衔接点01 十字相乘法因式分解的强化-2020年【衔接教材暑假作业】初高中衔接数学(人教版)
【最新整理】2020初高中数学衔接教材(完整版) - 【教师版】

2020初高中数学衔接教材爱的新高一的同学们:祝贺你们步入高中时代,下面有一个摆在我们面前的棘手问题急需我们师生共同努力才能解决,即“初高中衔接问题”。
由于课程改革,目前我区初中是新课标,而高中也是新课程的学习,初高中不衔接问题现在显得比较突出。
面对教学中将存在的问题,我们高一数学组的老师们假期里加班加点,赶制了一份校本衔接教材,意在培养大家自学能力,同时降低同学们初高中衔接中的不适应度,希望大家将假期利用起来,一开学对这篇自学教材的学习将有相应的检测,愿大家为新学期做好准备。
现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。
而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。
高中数学初高中衔接读本专题1.2十字相乘法高效演练学案word格式

第 2 讲十字相乘法因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形。
在分式运算、解方程及各种恒等变形中起重视要的作用,是连续高中数学学习的一项基本技术。
因式分解的方法好多,除了初中课本涉及到的提取公因式法和公式法( 平方差公式和完满平方公式) 外,还有公式法( 立方和、立方差公式) 、十字相乘法和分组分解法等。
【知识梳理】1.乘法公式:初中已经学习过了以下乘法公式:( 1)平方差公式(a b)(a b)a2b2;( 2)完满平方公式(a b)2a22ab b2.( 3)立方和公式(a b)(a2ab b2 )a3b3;( 4)立方差公式(a b)( a2ab b2 )a3b3;2.把一个多项式化成几个整式的乘积的形式,这类变形叫做把这个多项式分解因式.3.因式分解与整式乘法的差别和联系:因式分解与整式乘法是互逆关系.(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.4.因式分解的思路:(1)先看各项有没有公因式,如有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即经过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必然是几个整式的乘积,不然不是因式分解;(5)因式分解的结果必然进行到每个因式在要求的范围内(比方有理数范围内)不可以再分解为止.5.因式分解的解题步骤:一提(公因式)、二套(平方差公式,完满平方公式)、三检查(完满分解).【高效演练】1.将以下各式因式分解:( 1)x26x 7;( 2)2x ﹣ 6x +4x;32( 3)a24ab5b2;( 4)x22x 3;( 5)ax510ax416ax3;( 6)a2b216ab39 ;( 7)152 n7n n 142n 2;y yx x( 8)x2222x 23x72 ;3x【答案】 (1)( x1)(x7) ;( 2) 2x( x﹣ 1)( x﹣2);(3)(a 5b)(a b);( 4)x22x14( x1) 222( x 12)( x12)( x3)( x1) ;( 5)ax3( x 2)( x8) ;( 6)原式ab 2ab39ab3ab1316( 7)原式3x n y n15x n 4 y n1( 8)原式x 23x 4 x23x18x4x 1x 6 x32. 把4x4y25x 2 y 29 y2分解因式的结果是________________。
初升高衔接一一十字相乘法分解因式

初升高衔接一一十字相乘法分解因式因式分解是高中数学常用的变形方式,它能把一个多项式化为几个整式的积。
在以下几个方面应用广泛:1、求解一元二次方程,一元二次不等式常用因式分解2、用定义法证明函数单调性,变形时常用因式分解3、此较大小和不等式证明中,作差后常用因式分解判定符号4、函数求导后因式分解判定符号5、初中数学解决一元二次多项式因式分解局限于二次项系数为1,而高中数学常常是二次项系数不是1,且含有多个字母。
6、因式分解方法很多,这节专讲“十字相乘法'。
“十字相乘法'分解因式,方法是“拆两头凑中间,横写加法,因式相乘”。
题型一、二次项系数为1的二次三项式X^2+(a+b)X+ab=(X+a)(X+b)例:题型二、二次项系数≠1的二次三项式因式分解。
思路探寻:以二次项系数是正数为例(如果二次项系数是负教,可以提一个负号变为正数),二次项分解为两个正因数的积,常数项是正数时,分解为两个同号因数的积,符号与一次项系数符号相同;如果是负数,分解为两个异号因数的积,绝对值较大的数的符号与一次项系数符号相同。
题型三、含有两个字母的二次三项式的因式分解思路探寻:把其中任意一个字母当作“主”元,另一个当作一个数,然后写成“主'元降幂排列的二次三项式。
分解方法仍然是“拆两头,凑中间。
横写加法,因式相乘。
'只是记住写上字母。
题型四、“双十字相乘法”“双十字相乘法”指用此法两次。
方法一、①前三项结合分解成两个因式的积;②把这两个因式当作两个数,再用十字相乘法。
因为有两个字母,所以凑中间时一定要检验每一个字母的系数是否相同。
方法二、把其中一个字母当做“主元”,然后按“主元”降幂排排列写成二次三项式,这时常数项是另外一个字母的二次三项式。
先对常数项用十字相乘法分解,把分解后的两个因式当作两个数再次用“十字相乘法”分解。
题型五、转化为用“十字相乘法”分解的形式。
①分解因式ab+b^2+a一b一2=b^2+(a一1)b+(a一2)思路探寻:转化为关于b的二次三项式,再用“十字相乘法'分解。
初高中数学衔接教材(已整理精品)

初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式2 2 (a b)(a b) a b ;(2)完全平方公式 2 2 2(a b) a 2 a b .b我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2 2 3 3(a b) (a a b b ) a ;b(2)立方差公式 2 2 3 3(a b) (a a b b ) a ;b(3)三数和平方公式2 2 2 2 (a b c ) a b c 2 ( a b b c ;)a c(4)两数和立方公式 3 3 2 2 3(a b) a 3 a b 3 a b ;b(5)两数差立方公式3 3 2 2 (a b) a 3 a b 3 a b .b 对上面列出的五个公式,有兴趣的同学可以自己去证明.例 1 计算:2 2 (x 1)(x 1)(x x 1)(x x 1).解法一: 原式= 2 2 2 2(x 1) (x 1) x = 2 4 2 (x 1)(x x 1)= 6 1 x .解法二: 原式=2 2 (x 1)(x x 1)(x 1)(x x1)= 3 3 (x 1)(x1)= 6 1x .例 2 已知 a b c 4,ab bc ac 4,求2 2 2 a b c 的值.解:2 2 2 ( )22( ) 8a b c a b c ab bc ac .练 习1.填空:(1)1 1 1 12 2a b ( b a) ( ); 9 4 2 3(2)(4 m 22 ) 16m 4m ( ) ;(3 )2 2 2 2 (a 2b c) a 4b c ( ) . 2.选择题:(1)若2 1x mx k 是一个完全平方式,则k 等于()2(A )2m (B)142m (C)132m (D)1162m(2)不论 a,b 为何实数, 2 2 2 4 8a b a b 的值()(A )总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2 2(1)x -3x+2;(2)x +4x-12;2 ( ) 2(3)x a b xy aby ;(4)xy 1 x y .2解:(1)如图1.1-1,将二次项 x 分解成图中的两个x 的积,再将常数项 2 分解成-1初中升高中数学教材变化分析2与-2 的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x -3x+2 中的一次项,所以,有2-3x+2=(x-1)(x-2).xx 1-1 1 -2 x -ay-1x -2 x1 -2 6 -by1图 1.1-1 图 1.1-3 图1.1-4图 1.1-2说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1 中的两个x 用 1 来表示(如图1.1-2 所示).(2)由图 1.1-3,得2x +4x-12=(x-2)( x+6).(3)由图 1.1-4,得2 ( ) 2x a b xy aby =(x ay)( x by)x -1(4)xy 1 x y =xy+(x-y)-1=(x-1) (y+ 1) (如图 1.1-5 所示).课堂练习一、填空题:y图 1.1-511、把下列各式分解因式:2 x(1) 5 6x __________________________________________________ 。
初升高数学衔接教材(完整)(2020年8月整理).pdf

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪−<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a −表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a −<<。
②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><−或。
③22()()()()f x g x f x g x >⇔>。
(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1段进行讨论. ③将分段求得解集,再求它们的并集. 例1.求不等式354x −<的解集例2.求不等式215x +>的解集例3.求不等式32x x −>+的解集例4.求不等式|x +2|+|x -1|>3的解集.例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式: (1)13x x −+−>4+x (2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x −< (5)578x +>3、因式分解 乘法公式(1)平方差公式22()()a b a b a b +−=− (2)完全平方公式222()2a b a ab b ±=±+ (3)立方和公式2233()()a b a ab b a b +−+=+ (4)立方差公式2233()()a b a ab b a b −++=−(5)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式33223()33a b a a b ab b +=+++(7)两数差立方公式33223()33a b a a b ab b −=−+−因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1分解因式:(1)x 2-3x +2;(2)2672x x ++(3)22()x a b xy aby −++;(4)1xy x y −+−.2.提取公因式法例2.分解因式: (1)()()b a b a −+−552(2)32933x x x +++3.公式法例3.分解因式: (1)164+−a (2)()()2223y x y x −−+4.分组分解法例4.(1)x y xy x 332−+−(2)222456x xy y x y +−−+− 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x −−.例5.把下列关于x 的二次多项式分解因式: (1)221x x +−;(2)2244x xy y +−.练习(1)256x x −−(2)()21x a x a −++(3)21118x x −+(4)24129m m −+(5)2576x x +−(6)22126x xy y +−(7)()()3211262+−−−p q q p (8)22365ab b a a +−(9)()22244+−−x x (10)1224+−x x (11)by ax b a y x 222222++−+−(12)91264422++−+−b a b ab a (13)x 2-2x -1(14)31a +;(15)424139x x −+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +−++−第二讲一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a −,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭,。
初升高数学衔接教材(完整)

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。
②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。
③22()()()()f x g x f x g x >⇔>。
(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1。
求不等式354x -<的解集例2.求不等式215x +>的解集例3.求不等式32x x ->+的解集例4。
求不等式|x +2|+|x -1|>3的解集.例5。
解不等式|x -1|+|2-x |>3-x .例6。
已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式:(1)13x x -+->4+x(2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x -<(5)578x +>3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+- 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x(10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.(2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1。
《初高中衔接教材数学》第四讲:分解因式

初高中衔接教材第四讲:分解因式一、分解因式的主要方法有:提公因式法、运用公式法、分组分解法、十字相乘法、换元法、添项拆项法、配方法、待定系数法、求根法二、例题分析(一)、提公因式法.:ma+mb+mc=m(a+b+c)(二)、运用公式法.平方差公式:2a 2b -=(a+b)(a-b); 完全平方公式:2a ±2ab +2b =()2b a ± 立方和公式: 33b a +=(a+b)( 2a -ab+2b ); 立方差公式:33b a - =(a-b)( 2a ab ++2b ); 两数和立方公式:3223333()a a b ab b a b +++=+;两数差立方公式:3223333()a a b ab b a b -+-=-.公式:))((3222333ca bc ab c b a c b a abc c b a ---++++=-++例1、分解因式: (1) 38x +(2) 30.12527b -例2、分解因式:(1) 34381a b b -(2) 76a ab -(三)、分组分解法1.分组后能提取公因式例1、分解因式:bn bm an am +++ 例2、分解因式:bx by ay ax -+-51022.分组后能直接运用公式例1、把22x y ax ay -++分解因式。
例2、把2222428x xy y z ++-分解因式。
(四)、十字相乘法1、二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
例1、分解因式:652++x x 例2、分解因式:672+-x x练习:分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x例3、把下列各式因式分解: (1) 226x xy y +-(2) 222()8()12x x x x +-++2、二次项系数为1的齐次多项式例1、把下列各式因式分解:(1)2(1)x a x a -++ (2)2(2)2x a x a -++(3)2223x ax a -- (4)223()x a a x a -++练习:分解因式(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --3、二次项系数不为1的二次三项式c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例1、分解因式:101132+-x x练习:分解因式:(1)6752-+x x (2)2732+-x x (3)317102+-x x (4)101162++-y y4、二次项系数不为1的齐次多项式 例1、22672y xy x +- 例2、2322+-xy y x练习:1、分解因式:(1)224715y xy x -+ (2)8622+-ax x a (3) 22568x xy y +- (4)22151112y xy x --2、分解因式:(1)10)(3)(2-+-+y x y x (2)344)(2+--+b a b a(3)222265x y x y x -- (4)2634422++-+-n m n mn m(5)3424422---++y x y xy x例3、把下列各式因式分解: (1) 2(1)1ax a x -++ (2) 2(21)2ax a x -++ (3) 2(23)3ax a x a -+++练习:把下列各式因式分解: (1) 22(4)2ax a x -++(2) 22(1)21a x ax -++五、换元法。
专题1.2 十字相乘法(高效演练)-拾阶而上之初高中数学衔接读本(原卷版)

第一章 因式分解第2讲 十字相乘法因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形。
在分式运算、解方程及各种恒等变形中起着重要的作用,是继续高中数学学习的一项基本技能。
因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法 (立方和、立方差公式)、十字相乘法和分组分解法等。
【知识梳理】1.乘法公式:初中已经学习过了下列乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+.(3)立方和公式 2233()()a b a ab b a b +-+=+;(4)立方差公式 2233()()a b a ab b a b -++=-;2.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式分解因式.3.因式分解与整式乘法的区别和联系:因式分解与整式乘法是互逆关系.(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.4.因式分解的思路:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在要求的范围内(比如有理数范围内)不能再分解为止.5.因式分解的解题步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解). 【高效演练】1.将下列各式因式分解:(1)x x --267; (2)2x 3﹣6x 2+4x ;(3)a ab b +-2245; (4)x x 223+-;(5)5431016ax ax ax -+;(6)a b ab 221639++ ;(7)15742122x x y y n n n n +-++;(8)()()x xx x 222322372+-++; 2.把22224954y y x y x --分解因式的结果是________________。