2020年山东省日照市高考数学二模试卷(理科)含答案解析

合集下载

2020年山东省市联考高考数学二模试卷(理科)

2020年山东省市联考高考数学二模试卷(理科)

试卷第 1 页,总 4 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○…… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○……
A. (12+4 √3)π
������ ≤ ������
的值为( )
A. -1
B.
1 2
C. 1
D. 2
10. 已知点 P 是直线 l:3x+4y-7=0 上的动点,过点 P 引圆 C:(x+1)2+y2=r2(r>0)
的两条切线 PM,PN,M,N 为切点,当∠ MPN 的最大值为 ���3���时,则 r 的值为( )
A. 4
C. (2,3)
D. (3,4)
4. 已知向量���⃗���=(1,-1),���⃗⃗���=(-2,3),且���⃗���⊥(���⃗���+m���⃗⃗���),则 m=( )
A.
2 5
B. -
2 5
C. 0
5.

{���������������+��� >������
> 6
5”是“
{������������
绝密★启用前
2020 年山东省市联考高考数学二模试卷(理科)
试卷副标题
考试范围:xxx;考试时间:120 分钟;命题人:xxx 题号 一 二 三 总分 得分
评卷人 得分
一、 选择题(共 12 题)
1. 已知集合 A={x|4x-8<0},B={x|9������<3},则 A∩B=( )
A. ( −∞, 12)

2020年普通高等学校招生全国统一考试理科数学模拟测试试题(二)(含答案)

2020年普通高等学校招生全国统一考试理科数学模拟测试试题(二)(含答案)

2020年普通高等学校招生考试数学模拟测试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={0,1,2,3},B={2,3,4,5},则A ∪B= A.{1,2,3,4,5}B.{0,1,4,5}C.{2,3}D.{0,1,2,3,4,5}2.i 是虚数单位,z=2—i,则|z|=B.23.已知向量a =(1,2),b =(-1,λ),若a ∥b ,则实数λ等于 A.-1B.1C.-2D.24.设命题p:∀x ∈R ,x 2>0,则p ⌝为A.∀x ∈R ,x 2≤0B.∀x ∈R ,x 2>0C.∃x ∈R ,x 2>0D.∃x ∈R ,x 2≤05.51(1)x-展开式中含x -2的系数是 A.15B.-15C.10D.-106.若双曲线22221(0,x y a b a b -=>>)的左、右焦点分别为F 1、F 2,离心率为53,点P(b,0),为则12||||PF PF =A.6B.8C.9D.107.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于32(3d d 为球的直径),并得到球的体积为16V d π=,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据π=3.1415926…,判断下列公式中最精确的一个是A.d ≈3B .d ≈√2V 3C.d≈√300157V3D .d≈√158V 38.已知23cos cos ,2sin sin 2αβαβ-=+=则cos(a+β)等于 A.12B.12-C.14D.14-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是A.第一场得分的中位数为52 B.第二场得分的平均数为193C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等10.已知正方体的外接球与内切球上各有一个动点M 、N,若线段MN 1,则 A.正方体的外接球的表面积为12π B.正方体的内切球的体积为43πC.正方体的边长为2D.线段MN 的最大值为11.已知圆M 与直线x 十y +2=0相切于点A(0,-2),圆M 被x 轴所截得的弦长为2,则下列 结论正确的是A.圆M 的圆心在定直线x-y-2=0上B.圆M 的面积的最大值为50πC.圆M 的半径的最小值为1D.满足条件的所有圆M 的半径之积为1012.若存在m,使得f(x)≥m 对任意x ∈D 恒成立,则函数f(x)在D 上有下界,其中m 为函数f(x)的一个下界;若存在M,使得f(x)≤M 对任意x ∈D 恒成立,则函数f(x)在D 上有上界,其中M 为函数f(x)的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列说法正确的是A.1不是函数1()(0)f x x x x=+>的一个下界 B.函数f(x)=x l nx 有下界,无上界C.函数2()xe f x x=有上界有,上无界下,界无下界D.函数2sin ()1xf x x =+有界 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设f(x)是定义在R 上的函数,若g(x)=f(x)+x 是偶函数,且g(-2)=-4,则f(2)=___. 14.已知函数f(x)=sin(ωx+φ)(ω>0),点2(,0)3π和7(,0)6π是函数f(x)图象上相邻的两个对称中心,则ω=___.15.已知F 1,F 2分别为椭圆的221168x y +=左、右焦点,M 是椭圆上的一点,且在y 轴的左侧,过点F 2作∠F 1MF2的角平分线的垂线,垂足为N,若|ON|=2(О为坐标原点),则|MF 2|-|MF 1|=___,|OM|=__.(本题第一空2分,第二空3分)16.在正三棱柱ABC-A 1B 1C 1中,AB =1=2,E,F 分别为AB 1,A 1C 1的中点,平面α过点C 1,且平面α∥平面A 1B 1C ,平面α∩平面A 1B 1C 1=l ,则异面直线EF 与l 所成角的余弦值为__·四、解答题:本题共6小题,共70分。

2020届山东省日照市高三校际联合考试(二模)数学试题

2020届山东省日照市高三校际联合考试(二模)数学试题

2020届山东省日照市高三校际联合考试(二模)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知{}2|log ,1A y y x x ==>,1|,2x B y y x ⎧⎫==>⎨⎬⎩⎭,则A B =( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .10,2⎛⎫ ⎪⎝⎭C .()0,∞+D .()1,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭2.在复平面内,已知复数z 对应的点与复数1i +对应的点关于实轴对称,则zi=( ) A .1i +B .1i -+C .1i --D .1i -3.中国有个名句“运筹帷幄之中,决胜千里之外”其中的“筹”取意于《孙子算经》中记载的算筹,古代用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如下图所示),表示一个多位数时,把各个数位的数码从左到右排列,但各位数码的筹式要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位数用横式表示,依此类推.例如3266用算筹表示就是T ≡⊥则7239用算筹可表示为( )A .B .C .D .4.设m ,n 为非零向量,则“存在正数λ,使得m n λ=”是“0m n ⋅>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.设{}n a 是等差数列.下列结论中正确的是( ) A .若120a a +>,则230a a +> B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->6.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则221213e e +的值为( ) A .1B .2512C .4D .167.已知函数()()21f x x m x m =+--,若()()0f f x 恒成立,则实数m 的范围是( )A.3,3⎡--+⎣B.1,3⎡--+⎣C .[]3,1-D.3⎡⎤-+⎣⎦8.已知函数()sin 26f x x π⎛⎫=- ⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π≤≤),则()12sin x x -=( ) A .35B .45-C.-D.二、多选题9.某商场一年中各月份的收入、支出(单位:万元)情况的统计如折线图所示,则下列说法正确的是( )A .2至3月份的收入的变化率与11至12月份的收入的变化率相同B .支出最高值与支出最低值的比是6:1C .第三季度平均收入为60万元D .利润最高的月份是2月份10.如图,在长方体1111ABCD A B C D -中,14AA AB ==,2BC =,M ,N 分别为棱11C D ,1CC 的中点,则()A .A 、M 、N 、B 四点共面 B .平面ADM ⊥平面11CDDC C .直线BN 与1B M 所成角为60°D .//BN 平面ADM11.已知函数||()sin x f x e x =,则下列结论正确的是( ) A .()f x 是周期为2π的奇函数B .()f x 在3,44ππ⎛⎫-⎪⎝⎭上为增函数 C .()f x 在(10,10)ππ-内有21个极值点 D .()f x ax 在0,4π⎡⎤⎢⎥⎣⎦上恒成立的充要条件是1a12.若实数x ,y 满足5454y x x y -=-则下列关系式中可能成立的是( ) A .x y = B .1x y <<C .01x y <<<D .0y x <<三、填空题13.过点(1,2)-的直线l 被圆222210x y x y +--+=截得的弦长为2,则直线l 的斜率为__________.14.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).15.已知正方体棱长为2,以正方体的一个顶点为球心,以面被正方体表面所截得的所有的弧长和为______________.四、双空题 16.设函数()2x xf x =,点(),()(*)n A n f n n N ∈,0A 为坐标原点,若向量01121n n n a A A A A A A -=++⋯,设(1,0)i =,且n θ是n a 与i 的夹角,记n S 为数列{tan }n θ的前n 项和,则3tan θ=__,n S =__.五、解答题17.已知数列{}n a 满足12a =,()()1121n n na n a n n +-+=+,设nn a b n=. (1)求数列{}n b 的通项公式;(2)若2n b n c n =-,求数列{}n c 的前n 项和.18.在①222b ac a c +=+cos sin B b A =cos 2B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,_________,4A π=,b =(1)求角B ; (2)求ABC 的面积.19.如图所示的四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,2PA AD ==,M ,N 分别是AB ,PC 的中点.(1)求证:MN ⊥平面PCD ;(2)若直线PB 与平面ABCD ,求二面角N DM C --的余弦值.20.基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为x ,市场占有率为y (%),得结果如下表(1)观察数据,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明(精确到0.001);(2)求y 关于x 的线性回归方程,并预测该公司2021年6月份的市场占有率; (3)根据调研数据,公司决定再采购一批单车投入市场,现有采购成本分别为1000元/辆和800元/辆的甲、乙两款车型,报废年限不相同.考虑到公司的经济效益,该公司决定先对这两款单车各100辆进行科学模拟测试,得到两款单车使用寿命统计如下表:经测算,平均每辆单车每年可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据,如果你是该公司的负责人,你会选择采购哪款车型? 参考数据:()62117.5ii x x =-=∑,()62176i i y y =-=∑,()()6135i i i x x y y =--=∑,36.5≈.参考公式,相关系数()()niix x y y r --=∑ˆˆˆya bx =+中斜率和截距的最小二乘估计公式分别为()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =-. 21.在平面直角坐标系xOy 中,抛物线C :22x py =(0p >)的焦点为()0,1F (1)动直线l 过F 点且与抛物线C 交于M ,N 两点,点M 在y 轴的左侧,过点M 作抛物线C 准线的垂线,垂足为M 1,点E 在MF 上,且满足12ME EF →→=连接1M E 并延长交y 轴于点D ,MED的面积为2,求抛物线C 的方程及D 点的纵坐标; (2)点H 为抛物线C 准线上任一点,过H 作抛物线C 的两条切线HA ,HB ,切点为A ,B ,证明直线AB 过定点,并求HAB 面积的最小值. 22.已知函数()2ln f x x x ax =+-(1)求函数()f x 的单调区间;(2)若()22f x x ≤,对[)0,x ∈+∞恒成立,求实数a 的取值范围;(3)当1a =时,设()()21x f x g x xex -=--.若正实数1λ,2λ满足121λλ+=,1x ,()()2120,x x x ∈+∞≠,证明:()()()11221122g x x g x g x λλλλ+<+.参考答案1.B 【分析】根据对数函数和反比例函数的性质,求得集合{}|0A y y =>,1|02B y y ⎧⎫=<<⎨⎬⎩⎭,结合集合的交集的概念及运算,即可求解. 【详解】由题意,集合{}{}2|log ,1|0A y y x x y y ==>=>, 集合11|,2|02B y y y y x x ⎧⎫⎧⎫==>=<<⎨⎬⎨⎬⎩⎭⎩⎭, 所以11|00,22Ay y B ⎧⎫⎛⎫=<<⎨⎬ ⎪⎩⎝=⎭⎭. 故选:B. 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中根据对数函数和反比例函数的性质,正确求解集合,A B 是解答的关键,着重考查了计算能力. 2.C 【分析】 先求出复数z,再求zi得解. 【详解】 由题得z=1-i , 所以1i i i 11i 1i z +==---=-. 故选C 【点睛】本题主要考查复数的几何意义和复数除法的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力. 3.C 【分析】由算筹含义直接求解 【详解】由题意,根据古代用算筹来记数的方法,个位,百位,万位上的数用纵式表示,十位,千位,十万位上的数用横式来表示,比照算筹的摆放形式 答案:C 【点睛】本题容易,只需找出规律即可求解. 4.A 【分析】根据共线定理定理和平面向量的数量积的定义,结合充分条件、必要条件的判定方法,即可求解. 【详解】由题意,存在正数λ,使得λ=m n ,所以m ,n 同向,所以||||cos ,0m n m n m n ⋅=⋅⋅>,即充分性是成立的,反之,当非零向量,a b 夹角为锐角时,满足0m n ⋅>,而λ=m n 不成立,即必要性不成立, 所以“存在正数λ,使得λ=m n ”是“0m n ⋅>”的充分不必要条件. 故选A. 【点睛】本题主要考查了以共线向量和向量的数量积为背景的充分条件、必要条件的判定,着重考查了分析问题和解答问题的能力. 5.C 【详解】先分析四个答案,A 举一反例1232,1,4a a a ==-=-,120a a +>而230a a +<,A 错误,B 举同样反例1232,1,4a a a ==-=-,130a a +<,而120a a +>,B 错误,D 选项,2132,,a a d a a d -=-=-22132()()0,a a a a d ∴--=-≤故D 错,下面针对C 进行研究,{}n a 是等差数列,若120a a <<,则10,a >设公差为d ,则0d >,数列各项均为正,由于22213111()(2)a a a a d a a d -=+-+22221111220a a d d a a d d =++--=>,则2113a a a>1a ⇒>故选C.考点:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重 点是对知识本质的考查. 6.C 【分析】设椭圆的长半轴长为1a ,双曲线的半实轴长2a ,焦距2c ,根据椭圆及双曲线的定义可以用12,a a 表示出12,PF PF ,在12F PF ∆中根据余弦定理可得到221213e e +的值.【详解】如图,设椭圆的长半轴长为1a ,双曲线的半实轴长为2a , 则根据椭圆及双曲线的定义1211222,2PF PF a PF PF a +=-=,112212,PF a a PF a a ∴=+=-,设12122,3F F c F PF π=∠=,则在12PF F ∆中由余弦定理得()()()()2221212121242cos3c a a a a a a a a π=++--+-,∴化简2221234a a c +=,该式变成2221314e e +=, 故选:C.【点睛】本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义以及椭圆与双曲线的离心率,属于难题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.7.A 【分析】将二次函数化为()()()()211f x x m x m x m x =+--=-+,对m 分1m >-,1m =-,1m <-三种情况,分别讨论恒成立的条件,再求并集,可得选项.【详解】()()()()211f x x m x m x m x =+--=-+,(1)1m >-,()()0ff x ≥恒成立等价于()f x m ≥或()1f x ≤-恒成立,即()()21f x x m x m m =+--≥或()()211f x x m x m =+--≤-(不合题意,舍去)恒成立;即01m ∆≤⎧⎨>-⎩,解得(1,3m ∈--+, (2)1m =-恒成立,符合题意; (3)1m <-,()()0ff x ≥恒成立等价于()f x m ≤(不合题意,舍去)或()1f x ≥-恒成立,等价于01m ∆≤⎧⎨<-⎩,解得[)3,1m ∈--.综上所述,3,3m ⎡∈--+⎣,故选:A. 【点睛】本题考查二次函数中的不等式恒成立问题,注意运用因式分解,得出讨论的标准,属于中档题. 8.B 【分析】先求解()sin 26f x x π⎛⎫=-⎪⎝⎭在区间()0,π上的对称轴可得3x π=,结合三角函数的对称性可知1223x x π+=,再代入()2212sin cos 6x x x π⎛⎫--= ⎪⎝⎭,再结合27312x ππ<<与23sin 265x π⎛⎫-= ⎪⎝⎭求解即可.【详解】函数()sin 26f x x π⎛⎫=- ⎪⎝⎭的对称轴满足:262x k πππ-=+(k ∈Z ), 即23k x ππ=+(k ∈Z ),令0k =可得函数在区间()0,π上的一条对称轴为3x π=,结合三角函数的对称性可知1223x x π+=,则:1223x x π=-,()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由题意:23sin 265x π⎛⎫-= ⎪⎝⎭,且120x x π<<< 12712312x x πππ<<<<,2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭.故选:B 【点睛】本题主要考查了根据三角函数的性质求解三角函数值的问题,需要利用对称性得到1223x x π+=,再结合三角函数图像分析得到关于2x 的等式以及取值范围代入求解.属于中档题. 9.AB 【分析】通过折线图信息直接观察,计算,找出答案即可. 【详解】解:根据折线图可知,对于A ,2至3月份的收入的变化率为806032-=-20, 11至12月份的变化率为70502111-=-20,所以变化率相同,故A 正确;对于B ,支出最高值是2月份60万元,支出最低值是5月份的10万元, 故支出最高值与支出最低值的比是6:1,故B 正确;对于C ,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元, 故第三季度的平均收入为4050603++=50万元,故C 错误;对于D ,利润最高的月份是3月份和10月份都是30万元, 高于2月份的利润是80﹣60=20万元,故D 错误. 故选:AB. 【点睛】本题考查利用图象信息,分析归纳得出正确结论,属于基础题. 10.BC 【分析】假设A 、M 、N 、B 四点共面,结合线面平行性质定理可得//MN MN//CD AB ⇒,这与题意矛盾,从而否定A; 根据AD ⊥平面11CDD C 可判断面面垂直;先平移,再解三角形可得直线BN 与1B M 所成角;易得//BN 平面11AA D D ,因此若//BN 平面ADM ,则//BN AD ,推出矛盾. 【详解】如图所示,对于A 中,若A 、M 、N 、B 四点共面,由于//AB 平面11CC D D ,而平面11CC D D ⋂平面ABNM MN =,所以//MN AB ,又//CD MN//CD AB ∴,这样题意矛盾,故A 、M 、N 、B 四点不共面,故A 错误;对于B 中,在长方体1111ABCD A B C D -中,可得AD ⊥平面11CDD C , 所以平面ADM ⊥平面11CDD C ,故B 正确;对于C 中,取CD 的中点O ,连接BO 、ON ,则1//B M BO ,所以直线BN 与1B M 所成角为NBO ∠或其补角,易知三角形BON 为等边三角形,故,3NBO π∠=从而直线BN 与1B M 所成角为60°,C 正确;对于D 中,因为//BN 平面11AA D D ,若//BN 平面ADM ,则BN 必平行两平面的交线AD ,显然这不成立,故D 错误. 故选:BC 【点睛】本题考查求异面直线所成角、面面垂直判断以及线面平行判断与性质,考查空间想象能力以及推理判断能力,属中档题. 11.BD 【分析】根据周期函数的定义判定选项A 错误;根据导航的符号判断选项B 正确;根据导函数零点判定选项C 错误;根据恒成立以及对应函数最值确定选项D 正确. 【详解】()f x 的定义域为R ,()sin()()x f x e x f x --=-=-,()f x ∴是奇函数,但是22(2)sin(2)sin ()x x f x ex ex f x ππππ+++=+=≠,()f x ∴不是周期为2π的函数,故选项A 错误;当(,0)4x π∈-时,()sin x f x e x -=,(cos ()sin )0x x f x e x -'-=>,()f x 单调递增,当3(0,)4x π∈时,()sin x f x e x =, (sin ))0c (os x x f x e x +'=>,()f x 单调递增,且()f x 在3(,)44ππ-连续,故()f x 在3(,)44ππ-单调递增,故选项B 正确;当[0,10)x π∈时,()sin xf x e x =,(sin c )s ()o xf x e x x +'=,令()0f x '=得,(1,2,3,4,5,6,7,8,9,10)4x k k ππ=-+=,当(10,0)x π∈-时,()sin xf x e x -=,(co (s )sin )x x f x e x -=-',令()0f x '=得,(1,2,3,4,5,6,7,8,9,10)4x k k ππ=+=----------,因此,()f x 在(10,10)ππ-内有20个极值点,故选项C 错误; 当0x =时,()00f x ax =≥=,则a R ∈,当(0,]4x π∈时,sin ()x e xf x ax a x≥⇔≤,设sin ()x e x g x x =,2(sin cos sin )()x e x x x x x g x x+-'∴=, 令()sin cos sin h x x x x x x =+-,(0,]4x π∈()sin (cos sin )0h x x x x x '∴=+->,()h x 单调递增,()(0)0h x h ∴>=,()0g x '∴>,()g x 在(0,]4π单调递增,又由洛必达法则知:当0x →时,0sin (sin cos )()11x x x e x e x x g x x =+=→=1a ∴≤,故答案D 正确.故选:BD. 【点睛】本题考查了奇函数、周期函数定义,三角函数的几何性质,函数的极值,利用导数研究单调性以及利用导数研究恒成立问题,考查综合分析求解与论证能力,属较难题. 12.ACD 【分析】构造函数()45,()54x xf x xg x x =+=+,得出函数(),()f x g x 都是单调递增函数,结合图象,逐项判定,即可求解. 【详解】由题意,实数,x y 满足5454yxx y -=-,可化为4554xyx y +=+,设()45,()54x xf x xg x x =+=+,由初等函数的性质,可得(),()f x g x 都是单调递增函数, 画出函数(),()f x g x 的图象,如图所示,根据图象可知,当0x =时,()()001f g ==;当1x =时,()()119f g ==,当x y =时,()()f x g y =,所以5454y xx y -=-成立;当1x y <<时,()()f x g y <,所以B 不正确;当01x y <<<时,()()f x g y =可能成立,所以C 正确;当0y x <<时,此时()()f x g x ≤,所以()()f x g y =可能成立,所以是正确的. 故选:ACD.【点睛】本题主要考查了指数函数的图象与性质,其中解答中结合指数函数的性质,画出两个函数的图象,结合图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力. 13.12-【分析】根据题意,由圆的方程分析圆的圆心与半径,结合弦长分析可得直线l 经过圆的圆心,由斜率计算公式计算可得答案. 【详解】解:根据题意,圆222210x y x y +--+=的标准方程为22(1)(1)1x y -+-=,其圆心为(1,1),半径1r =,过点(1,2)-的直线l 被圆222210x y x y +--+=截得的弦长为2,则直线l 经过圆的圆心, 故直线l 的斜率1211(1)2k -==---;故答案为:12-. 【点睛】本题考查了直线与圆的位置关系,两点间斜率公式的应用,属于基础题. 14.120 【解析】①1男4女,1436C C 45=种; ②2男3女,2336C C 60=种; ③3男2女,3236C C 15=种;∴一共有456015120++=种. 故答案为120.点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手;(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”; (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决. 15.3π 【分析】不妨以D 为球心,画出几何关系图形,结合图形即可知球面被正方体表面所截得3段相等的弧长,其中与上底面截得的弧长,是以1D 为圆心,以2为半径的四分之一的圆周,通过计算即可得答案. 【详解】如图所示,球面被正方体表面所截得3段相等的弧长,与上底面截得的弧长,是以1D 为圆心,以2为半径的四分之一的圆周,所以11111224A C AB BC ππ===⨯⨯= ,则所有弧长和为3π, 故答案为:3π. 【点睛】本题考查了正方体与球的截面问题,关键是理解截面与球的关系,弧与球心的位置关系,属于中档题. 16.18 112n - 【分析】根据向量线性运算,化简n a ,即可由斜率定义及所给函数解析式求得3tan θ的值;根据斜率,表示出n S ,结合等比数列求和公式即可得解. 【详解】 解:由函数()2x xf x =,点(),()(*)n A n f n n N ∈ 向量011210n n n n a A A A A A A A A -=++⋯=, 所以303a A A =,3333,2A ⎛⎫⎪⎝⎭所以333(3)12tan 338f θ===;123tan tan tan tan n n S θθθθ=+++⋯+231232222123nnn=+++⋯+2311112222n =+++⋯+ 11122112n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=- 112n =-. 故答案为:18;112n -. 【点睛】本题考查了平面向量的线性运算,直线的斜率公式应用,等比数列求和公式的应用,综合性强,属于中档题.17.(1)2n b n =;(2)1244323n n n ++-- 【分析】(1)根据等差数列的定义,可得{}n b 是等差数列,进而求出通项公式;(2)由已知求出{}n c 的通项公式,根据通项公式的特征分组求和,转化为求等差数列和等比数列的前n 项和. 【详解】方法一:(1)因为nn a b n=且()()1121n n na n a n n +-+=+, 所以1121n nn n a a b b n n++-=-=+, 又因为112b a ==,所以{}n b 是以2为首项,以2为公差的等差数列. 所以()2212n b n n =+-=.(2)由(1)及题设得,224n n n c n n =-=-,所以数列{}n c 的前n 项和()()()1241424nn S n =-+-+⋅⋅⋅+-()()1244412n n =++⋅⋅⋅+-++⋅⋅⋅+()1444142n n n +-⨯=-- 1244323n n n ++=--. 方法二:(1)因为nn a b n=,所以n n a nb =, 又因为()()1121n n na n a n n +-+=+, 所以()()()11121n n n n b n nb n n ++-+=+, 即12nnb b ,又因为112b a ==,所以{}n b 是以2为首项,以2为公差的等差数列. 所以()2212n b n n =+-=. (2)略,同方法一. 【点睛】本题主要考查等差数列、等比数列等基础知识,注意辅助数列的应用,属于中档题.18.(1)3π;(2)36+. 【分析】(1)选①222b ac a c +=+cos sin B b A =,利用正弦定理可得tan B 求解即可,cos 2B B +=,利用辅助角公式化简求解即可; (2)由正弦定理求出a ,直接利用三角形面积公式求解. 【详解】若选择①222b ac a c +=+,(1)由余弦定理2221cos 22a cb B ac +-==,因为(0,)B π∈,所以3B π=.(2)由正弦定理sin sin a bA B=得sin sin 3b A a B π===, 因为,43A B ππ==,所以54312C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△.cos sin B b A =.(1cos sin sin A B B A =, 因为sin 0A ≠sin ,tan B B B ==因为(0,)B π∈,所以3B π=;(2)由正弦定理sin sin a bA B=得sin sin 3b A a B π===, 因为,43A B ππ==,所以54312C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△.cos 2B B +=,(1)由和角公式得2sin 26B π⎛⎫+= ⎪⎝⎭,所以sin 16B π⎛⎫+= ⎪⎝⎭. 因为(0,)B π∈,所以7,666B πππ⎛⎫+∈ ⎪⎝⎭, 所以62B ππ+=,所以3B π=;(2)由正弦定理sin sin a bA B=得sin sin 3b A a B π===, 因为,43A B ππ==,所以54312C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△. 【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式,三角恒等变换,考查了推理运算能力,属于中档题. 19.(1)证明见解析(2)3【分析】(1)取PD 中点E ,连接EN ,AE ,利用平行四边形可证//MN AE ,由PA AD =知AE PD ⊥,可证AE PCD ⊥平面,故可证MN PCD ⊥平面;(2)根据PBA ∠即为直线PB 与平面ABCD 所成的角,可求出4AB =,分别以AB ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系,利用向量法求二面角的大小即可.【详解】(1)证明:取PD 中点E ,连接EN ,AE ,因为M ,N ,E 分别为AB ,PC ,PD 的中点,//EN AM ,12EN AM AB ==, 所以AMNE 是平行四边形,故//MN AE , 因为PA ABCD ⊥平面,所以PA CD ⊥ 又因为CD AD ⊥,AD PA A ⋂=,CD PAD ⊥平面,所以平面PCD PAD ⊥平面.因为PA AD =,E 为中点,所以AE PD ⊥, 所以AE PCD ⊥平面, 所以MN PCD ⊥平面;.(2)因为PA ABCD ⊥平面,所以AB 为PB 在平面ABCD 内的射影, 所以PBA ∠即为直线PB 与平面ABCD 所成的角,则cos 5PBA ∠=,即sin 5PBA ∠=, 因为2PA AD ==,4AB =,分别以AB ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系,则()0,2,0D ,()2,0,0M ,()2,1,1N ,则()2,2,0DM =-,()0,1,1MN =, 设平面NDM 的法向量()1,,n x y z =,则110n DM n MN ⎧⋅=⎪⎨⋅=⎪⎩,即2200x y y z -=⎧⎨+=⎩,取1x =,则1y =,1z =-,即()11,1,1n =-,取平面DMC 的法向量()20,0,1n =,所以121212cos ,3n n n n n n ⋅==-, 由图可知,二面角N DM C --为锐角, 所以二面角N DM C --【点睛】本题主要考查了线面垂直的判定,面面垂直的判定与性质,线面角,二面角的向量求法,考查了空间想象力,推理能力,属于中档题.20.(1)见解析(2)ˆ72yx =+;2(3)选择乙款车型 【分析】(1)由相关系数公式求得y 与x 之间相关系数,由相关系数接近1可得y 与x 之间具有较强的线性相关关系,可用线性回归模型进行;(2) 由已知分别求出ˆb 与ˆa 的值,可得线性回归方程;(3)分别列出甲款单车的利润x 与乙款单车的利润y 的分布列,求得期望,比较大小得结论. 【详解】(1)由参考数据可得0.959r ==≈,接近1,∴y 与x 之间具有较强的线性相关关系,可用线性回归模型进行拟合:(2)∵()()()12135ˆ217.5niii ni i x x y y bx x ==--===-∑∑,1234563.56x +++++==, 91114131819146y +++++==,ˆˆ142 3.57a y bx=-=-⨯=, ∴y 关于x 的线性回归方程为ˆ72yx =+. 2021年6月份代码8x =,代入线性回归方程得ˆ23y=,于是2021年6月份的市场占有率预报值为2(3)用频率估计概率,甲款单车的利润X 的分布列为()5000.100.45000.310000.2300E X =-⨯+⨯+⨯+⨯=(元).乙款单车的利润Y 的分布列为()3000.152000.357000.412000.1425E Y =-⨯+⨯+⨯+⨯=(元),以每辆单车产生利润的期望值为决策依据,故应选择乙款车型. 【点睛】本题主要考查线性相关系数及线性回归方程的求法,考查离散型随机变量的分布列与期望,考查计算能力,属于中档题.21.(1)24x y =;(0,4)(2)证明见解析,面积最小值为4【分析】(1)由焦点坐标,可得抛物线的方程24x y =,设()0,D m ,由向量共线定理可得2MFD S =△,求得M 的坐标,代入抛物线方程可得m ,即可求解; (2))设点()11,A x y ,()22,B x y ,(),1H t -,根据导数的几何意义,求得抛物线在A, B 处的切线的方程,由两点确定一直线可得AB 的方程,进而得到恒过定点F ,再讨论t =0, 0t ≠,写出1||||2AHBSHF AB =⋅即可求最值. 【详解】(1)因为()0,1F ,所以抛物线C :24x y =,设()0,D m ,因为12ME EF →→=,2MED S =△,2MFD S =△,所以()1122M x m --=,1M x m -=-, 又因为1~MM E EFD △△,()111||122MM DF m ==-,推出32M m y -=,M 在抛物线C 上,23412m m ⎛⎫-=⨯⎪ ⎪-⎝⎭,解得4m =,故 D (0,4)(2)设点()11,A x y ,()22,B x y ,(),1H t -. 由C :24x y =, 即214y x =,得12y x '=,所以抛物线C :24x y =在点()11,A x y 处的切线HA 的方程为()()1112x y y x x -=-, 即2111122x y x x y =-+, 因为21114y x =,112xy x y =-,因为(),1H t -在切线HA 上,所以1112x t y -=-① 同理2212xt y -=-②;综合①②得,点()11,A x y ,()22,B x y 的坐标满足方程12xt y -=-,即直线AB 恒过抛物线焦点()0,1F . 当0t =时,此时()0,1H -,可知HF AB ⊥, 当0t ≠时,此时直线HF 的斜率为2t-,得HF AB ⊥,于是1||||2HAB S HF AB =⨯△,而||HF ==,把直线12ty x =+代入C :24x y =中,消去x 得()22210y t y -++=,21224AB y y t =++=+,即(()3222114422HABS t t =+=+△, 当0t =时,HAB S △最小,且最小值为4. 【点睛】本题主要考查抛物线的方程和性质,直线和抛物线的相切的条件,向量共线的坐标表示和直线恒过定点的求法,三角形的面积的最值求法,考查了方程思想和运算能力,属于中档题. 22.(1)详见解析;(2)[)1,-+∞;(3)证明见解析 【分析】(1)求导后,分别在a ≤和a >间;(2)通过分离变量得到ln xa x x ≥-,令()()ln 0x F x x x x=->,利用导数可求得()F x 最大值,由此得到()max a F x ≥;(3)设()120,x x <∈+∞,以1x 为变量,令()()()()122122F x g x x g x g x λλλλ=+--,通过判断导函数的正负可确定()F x 在(]20,x 上单调递增,得到()()120F x F x <=,从而得到结论. 【详解】(1)由题意知:()f x 定义域为()0,∞+,()21212x ax f x x a x x-+'=+-=,令()()2210g x x ax x =-+>,则28a ∆=-,①当a ≤()0g x ≥,即()0f x '≥恒成立,∴函数()f x 的单调递增区间为()0,∞+;无单调递减区间;②当a >()0g x =,解得:14a x =,24a x =,可知210x x >>,∴当()10,x x ∈和()2,x +∞时,()0g x >,即()0f x '>;当()12,x x x ∈时,()0g x <,即()0f x '<;()f x ∴的单调递增区间为⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭;单调递减区间为⎝⎭;综上所述:①当a ≤()f x 的单调递增区间为()0,∞+,无单调递减区间;②当a >()f x 的单调递增区间为⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭,单调递减区间为,44a a ⎛+⎪⎝⎭. (2)()22f x x ≤对()0,x ∈+∞恒成立,即为对任意的()0,x ∈+∞,都有ln xa x x≥-, 设()()ln 0x F x x x x =->,则()2221ln 1ln 1x x x F x x x ---'=-=, 令()()2ln 01G x x x x-->=,则()120G x x x'=--<, ∴()G x 在()0,∞+上单调递减,又()10G =,∴当()0,1x ∈时,()0G x >,即()0F x '>,()F x 单调递增; 当()1,x ∈+∞,()0G x <,即()0F x '<,()F x 单调递减, ∴()()max 11F x F ==-, ∴实数a 的取值范围为[)1,-+∞. (3)证明:当1a =时,()()()ln ln 1110x x x x x g x xex xe x e x x ---=--=--=-->,不妨设()120,x x <∈+∞,以1x 为变量,令()()()()122122F x g x x g x g x λλλλ=+--, 则()()()()()()112211122F x g x x g x g x x g x λλλλλλλ'='+-'='+-'()1221222221x x x x x x x λλλλλλ+-=-+=-+且2x x <,1220x x x λλ∴+->,即122x x x λλ+>,又()1x g x e '=-为增函数,()()1220g x x g x λλ∴'+-'>;10λ>,()0F x '∴>,()F x ∴在(]20,x 上单调递增, (]120,x x ∈,()()120F x F x ∴<=,即()()()11221122g x x g x g x λλλλ+<+. 【点睛】本题考查导数在研究函数中的应用,涉及到含参数函数单调区间的讨论、恒成立问题的求解、构造函数证明不等式的问题;本题证明不等式的关键是能够通过构造函数的方式将问题转化为函数单调性的求解问题,通过求解函数单调性得到函数值的大小关系,进而整理得到不等式.。

山东省2020届高三数学二模试卷

山东省2020届高三数学二模试卷

山东省2020届高三数学二模试卷含解析一、单选题(共8题;共16分)1.已知角的终边经过点,则()A. B. C. D.2.已知集合,则()A. B. C. D.3.设复数z满足,z在复平面内对应的点为,则()A. B.C. D.4.设,,,则a,b,c的大小关系是()A. B. C. D.5.已知正方形的边长为()A. 3B. -3C. 6D. -66.函数y= 的图象大致是()A. B.C. D.7.已知O,A,B,C为平面内的四点,其中A,B,C三点共线,点O在直线外,且满足.其中,则的最小值为()A. 21B. 25C. 27D. 348.我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.椭球是椭圆绕其长轴旋转所成的旋转体,如图,将底面半径都为.高都为的半椭球和已被挖去了圆锥的圆柱(被挖去的圆锥以圆柱的上底面为底面,下底面的圆心为顶点)放置于同一平面上,用平行于平面且与平面任意距离d处的平面截这两个几何体,截面分别为圆面和圆环,可以证明圆= 圆环总成立.据此,椭圆的短半轴长为2,长半轴长为4的椭球的体积是()A. B. C. D.二、多选题(共4题;共12分)9.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中错误的是()A. 消耗1升汽油乙车最多可行驶5千米.B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多.C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油.D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油.10.设,分别为双曲线的左、右焦点,若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则关于该双曲线的下列结论正确的是()A. 渐近线方程为B. 渐近线方程为C. 离心率为D. 离心率为11.已知函数的图象的一条对称轴为,则下列结论中正确的是()A. 是最小正周期为的奇函数B. 是图像的一个对称中心C. 在上单调递增D. 先将函数图象上各点的纵坐标缩短为原来的,然后把所得函数图象再向左平移个单位长度,即可得到函数的图象.12.如图,点M是正方体中的侧面上的一个动点,则下列结论正确的是()A. 点M存在无数个位置满足B. 若正方体的棱长为1,三棱锥的体积最大值为C. 在线段上存在点M,使异面直线与所成的角是D. 点M存在无数个位置满足到直线和直线的距离相等.三、填空题(共3题;共3分)13.古典著作《连山易》中记载了金、木、水、火土之间相生相克的关系,如图所示,现从五种不同属性的物质中任取两种,则取出的两种物质恰是相克关系的概率为________14.已知点A,B,C,D均在球O的球面上,,,若三棱锥体积的最大值是,则球O的表面积为________15.设是定义在R上且周期为6的周期函数,若函数的图象关于点对称,函数在区间(其中)上的零点的个数的最小值为,则________四、双空题(共1题;共1分)16.动圆E与圆外切,并与直线相切,则动圆圆心E的轨迹方程为________,过点作倾斜角互补的两条直线,分别与圆心E的轨迹相交于A,B两点,则直线的斜率为________.五、解答题(共6题;共61分)17.已知△的内角A,B,C的对边分别为a,b,c,若,________,求△的周长L和面积S.在① ,,② ,,③ ,这三个条件中,任选一个补充在上面问题中的横线处,并加以解答.18.已知为等差数列,,,为等比数列,且,.(1)求,的通项公式;(2)记,求数列的前n项和.19.如图所示,在等腰梯形中,∥,,直角梯形所在的平面垂直于平面,且,.(1)证明:平面平面;(2)点在线段上,试确定点的位置,使平面与平面所成的二面角的余弦值为.20.已知椭圆经过点,离心率为(1)求椭圆C的方程;(2)设直线与椭圆C相交于A,B两点,若以,为邻边的平行四边形的顶点P在椭圆C上,求证:平行四边形的面积为定值.21.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区200名患者的相关信息,得到如下表格:潜伏期(单位:天)人数17 41 62 50 26 3 1附:0.05 0.025 0.0103.841 5.024 6.635,其中(1)求这200名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述200名患者中抽取40人得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期天潜伏期天总计50岁以上(含50岁)2050岁以下9总计40(3)以这200名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入硏究,该研究团队在该地区随机调查了10名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?22.已知函数,(1)讨论函数的单调性;(2)当时,证明曲线分别在点和点处的切线为不同的直线;(3)已知过点能作曲线的三条切线,求m,n所满足的条件.答案解析部分一、单选题1.【答案】B【解析】【解答】解:由于角的终边经过点,则,.故答案为:B.【分析】由条件利用任意角的三角函数的定义,求得和的值,可得的值.2.【答案】C【解析】【解答】解:集合则.故答案为:C.【分析】先化简集合B,再根据交集的定义即可求出.3.【答案】A【解析】【解答】解:∵z在复平面内对应的点为,∴,又,.故答案为:A.【分析】由z在复平面内对应的点为,可得,然后代入,即可得答案.4.【答案】D【解析】【解答】解:,,,∴.故答案为:D.【分析】利用对数函数和指数函数的性质求解.5.【答案】A【解析】【解答】解:因为正方形的边长为3,,则.故答案为:A.【分析】直接根据向量的三角形法则把所求问题转化为已知长度和夹角的向量来表示,即可求解结论.6.【答案】D【解析】【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D【分析】根据掌握函数的奇偶性和函数的单调性即可判断.7.【答案】B【解析】【解答】解:根据题意,A,B,C三点共线,点O在直线外,.设,,则,,消去得,(当且仅当时等式成立).故答案为:B.【分析】根据题意,易得,则,根据基本不等式的应用运算,易得的最小值.8.【答案】C【解析】【解答】解:∵圆= 圆环总成立,∴半椭球的体积为:,∴椭球的体积,∵椭球体短轴长为2,长半轴长为4,∴该椭球体的体积.故答案为:C.【分析】由圆= 圆环总成立,求出椭球的体积,代入b与a的值得答案.二、多选题9.【答案】A,B,C【解析】【解答】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,A错误,符合题意;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,B错误,符合题意;对于C,由图象可知当速度为80km/h 时,甲车的燃油效率为10km/L,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km,燃油为8升,C错误,符合题意;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,D正确,不符合题意.故答案为:ABC.【分析】过横轴上某一点做纵轴的平行线,这条线和三条折线的交点的意思是相同速度下的三个车的不同的燃油效率,过纵轴上某一点做横轴的平行线,这条线和三条折线的交点的意思是相同燃油效率下的三个车的不同的速度,利用这一点就可以很快解决问题.涉及到将图形语言转化为数学语言的能力和简单的逻辑推理能力.10.【答案】A,C【解析】【解答】解:设,由,可得,由到直线的距离等于双曲线的实轴长,设的中点,由等腰三角形的性质可得,,即有,,即,可得,即有,则双曲线的渐近线方程为,即;离心率.故答案为:AC.【分析】设,运用双曲线的定义和等腰三角形的性质可得关于a,b,c的方程,再由隐含条件即可得到a与b的关系,求出双曲线的渐近线方程及离心率即可.11.【答案】B,D【解析】【解答】解:,当时,取到最值,即解得,.A:,故不是奇函数,A不符合题意;B:,则是图像的一个对称中心,B符合题意;C:当时,,又在上先增后减,则在上先增后减,C不符合题意;D. 将函数图象上各点的纵坐标缩短为原来的,然后把所得函数图象再向左平移个单位长度,得,D符合题意.故答案为:BD.【分析】化简函数,将代入得函数最值,可求得,进而可得,通过计算,可判断A;通过计算,可判断B;当时,,可得在上的单调性,可判断C;通过振幅变换和平移变换,可判断D12.【答案】A,B,D【解析】【解答】解:A.连接,由正方体的性质可得,则面当点上时,有,故点M存在无数个位置满足,A符合题意;B.由已知,当点M与点重合时,点M到面的距离最大,则三棱锥的体积最大值为,B符合题意;C. 连接,因为则为异面直线与所成的角设正方体棱长为1,,则,点到线的距离为,,解得,所以在线段上不存在点M,使异面直线与所成的角是,C不符合题意;D. 连接,过M作交于N,由面,面,得,则为点到直线的距离,为点到直线的距离,由已知,则点M在以为焦点,以为准线的抛物线上,故这样的点M有无数个,D符合题意.故答案为:ABD.【分析】通过证明面,可得当点上时,有,可判断A;由已知,当点与点重合时,点到面的距离最大,计算可判断B;C. 连接,因为,则为异面直线与所成的角,利用余弦定理算出的距离,可判断C;连接,过M作交于N,得到,则点在以为焦点,以为准线的抛物线上,可判断D.三、填空题13.【答案】【解析】【解答】解:古典著作《连山易》中记载了金、木、水、火土之间相生相克的关系,现从五种不同属性的物质中任取两种,基本事件总数,取出的两种物质恰是相克关系包含的基本事件有:水克火,木克土,火克金,土克水,金克木,共5种,则取出的两种物质恰是相克关系的概率为.故答案为:.【分析】基本事件总数,利用列举法求出取出的两种物质恰是相克关系包含的基本事件有5种,由此能求出取出的两种物质恰是相克关系的概率.14.【答案】【解析】【解答】解:设的外接圆的半径为,∵,,则,为直角三角形,且,∵三棱锥体积的最大值是,,,,均在球的球面上,∴到平面的最大距离,设球的半径为,则,即解得,∴球的表面积为.故答案为:.【分析】设的外接圆的半径为r,可得为直角三角形,可求出,由已知得D到平面的最大距离h,设球O的半径为R,则,由此能求出R,从而能求出球O的表面积.15.【答案】,,或(表示不超过x的最大整数)【解析】【解答】将的图象向左平移1个单位,得到的图象,因为函数的图象关于点对称,即有的图象关于原点对称,即为定义在上的奇函数,可得,又为周期为6的周期函数,可得.可令,则,即,可得,当时,在上,有;当时,在上,有;当时,在上,有;当时,在上,有,,…,可得即,或(表示不超过的最大整数)故答案为:,或(表示不超过的最大整数)【分析】由图象平移可知,为定义在R上的奇函数,可得,又为周期为6的周期函数,可得,分别求得时,的值,归纳即可得到所求通项.四、双空题16.【答案】;-1【解析】【解答】解:如图,由题意可知,,则,∴点到直线的距离等于到点的距离,∴动圆圆心的轨迹是以为焦点,以为准线的抛物线,则其轨迹方程为;点坐标为,设,由已知设:,即:,代入抛物线的方程得:,即,则,故,设,即,代入抛物线的方程得:,即,则:,故,,直线AB的斜率,∴直线AB的斜率为−1.故答案为:;−1.【分析】由已知可得点到直线的距离等于到点的距离,即动圆圆心的轨迹是以M为焦点,以为准线的抛物线,则轨迹方程可求;设出直线的方程,与抛物线方程联立,求出的坐标,利用斜率公式,即可求得直线的斜率五、解答题17.【答案】解: 选① 因为,,且,,所以,,在△中,,即,所以,由正弦定理得,,因为,所以,所以△的周长,△的面积.选② 因为,所以由正弦定理得,因为,所以. 又因为.由余弦定理得所以. 解得. 所以.所以△的周长.△的面积.选③ 因为,,所以由余弦定理得,.即. 解得或(舍去).所以△的周长,因为,所以,所以△的面积,【解析】【分析】选择①:根据条件求出,,则可求出,再根据正弦定理可求出,进而可得周长面积;选择②:,,.由正弦定理可得:.由余弦定理可得:,联立解得:,进而可得周长面积;选择③:由余弦定理可得,则周长可求,再根据可得,通过面积公式可得面积18.【答案】(1)解:设等差数列的公差为d,由题意得,解得,所以数列的通项公式,即.设等比数列的公比为,由,,得,,解得,所以数列的通项公式;(2)解:由(1)知,则,,两式相减得,所以【解析】【分析】(1)设等差数列的公差为d,由等差数列的通项公式,解方程可得首项和公差,进而得到;设等比数列的公比为q,由等比数列的通项公式,解方程可得首项和公比,进而得到;(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.19.【答案】(1)解:因为平面平面,平面平面,,平面,所以平面,又平面,所以,在△中,,,,由余弦定理得,,所以,所以.又,,所以平面,又平面,所以平面平面(2)解:以C为坐标原点,以,所在直线分别为x轴、y轴建立如图所示的空间直角坐标系,,,,,,,,,,,,设,则.设平面的一个法向量为,则,即,取,得.设平面的一个法向量为,由,得,令,得,因为平面与平面所成的二面角的余弦值为,所以,整理得,解得或(舍去),所以点M为线段中点时,平面与平面所成的二面角的余弦值为.【解析】【分析】(1)推导出平面,,,从而平面,由此能证明平面平面;(2)以为坐标原点,以,所在直线分别为轴、轴建立空间直角坐标系,利用向量法能求出点为线段中点时,平面与平面所成的二面角的余弦值.20.【答案】(1)解:因为椭圆过点,代入椭圆方程,可得①,又因为离心率为,所以,从而②,联立①②,解得,,所以椭圆为;(2)解:把代入椭圆方程,得,所以,设,,则,所以,因为四边形是平行四边形,所以,所以P点坐标为.又因为点P在椭圆上,所以,即.因为.又点O到直线的距离,所以平行四边形的面积,即平行四边形的面积为定值.【解析】【分析】(1)由题意可得关于的方程组,求得的值,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x的一元二次方程,利用根与系数的关系及四边形是平行四边形,可得点坐标,把P点坐标代入椭圆方程,得到,利用弦长公式求得,再由点到直线的距离公式求出点O到直线l的距离,代入三角形面积公式即可证明平行四边形的面积为定值21.【答案】(1)解:(天).(2)解:根据题意,补充完整的列联表如下:潜伏期天潜伏期天总计50岁以上(含50岁)15 5 2050岁以下9 11 20总计24 16 40则,经查表,得,所以没有的把握认为潜伏期与患者年龄有关;(3)解:由题意可知,该地区每名患者潜伏期超过6天发生的概率为.设调查的10名患者中潜伏期超过6天的人数为X,由于该地区人数较多,则近似服从二项分布,即,, (10)由,得化简得,又,所以,即这10名患者中潜伏期超过6天的人数最有可能是4人.【解析】【分析】(1)利用平均值的定义求解即可;(2)根据题目所给的数据填写2×2列联表,根据公式计算,对照题目中的表格,得出统计结论;(3)先求出该地区每名患者潜伏期超过6天发生的概率,设调查的10名患者中潜伏期超过6天的人数为X,由于该地区人数较多,则X近似服从二项分布,即,,…,10,由得:,即这10名患者中潜伏期超过6天的人数最有可能是4人.22.【答案】(1)解:因为,所以,所以当时,;当时,.所以在上单调递增,在上单调递减;(2)解:因为,所以,.又因为,.所以曲线在点处的切线方程为;曲线在点处的切线方程为.因为.所以.所以两条切线不可能相同.(3)解:设直线l过点与曲线在点处相切,设直线,则消去,得.因为过点能作曲线的三条切线,所以关于的方程有三个不等实根.设,则有三个零点.又,①若,则,所以在上单调递增,至多一个零点,故不符合题意;②若,则当时,,单调递增;当时,,单调递减;当时,,单调递增.所以的极大值为,极小值为. 又有三个零点,所以,即,所以;③若,则当时,,单调递增;当,,单调递减;当时,,单调递增,所以的极大值为,极小值为.又有三个零点,所以,即,所以,综上所述,当时,;当时,.【解析】【分析】(1)对求导,根据的符号判断的单调性;(2)先分别求出曲线分别在点和点处的切线方程,然后根据条件证明两者为不同的直线的方程;(3)先设直线过点与曲线在点处相切,再设直线,根据两者联立得到方程,要求此方程有三个不等实根即可.然后构造函数,研究该函数有3个零点的条件即可.。

山东省日照市2019-2020学年高考第二次适应性考试数学试题含解析

山东省日照市2019-2020学年高考第二次适应性考试数学试题含解析

山东省日照市2019-2020学年高考第二次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,22PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( ) A .3π B .3π C .12πD .24π【答案】C 【解析】 【分析】首先根据垂直关系可确定OP OA OB OC ===,由此可知O 为三棱锥外接球的球心,在PAB ∆中,可以算出AP 的一个表达式,在OAG ∆中,可以计算出AO 的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积. 【详解】取AP 中点O ,由AB BP ⊥,AC PC ⊥可知:OP OA OB OC ===,O ∴为三棱锥P ABC -外接球球心,过P 作PH ⊥平面ABC ,交平面ABC 于H ,连接AH 交BC 于G ,连接OG ,HB ,HC ,PB PC =Q ,HB HC ∴=,AB AC ∴=,G ∴为BC 的中点由球的性质可知:OG ⊥平面ABC ,OG//PH ∴,且112OG PH ==. 设AB x =,22PB =Q 211822AO PA x ∴==+ 1222AG BC x ==Q ,∴在OAG ∆中,222AG OG OA +=, 即222211822x x ⎛⎫+=+ ⎪ ⎪⎝⎭,解得:2x =, ∴三棱锥P ABC -的外接球的半径为:()()2221122422322x AO +=+==,∴三棱锥P ABC -外接球的表面积为2412S R ππ==.故选:C . 【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.2.已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为( )A .1B .1或12C D .±【答案】C 【解析】 【分析】由2474S S =可得()()123434a a a a +=+,故可求q 的值. 【详解】因为2474S S =,所以()()()124234344a a S S a a +=-=+,故234q =,因{}n a 为正项等比数列,故0q >,所以q =,故选C. 【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a =;(2)公比1q ≠时,则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S --L 为等比数列(0n S ≠ )且公比为nq .3.设f(x)是定义在R 上的偶函数,且在(0,+∞)单调递减,则( )A .0.30.43(log 0.3)(2)(2)f f f -->> B .0.40.33(log 0.3)(2)(2)f f f -->> C .0.30.43(2)(2)(log 0.3)f f f -->>D .0.40.33(2)(2)(log 0.3)f f f -->>【答案】D 【解析】 【分析】利用()f x 是偶函数化简()3log 0.3f ,结合()f x 在区间()0,∞+上的单调性,比较出三者的大小关系. 【详解】()f x Q 是偶函数,()3331010log 0.3(log )(log )33f f f ∴=-=,而0.30.4310log12203-->>>>,因为()f x 在(0,)+∞上递减, 0.30.4310(log )(2)(2)3f f f --∴<<,即0.30.43(log 0.3)(2)(2)f f f --<<.故选:D 【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.4.已知EF 为圆()()22111x y -++=的一条直径,点(),M x y 的坐标满足不等式组10,230,1.x y x y y -+≤⎧⎪++≥⎨⎪≤⎩则ME MF ⋅u u u r u u u r的取值范围为( )A .9,132⎡⎤⎢⎥⎣⎦B .[]4,13C .[]4,12D .7,122⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先将ME MF ⋅u u u r u u u r转化为21MT -u u u r ,只需求出MT 的取值范围即可,而MT 表示可行域内的点与圆心(1,1)T -距离,数形结合即可得到答案.【详解】作出可行域如图所示设圆心为(1,1)T -,则()()ME MF MT TE MT TF ⋅=+⋅+=u u u r u u u u r u u u r u u r u u u r u u u r22()()MT TE MT TE MT TE +⋅-=-u u u r u u r u u u r u u r u u u r u u r 21MT =-u u u r ,过T 作直线10x y -+=的垂线,垂足为B ,显然MB MT MA ≤≤,又易得(2,1)A -,所以MA ==2TB ==, 故ME MF ⋅u u u r u u u r 271[,12]2MT =-∈u u u r .故选:D. 【点睛】本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.5.已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线经过圆22:240E x y x y ++-=的圆心,则双曲线C 的离心率为( )A B .CD .2【答案】B 【解析】 【分析】求出圆心,代入渐近线方程,找到a b 、的关系,即可求解. 【详解】 解:()1,2E -,()2222:10,0x y C a b a b-=>>一条渐近线b y x a =-()21ba=-⨯-,2a b =()222222+b ,2,c a c a a e ==+=故选:B 【点睛】利用a b 、的关系求双曲线的离心率,是基础题.6.已知抛物线220y x =的焦点与双曲线()222210,0x y a b a b-=>>的一个焦点重合,且抛物线的准线被双曲线截得的线段长为92,那么该双曲线的离心率为( )A .54 B .53C .52D【解析】 【分析】由抛物线220y x =的焦点(5,0)得双曲线()222210,0x y a b a b-=>>的焦点(5,0)±,求出5c =,由抛物线准线方程5x =-被曲线截得的线段长为92,由焦半径公式2292b a =,联立求解.【详解】解:由抛物线220y x =,可得220p =,则10p =,故其准线方程为5x =-, Q 抛物线220y x =的准线过双曲线()222210,0x y a b a b-=>>的左焦点, 5c ∴=.Q 抛物线220y x =的准线被双曲线截得的线段长为92, 2292b a ∴=,又22225c a b +==,4,3a b ∴==,则双曲线的离心率为54c e a ==. 故选:A . 【点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长.7.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )A .23B .163C .6D .与点O 的位置有关【答案】B 【解析】根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论. 【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的, 正方体的体积为8,四棱锥的底面是边长为2的正方形, 顶点O 在平面11ADD A 上,高为2, 所以四棱锥的体积为184233⨯⨯=, 所以该几何体的体积为816833-=. 故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.8.已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】 【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.9.已知函数()2sin()(0,0)3f x x A ωωπ=->>,将函数()f x 的图象向左平移3π个单位长度,得到函数()g x 的图象,若函数()g x 的图象的一条对称轴是6x π=,则ω的最小值为A .16B .23C .53D .56【答案】C 【解析】 【分析】 【详解】将函数()f x 的图象向左平移3π个单位长度,得到函数()2sin()33g x x ωωππ=+-的图象,因为函数()g x 的图象的一条对称轴是6x π=,所以sin()1633ωωπππ+-=±,即,6332k k ωωππππ+-=+π∈Z ,所以52,3k k ω=+∈Z ,又0>ω,所以ω的最小值为53.故选C . 10.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是( ).A .与2016年相比,2019年不上线的人数有所增加B .与2016年相比,2019年一本达线人数减少C .与2016年相比,2019年二本达线人数增加了0.3倍D .2016年与2019年艺体达线人数相同 【答案】A 【解析】 【分析】设2016年高考总人数为x ,则2019年高考人数为1.2x ,通过简单的计算逐一验证选项A 、B 、C 、D. 【详解】设2016年高考总人数为x ,则2019年高考人数为1.2x ,2016年高考不上线人数为0.3x , 2019年不上线人数为1.20.280.3360.3x x x ⨯=>,故A 正确;2016年高考一本人数0.3x ,2019年高考一本人数1.20.260.3120.3x x x ⨯=>,故B 错误; 2019年二本达线人数1.20.40.48x x ⨯=,2016年二本达线人数0.34x ,增加了0.480.340.410.34x xx-≈倍,故C 错误;2016年艺体达线人数0.06x ,2019年艺体达线人数1.20.060.072x x ⨯=,故D 错误. 故选:A. 【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目. 11.执行如图所示的程序框图,则输出S 的值为( )A .16B .48C .96D .128【答案】B 【解析】 【分析】列出每一次循环,直到计数变量i 满足3i >退出循环. 【详解】第一次循环:12(11)4,2S i =+==;第二次循环:242(12)16,3S i =++==; 第三次循环:3162(13)48,4S i =++==,退出循环,输出的S 为48. 故选:B. 【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题. 12.在ABC ∆中,“cos cos A B <”是“sin sin A B >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】由余弦函数的单调性找出cos cos A B <的等价条件为A B >,再利用大角对大边,结合正弦定理可判断出“cos cos A B <”是“sin sin A B >”的充分必要条件. 【详解】Q 余弦函数cos y x =在区间()0,π上单调递减,且0A π<<,0B π<<,由cos cos A B <,可得A B >,a b ∴>,由正弦定理可得sin sin A B >. 因此,“cos cos A B <”是“sin sin A B >”的充分必要条件. 故选:C. 【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。

山东省日照市2020-2021学年高三第二次联合考试数学试卷

山东省日照市2020-2021学年高三第二次联合考试数学试卷

cos
x
3
1,
3
2
cos
x
3
2

k 3 故选:C.
二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分。在每小题给出的四个选项中,
有多项符合题目要求的,全部选对得 5 分,选对但不全的得 3 分,有选错的得 0 分。
9-12 AB BCD BD BCD 9.【答案】AB 【解析】解:A.所有项的二项式系数和为 26=64,故 A 正确,
高三数学试题 第 1 页
选择 A. 8.【答案】C
【解析】∵函数 f x 在定义域上是单调函数,且 f f x 2020x 2021 , f x 2020x 为定值,设 f x 2020x t ,则 f t 2021,且 f t 2020t t ,
2021 2020t t ,解之得 t 1, f x 2020x 1, f x 在 R 上的单调递增,
= 1 i 2
1 1 i 22
ห้องสมุดไป่ตู้
对应的点的坐标为
1 2
,
1 2
在第二象限,故选
B.
4.【答案】A 【解析】因为定义在 R 上的奇函数 f (x) 在(-,0)上单调递减且 f (1)=0 ,
2
2
所以 f (1)=0 ,又 23 1 ,所以 c f (23 ) 0 ,
而 1 log3 8 2 ,所以 b a 0 ,所以 c a b .
A. c a b
B. a b c
C. a c b
D. c b a
5.为了抗击新型冠状病毒肺炎保障师生安全,某校决定每天对教室进
行消毒工作,已知药物释放过程中,室内空气中的含药量 y(单位:

山东省日照市2019-2020学年高考第二次大联考数学试卷含解析

山东省日照市2019-2020学年高考第二次大联考数学试卷含解析

山东省日照市2019-2020学年高考第二次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知平面向量a r ,b r满足()1,2a =-r ,()3,b t =-r ,且()a ab ⊥+r r r ,则b =r ( )A .3B .C .D .5【答案】B 【解析】 【分析】先求出a b +r r,再利用()0a a b ⋅+=r r r 求出t ,再求b r .【详解】解:()()()1,23,2,2t t a b -+-=-=-+r r由()a a b ⊥+r r r ,所以()0a a b ⋅+=r r r()()()12220t ⨯-+-⨯-=,1t =,()3,1b =-r,=r b 故选:B 【点睛】考查向量的数量积及向量模的运算,是基础题.2.公比为2的等比数列{}n a 中存在两项m a ,n a ,满足2132m n a a a =,则14m n+的最小值为( ) A .97B .53C .43D .1310【答案】D 【解析】 【分析】根据已知条件和等比数列的通项公式,求出,m n 关系,即可求解. 【详解】22211232,7m n m n a a a a m n +-==∴+=,当1,6m n ==时,1453m n +=,当2,5m n ==时,141310m n +=, 当3,4m n ==时,1443m n +=,当4,3m n ==时,141912m n +=,14m n +最小值为1310. 故选:D. 【点睛】本题考查等比数列通项公式,注意,m n 为正整数,如用基本不等式要注意能否取到等号,属于基础题. 3.已知复数z 1=3+4i,z 2=a+i,且z 12z 是实数,则实数a 等于( ) A .34B .43C .-43D .-34【答案】A 【解析】分析:计算2z a i =-,由z 1()2z 3a 44a 3i =++-,是实数得4a 30-=,从而得解. 详解:复数z 1=3+4i,z 2=a+i,2z a i =-.所以z 1()()()2z 34i a i 3a 44a 3i =+-=++-,是实数, 所以4a 30-=,即3a 4=. 故选A.点睛:本题主要考查了复数共轭的概念,属于基础题. 4.由曲线3,y x y ==围成的封闭图形的面积为( )A .512 B .13C .14D .12【答案】A 【解析】 【分析】先计算出两个图像的交点分别为()()0,0,1,1,再利用定积分算两个图形围成的面积. 【详解】封闭图形的面积为)1331412000215||3412x dx x x =-=⎰.选A. 【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.5.在ABC ∆中,AB AC AB AC +=-u u u v u u u v u u u v u u u v ,4AB =,3AC =,则BC uuu v 在CA u u u v方向上的投影是( )【解析】分析:根据平面向量的数量积可得AB AC ⊥u u u r u u u r ,再结合图形求出BC uuu r 与CA u u u r方向上的投影即可. 详解:如图所示:Q AB AC AB AC +=-u u u v u u u v u u u v u u u v,0AB AC ∴⋅=u u u r u u u r, ∴AB AC ⊥u u u r u u u r ,又4AB =,3AC =,BC ∴u u u r 在CA u u u r方向上的投影是:()cos ,cos cos 3BC BC CA BC ACB BC ACB u u u v u u u v u u u v u u u v u u u v π=-∠=-∠=-,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.6.已知双曲线C :22221x y a b-=()0,0a b >>的左右焦点分别为1F ,2F ,P 为双曲线C 上一点,Q 为双曲线C 渐近线上一点,P ,Q 均位于第一象限,且22QP PF =u u u u v u u u v ,120QF QF ⋅=u u u u vu u u v ,则双曲线C 的离心率为( ) A 31 B .31C 132D 132【答案】D 【解析】由双曲线的方程22221x y a b-=的左右焦点分别为12,F F ,P 为双曲线C 上的一点,Q 为双曲线C 的渐近线上的一点,且,P Q 都位于第一象限,且2122,0QP PF QF QF =⋅=u u u u v u u u u vu u u v u u u v , 可知P 为2QF 的三等分点,且12QF QF ⊥u u u r u u u u r ,点Q 在直线0bx ay -=上,并且OQ c =,则(,)Q a b ,2(,0)F c , 设11(,)P x y ,则11112(,)(,)x a y b c x y --=--,代入双曲线的方程可得22(2)1144a c a +-=,解得2c e a ==,故选D . 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围). 7.复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A .i B .i -C .1-D .1【答案】C 【解析】 【分析】21iz =+,分子分母同乘以分母的共轭复数即可. 【详解】 由已知,22(1i)1i 1i (1i)(1i)z -===-++-,故z 的虚部为1-. 故选:C. 【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.8.已知向量)a =r,)1b =-r ,则a r 与b r的夹角为( )A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果. 【详解】解:由题意得,设a r与b r的夹角为θ,311cos 222a b a bθ⋅-∴===⨯r rr r ,由于向量夹角范围为:0θπ≤≤, π【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围. 9.定义在R 上的偶函数()f x 满足()()11f x f x +=-()()0≠f x ,且在区间()20172018,上单调递减,已知,αβ是锐角三角形的两个内角,则()()sin cos f f βα,的大小关系是( ) A .()()sin cos βα<f f B .()()sin cos βα>f f C .()()sin =cos βαf f D .以上情况均有可能【答案】B 【解析】 【分析】由已知可求得函数的周期,根据周期及偶函数的对称性可求()f x 在(0,1)上的单调性,结合三角函数的性质即可比较. 【详解】 由1(1)()f x f x +=-可得1(2)[(1)1]()(1)f x f x f x f x +=++=-=+,即函数的周期2T =, 因为在区间(2017,2018)上单调递减,故函数在区间(1,0)-上单调递减, 根据偶函数的对称性可知,()f x 在(0,1)上单调递增, 因为α,β是锐角三角形的两个内角, 所以1,(0,)2αβπ∈且12αβπ+>即12απβ>-, 所以1cos cos()2απβ<-即0cos sin 1αβ<<<,(cos )(sin )f f αβ<.故选:B . 【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键. 10.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m nD .若m α⊥,//m n ,//n β,则αβ⊥ 【答案】D 【解析】试题分析:m α⊥Q ,,n βαβ∴⊥P ,故选D.考点:点线面的位置关系. 11.若函数f(x)=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)【答案】C 【解析】 【分析】求函数导数,分析函数单调性得到函数的简图,得到a 满足的不等式组,从而得解. 【详解】由题意,f′(x)=x 2+2x =x(x +2),故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示.令13x 3+x 2-23=-23,得x =0或x =-3, 则结合图象可知,3050a a -≤<⎧⎨+>⎩解得a ∈[-3,0),故选C. 【点睛】本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.12.已知集合2{|23}A x y x x ==-++,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .A B A =I B .A B B ⋃=C .()U A B =∅I ðD .U B A ⊆ð【答案】D 【解析】 【分析】化简集合A ,根据对数函数的性质,化简集合B ,按照集合交集、并集、补集定义,逐项判断,即可求出由2230,(23)(1)0x x x x -++≥-+≤, 则31,2A ⎡⎤=-⎢⎥⎣⎦,故U 3(,1),2A ⎛⎫=-∞-⋃+∞ ⎪⎝⎭ð,由2log 1x >知,(2,)B =+∞,因此A B =∅I ,31,(2,)2A B ⎡⎤⋃=-⋃+∞⎢⎥⎣⎦,()U (2,)A B ⋂=+∞ð,3(2,)(,1),2⎛⎫+∞⊆-∞-⋃+∞ ⎪⎝⎭,故选:D 【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

2020年普通高考数学全真模拟卷2解析山东卷

2020年普通高考数学全真模拟卷2解析山东卷

2020年2月普通高考【山东卷】全真模拟卷(2)数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:高中全部内容。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数21iz i=-,则z 在复平面对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【解析】由题意得()()()2122211112i i i i z i i i i +-====-+--+,所以复数z 对应的点的坐标为()1,1-,位于第二象限.故选B . 2.已知集合21|4A x y x ⎧⎫==⎨⎬-⎩⎭,{|23,}B x x x =-≤<∈Z ,则A B I 中元素的个数为 A .2 B .3C .4D .5【答案】B【解析】因为21|{|2}4A x y x x x ⎧⎫===≠±⎨⎬-⎩⎭,{|23,}{2,1,0,1,2}B x x x =-≤<∈=--Z , 所以{1,0,1}A B ⋂=-,所以A B I 中元素的个数为3.故选B .3.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为 A .%25.6 B .%5.7C .%25.10D .%25.31【答案】A【解析】水费开支占总开支的百分比为%25.6%20100450250250=⨯++.故选A4.函数22()11xf x x=-+在区间[4,4]-附近的图象大致形状是 A .B .C .D .【答案】B【解析】22()11xf x x=-+过点()10,,可排除选项A ,D .又()20f <,排除C .故选B 5.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P 是C 的右支上一点,连接1PF 与y 轴交于点M ,若12||FO OM =(O 为坐标原点),12PF PF ⊥,则双曲线C 的渐近线方程为 A .3y x =± B .3y x =C .2y x =±D .2y x =【答案】C【解析】设1(,0)F c -,2(,0)F c ,由12||FO OM =,1OMF ∆与2PF F ∆相似,所以1122||P F F P OM F O ==,即122PF PF =,又因为122PF PF a -=,所以14PF a =,22PF a =,所以2224164c a a =+,即225c a =,224b a =,所以双曲线C 的渐近线方程为2y x =±.故选C .6.在正四棱锥P ABCD -中,已知异面直线PB 与AD 所成的角为060,给出下面三个命题:1p :若2AB =,则此四棱锥的侧面积为443+;2p :若,E F 分别为,PC AD 的中点,则//EF 平面PAB ;3p :若,,,,P A B C D 都在球O 的表面上,则球O 的表面积是四边形ABCD 面积的2π倍.在下列命题中,为真命题的是 A .23p p ∧ B .12()p p ∨⌝C .13p p ∧D .23()p p ∧⌝【答案】A【解析】因为异面直线PB 与AD 所成的角为60︒,AD 平行于BC ,故角PBC=60︒,正四棱锥-ABCD P 中,PB=PC ,故三角形PBC 是等边三角形;当AB=2,此四棱锥的侧面积为43,故1p 是假命题;取BC 的中点G ,,E F 分别为,PC AD 的中点故得//,//AB FG PB EG ,故平面EFG//平面PAB ,从而得到EF//平面PAB ,故2p 是真命题;设AB=a , AC 和BD 的交点为O ,则PO 垂直于地面ABCD ,PA =a,AO =2a,PO =2aO 为球心,球的半径为2a2,表面积为22πa ,又正方形的面积为2a ,故3p 为真. 故23p p ∧为真; ()12p p ∨⌝ 13p p ∧ ()23p p ∧⌝均为假.故选A .7.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD =,3BD =,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为A .964B .449C .225D .27【答案】B【解析】18060120ADB∠=︒-︒=︒Q,在ABDV中,可得2222cosAB AD BD AD BD ADB=+-⋅∠,即为222153253492AB⎛⎫=+-⨯⨯⨯-=⎪⎝⎭,解得7AB=,2DE AD BD=-=Q,224()749DEFABCSS∴==VV.故选B.8.已知抛物线2:4C y x=的焦点为,F P是抛物线C的准线上一点,且P的纵坐标为正数,Q是直线PF与抛物线C的一个交点,若2PQ QF=u u u r u u u r,则直线PF的方程为A.330x y--=B.10x y+-=C.10x y--=D.330x y+-=【答案】D【解析】作QM y⊥轴于M,则根据抛物线的定义有QM QF=.又2PQ QF=u u u r u u u r,故2PQ QM=,故1cos2MQPQMPQ∠==.故3PQMπ∠=,故直线PF的倾斜角为23π.故直线PF的斜率为3-.直线PF的方程为()31y x=--,化简得330x y+-=.故选D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年山东省日照市高考数学二模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z满足z=1+(i为虚数单位),则复数z的共轭复数||的模为()A.0 B.1 C.D.22.若集合A={x|2x>1},集合B={x|lnx>0},则“x∈A”是“x∈B”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(﹣1<ξ<0)等于()A.p B.1﹣p C.1﹣2p D.﹣p4.一个算法的程序框图如图所示,若该程序输出的结果为10,则判断框中应填入的条件是()A.k≥﹣3 B.k≥﹣2 C.k<﹣3 D.k≤﹣35.函数f(x)=sin(2x+)所对应的图象向左平移个单位后的图象与y轴距离最近的对称轴方程为()A.x=B.x=﹣C.x=﹣D.x=6.某几何体的三视图如图所示,则该几何体的体积是()A. B. C.D.7.函数y=e cosx(﹣π≤x≤π)的大致图象为()A.B.C.D.8.在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+c2+bc﹣a2=0,则=()A.﹣ B.C.﹣D.9.已知直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,且有,那么k的取值范围是()A.B.C. D.10.如图,已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P、Q,若∠PAQ=60°且=3,则双曲线C 的离心率为()A.B.C.D.二、填空题:本大题共5小题,每小题5分,共25分。

11.将某班参加社会实践的48名学生编号为:1,2,3,…,48.采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是_______.12.不等式|x+1|+|x﹣2|≤4的解集为_______.13.设不等式组表示的平面区域为M,若直线l:y=k(x+2)上存在区域M内的点,则k的取值范围是_______.14.已知函数f(x)=2x且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2a•g(x)+h(2x)≥0对任意x∈[1,2]恒成立,则实数a的取值范围是_______.15.设集合A={(m1,m2,m3)|m i∈{﹣2,0,2},i∈{1,2,3}},则集合A满足条件:“2≤|m1|+|m2|+|m3|≤5”的元素个数为_______.三、解答题:本大题共6小题,共75分。

17.已知函数f(x)=cosx(2sinx﹣cosx)+asin2x的一个零点是.(1)求函数f(x)的最小正周期;(2)令x∈[﹣,],求此时f(x)的最大值和最小值.18.如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC.(Ⅰ)求证:PA∥平面QBC;(Ⅱ)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.19.某公司做了用户对其某产品满意度的问卷调查.随机抽取了20名用户(其中有7名男性用户和13名女性用户)的评分,得到如图所示茎叶图.对不低于75的评分,认为用户对产品满意,否则,认为不满意.已知对产品满意用户中男性有4名.(I)以此“满意”的频率作为概率,求在3人中恰有2人满意的概率;(Ⅱ)从以上男性用户中随机抽取2人,女性用户中随机抽取1人,其中满意的人数为ξ,求ξ的分布列与数学期望.20.设A(x1,y1),B(x2,y2)是函数f(x)=+log2图象上任意两点,M为线段AB的中点.已知点M的横坐标为.若S n=f()+f()+…+f(),n∈N*,且n≥2.(Ⅰ)求S n;(Ⅱ)已知a n=,其中n∈N*,T n为数列{a n}的前n项和,若T n<λ(S n+1+1)对一切n∈N*都成立,试求实数λ的取值范围.21.已知函数f(x)=x3﹣ax(lnx﹣1)+(a∈R且a≠0).(Ⅰ)设函数g(x)=x3+﹣f(x),求函数g(x)的单调递增区间;(Ⅱ)当a>0时,设函数h(x)=f′(x)﹣;①若h(x)≥0恒成立,求实数a的取值范围;②证明:ln(1•2•3…n)2e<12+22+32+…+n2(n∈N*,e为自然对数的底数).22.已知椭圆C1: +=1(a>b>0)左右两个焦点分别为F1,F2,R(1,)为椭圆C1上一点,过F2且与x轴垂直的直线与椭圆C1相交所得弦长为3.抛物线C2的顶点是椭圆C1的中心,焦点与椭圆C1的右焦点重合.(Ⅰ)求椭圆C1和抛物线C2的方程;(Ⅱ)过抛物线C2上一点P(异于原点O)作抛物线切线l交椭圆C1于A,B两点,求△AOB面积的最大值;(Ⅲ)过椭圆C1右焦点F2的直线l1与椭圆相交于C,D两点,过R且平行于CD的直线交椭圆于另一点Q,问是否存在直线l1,使得四边形RQDC的对角线互相平分?若存在,求出l1的方程;若不存在,说明理由.2020年山东省日照市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z满足z=1+(i为虚数单位),则复数z的共轭复数||的模为()A.0 B.1 C.D.2【考点】复数求模.【分析】化简复数为:a+bi的形式,然后求解复数的模.【解答】解:z=1+=1﹣i,复数||=|1+i|=.故选:C.2.若集合A={x|2x>1},集合B={x|lnx>0},则“x∈A”是“x∈B”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】分别求出关于集合A、B的范围,结合集合的包含关系判断即可.【解答】解:集合A={x|2x>1}={x|x>0},集合B={x|lnx>0}={x|x>1},则B⊊A则“x∈A”是“x∈B”的必要不充分条件,故选:B.3.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(﹣1<ξ<0)等于()A.p B.1﹣p C.1﹣2p D.﹣p【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ服从标准正态分布N(0,1),得到正态曲线关于ξ=0对称,利用P (ξ>1)=p,即可求出P(﹣1<ξ<0).【解答】解:∵随机变量ξ服从正态分布N(0,1),∴正态曲线关于ξ=0对称,∵P(ξ>1)=p,∴P(ξ<﹣1)=p,∴P(﹣1<ξ<0)=﹣p.故选:D.4.一个算法的程序框图如图所示,若该程序输出的结果为10,则判断框中应填入的条件是()A.k≥﹣3 B.k≥﹣2 C.k<﹣3 D.k≤﹣3【考点】程序框图.【分析】模拟程序的运行结果,分析不满足输出条件继续循环和满足输出条件退出循环时,变量k值所要满足的要求,可得答案.【解答】解:当k=1时,S=﹣2,k=0不满足输出条件;当k=0时,S=﹣2,k=﹣1,不满足输出条件;当k=﹣1时,S=0,k=﹣2,不满足输出条件;当k=﹣2时,S=4,k=﹣3,不满足输出条件;当k=﹣3时,S=10,k=﹣4,满足输出条件,;分析四个答案后,只有A满足上述要求故选A5.函数f(x)=sin(2x+)所对应的图象向左平移个单位后的图象与y轴距离最近的对称轴方程为()A.x=B.x=﹣C.x=﹣D.x=【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由题意根据函数y=Asin(ωx+φ)的图象变换规律,可得平移后的函数为y=cos(2x+),再根据余弦函数的图象的对称性求得它的对称轴方程,可得平移后的图象与y 轴距离最近的对称轴方程.【解答】解:函数f(x)=sin(2x+)所对应的图象向左平移个单位后的图象对应的函数解析式为y=sin[2(x+)+]=cos(2x+),令2x+=kπ,求得x=﹣,k∈z,可得与y轴距离最近的对称轴方程为x=﹣,故选:B.6.某几何体的三视图如图所示,则该几何体的体积是()A. B. C.D.【考点】由三视图求面积、体积.【分析】几何体为半球与半圆柱的组合体.【解答】解:由三视图可知几何体半球与半圆柱的组合体,半球的半径为1,半圆柱的底面半径为1,高为2,∴几何体的体积V=+=.故选B.7.函数y=e cosx(﹣π≤x≤π)的大致图象为()A.B.C.D.【考点】函数的图象.【分析】判断函数的奇偶性,然后利用复合函数的单调性判断即可.【解答】解:函数f(x)=e cosx(x∈[﹣π,π])∴f(﹣x)=e cos(﹣x)=e cosx=f(x),函数是偶函数,排除B、D选项.令t=cosx,则t=cosx当0≤x≤π时递减,而y=e t单调递增,由复合函数的单调性知函数y=e cosx在(0,π)递减,所以C选项符合,故选:C.8.在△ABC中,内角A,B,C的对边分别为a,b,c,且b2+c2+bc﹣a2=0,则=()A.﹣ B.C.﹣D.【考点】余弦定理;正弦定理.【分析】由b2+c2+bc﹣a2=0,利用余弦定理可得cosA==﹣,A=120°.再利用正弦定理可得==,化简即可得出.【解答】解:∵b2+c2+bc﹣a2=0,∴cosA==﹣,∴A=120°.由正弦定理可得====.故选:B.9.已知直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,且有,那么k的取值范围是()A.B.C. D.【考点】向量在几何中的应用;直线与圆相交的性质.【分析】利用平行四边形法则,借助于正弦与圆的位置关系,利用直角三角形,即可求得结论.【解答】解:设AB中点为D,则OD⊥AB∵,∴∴∵∴∵直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,∴∴4>∴4>∵k>0,∴故选C.10.如图,已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P、Q,若∠PAQ=60°且=3,则双曲线C 的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】确定△QAP为等边三角形,设AQ=2R,则OP=R,利用勾股定理,结合余弦定理,即可得出结论.【解答】解:因为∠PAQ=60°且=3,所以△QAP为等边三角形,设AQ=2R,则OP=R,渐近线方程为y=x,A(a,0),取PQ的中点M,则AM=由勾股定理可得(2R)2﹣R2=()2,所以(ab)2=3R2(a2+b2)①在△OQA中,=,所以7R2=a2②①②结合c2=a2+b2,可得=.故选:B.二、填空题:本大题共5小题,每小题5分,共25分。

相关文档
最新文档