronics System-Integration Technology Conference, 2008. ESTC 2008. 2nd, 2008, pp. 1353-1358.[9] G. Niu, S. Singh, S. W. Holland, and M. Pecht, "Health monitoring of electronicproducts based on Mahalanobis distance and Weibull decision metrics,"Microelectronics Reliability, vol. 51, pp. 279-284, 2011.[10] O. F. Eker, F. Camci, A. Guclu, H. Yilboga, M. Sevkli, and S. Baskan, "A SimpleState-Based Prognostic Model for Railway Turnout Systems," Industrial Electronics, IEEE Transactions on, vol. 58, pp. 1718-1726, 2011.。

相关文档
最新文档