2008高考福建数学文科试卷含详细解答(全word版)080626

合集下载

2008年普通高等学校招生全国统一考试(福建卷)数学(文)

2008年普通高等学校招生全国统一考试(福建卷)数学(文)

2008年普通高等学校招生全国统一考试(福建卷)数学(文)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|0A x x x =-<,{}|03B x x =<<,则A B 等于( )A .{}|01x x <<B .{}|03x x <<C .{}|13x x <<D .∅2.“1a =”是“直线0x y +=和直线0x ay -=互相垂直”的( )条件A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项和为( )A .128B .80C .64D .564.函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为( )A .3B .0C .-1D .-25.某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( ) A .12125B .16125 C .48125D .961256.如图,在长方体1111ABCD A BC D -中,2AB BC ==分别为11AA =,则1AC 与平面1111A B C D 所成的角的正弦值为( )A B .23C D .137.函数cos ()y x x R =∈的图像向左平移2π个单位后,得到函数()y g x =的图像,则()g x 的解析式为( ) A .sin x - B .sin xC .cos x -D .cos x8.在△ABC 中,角A 、B 、C 的对应边分别为a 、b 、c,若222a cb +-=,则角B 的值为( )A .6πB .3π C .6π或56πD .3π或23π9.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .4810.若实数x 、y 满足002x y x y -+≤⎧⎪>⎨⎪≤⎩,则y x 的取值范围是( )A .(0,2)B .(0,2]C .(2,)+∞D .[2,)+∞11.如果函数()y f x =的图像如右图,那么导函数'()y f x =的图像可能是()12.双曲线22221(0,0)x y a b a b-=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )A .(1,3)B .(1,3]C .(3,)+∞D .[3,)+∞第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13. 91(x x+展开式中3x 的系数是 (用数字作答)14.若直线340x y m ++=与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是15.,则其外接球的表面积是16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有,,,aa b a b ab P b+-∈(除数0b ≠),则称P 是一个数域。

福建历年高考数学试卷 (08、09、 10含文理含答案)

福建历年高考数学试卷 (08、09、 10含文理含答案)

08福建高考数学卷(理工农医类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1或2D.-1(2)设集合A={x |1xx -<0},B={x |0<x <3=,那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件(3)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为 A.63B.64C.127D.128(4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 A.16625B.96625C. 192625D. 256625(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为A.63B.265C.155D.105(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x 、y 满足 {10,x y -+≤则yx的取值范围是 (9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为A.2πB.πC.-πD.-2π(10)在△ABC 中,角ABC 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为A. 6π B.3π C.6π或56πD.3π或23π(11)又曲线22221x y ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(13)若(x -2)5=a 3x 5+a 5x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答) x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ(θ为参数)没有公共点,则实数m 的取值范围是 .(153,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈R ,都有a +b 、a -b , ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{}2,F a b b Q =+∈也是数域.有下列命题: ①整数集是数域;②若有理数集Q M ⊆,则数集M 必为数域;③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号填填上)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量m =(sin A ,cos A ),n =(3,1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域.如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱PA =PD =2,底面ABCD 为直角梯形,其中BC ∥AD ,AB⊥AD ,AD =2AB =2BC =2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 的距离为32?若存在,求出AQQD的值;若不存在,请说明理由.(19)(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n ,S n )也在y =f ′(x )的图象上;(Ⅱ)求函数f (x )在区间(a -1,a )内的极值.(20)(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科 目B 的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证 书.现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试 成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响. (Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ.如图、椭圆22221(0)x y ab a b+=的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,值有222OA OBAB +,求a 的取值范围.(22)(本小题满分14分)已知函数f (x )=ln(1+x )-x 1 (Ⅰ)求f (x )的单调区间;(Ⅱ)记f (x )在区间[]0,π(n ∈N*)上的最小值为b x 令a n =ln(1+n )-b x . (Ⅲ)如果对一切n ,不等式22nn n ca a a ++-恒成立,求实数c 的取值范围; (Ⅳ)求证: 131321122424221 1.n n na a a a a a a a a a a a a -++++-【参考答案】一、选择题:本大题考查基本概念和基本运算.每小题5分,满分60分.(1)B (2)A (3)C (4)B (5)B (6)D (7)A (8)C (9)A (10)D (11)B (12)D 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.(13)31(14)(,0)(10,)-∞⋃+∞(15)9π(16)③④三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17)本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力.满分12分. 解:(Ⅰ)由题意得3sin cos 1,m n A A =-=12sin()1,sin().662A A ππ-=-=由A 为锐角得,.663A A πππ-==(Ⅱ)由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin x =-1时,f (x )有最小值-3,所以所求函数f (x )的值域是33,2⎡⎤-⎢⎥⎣⎦.(18)本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分.解法一:(Ⅰ)证明:在△PAD 中PA =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面PAD ⊥底面ABCD ,平面PAD ⋂平面ABCD =AD , PO ⊂平面PAD , 所以PO ⊥平面ABCD .(Ⅱ)连结BO ,在直角梯形ABCD 中、BC ∥AD ,AD =2AB =2BC ,有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC .由(Ⅰ)知,PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB =2,在Rt △POA 中,因为AP =2,AO =1,所以OP =1, 在Rt △PBO 中,tan ∠PBO =122,arctan .222PG PBO BC ==∠=所以异面直线PB 与CD 所成的角是2arctan2. (Ⅲ)假设存在点Q ,使得它到平面PCD 的距离为32. 设QD =x ,则12DQC S x ∆=,由(Ⅱ)得CD =OB =2, 在Rt △POC 中, 222,PC OC OP =+=所以PC =CD =DP , 233(2),42PCD S ∆==由V p-DQC =V Q-PCD ,得2,所以存在点Q 满足题意,此时13AQ QD =. 解法二:(Ⅰ)同解法一.(Ⅱ)以O 为坐标原点,OC OD OP 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O-xyz ,依题意,易得A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0), P (0,0,1),所以110111CDPB ---=(,,),=(,,). 所以异面直线PB 与CD 所成的角是arccos63, (Ⅲ)假设存在点Q ,使得它到平面PCD 的距离为32, 由(Ⅱ)知(1,0,1),(1,1,0).CP CD =-=- 设平面PCD 的法向量为n =(x 0,y 0,z 0).则0,0,n CP n CD ⎧=⎪⎨=⎪⎩所以00000,0,x z x y -+=⎧⎨-+=⎩即000x y z ==,取x 0=1,得平面PCD 的一个法向量为n =(1,1,1). 设(0,,0)(11),(1,,0),Q y y CQ y -≤≤=-由32CQ n n=,得13,23y -+=解y =-12或y =52(舍去), 此时13,22AQ QD ==,所以存在点Q 满足题意,此时13AQ QD =.题和解决问题的能力.满分12分.(Ⅰ)证明:因为321()2,3f x x x =+-所以f ′(x )=x 2+2x , 由点211(,2)(N )n n n a a a n +++-∈在函数y =f ′(x )的图象上, 又0(N ),n a n +>∈所以11()(2)0,n n n n a a a a -+---=所以2(1)32=22n n n S n n n -=+⨯+,又因为f ′(n )=n 2+2n ,所以()n S f n '=, 故点(,)n n S 也在函数y=f ′(x )的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+, 由()0,f x '=得02x x ==-或.当x 变化时,()f x '﹑()f x 的变化情况如下表: 注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值; ②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.(20)本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题/解愉问题的能力.满分12分. 解:设“科目A 第一次考试合格”为事件A ,“科目A 补考合格”为事件A 2;“科目B 第一次考试合格”为事件B ,“科目B 补考合格”为事件B .(Ⅰ)不需要补考就获得证书的事件为A 1·B 1,注意到A 1与B 1相互独立,则1111211()()()323P A B P A P B =⨯=⨯=. 答:该考生不需要补考就获得证书的概率为13. (Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得1112(2)()()P P A B P A A ξ==+2111114.3233399=⨯+⨯=+= x (-∞,-2)-2 (-2,0) 0 (0,+∞) f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗112112122(3)()()()P P A B B P A B B P A A B ξ==++2112111211114,3223223326693=⨯⨯+⨯⨯+⨯⨯=++= 12221212(4)()()P P A A B B P A A B B ξ==+12111211111,3322332218189=⨯⨯⨯+⨯⨯⨯=+= 故4418234.9993E ξ=⨯+⨯+⨯=答:该考生参加考试次数的数学期望为83.(21)本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.解法一:(Ⅰ)设M ,N 为短轴的两个三等分点,因为△MNF 为正三角形, 所以32OF MN =, 即1=32, 3.23bb 解得= 2214,a b =+=因此,椭圆方程为221.43x y += (Ⅱ)设1122(,),(,).A x y B x y (ⅰ)当直线 AB 与x 轴重合时,2222222222,4(1),.OA OB a AB a a OA OB AB +==>+<因此,恒有(ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:22221,1,x y x my a b=++=代入整理得22222222()20,a b m y b my b a b +++-=所以222212122222222,b m b a b y y y y a b m a b m-+==++ 因为恒有222OA OB AB +<,所以∠AOB 恒为钝角. 即11221212(,)(,)0OA OB x y x y x x y y ==+<恒成立.22222222222222222222222(1)()210.m b a b b m a b m a b m m a b b a b a a b m +-=-+++-+-+=<+又a 2+b 2m 2>0,所以-m 2a 2b 2+b 2-a 2b 2+a 2<0对m ∈R 恒成立,即a 2b 2m 2> a 2 -a 2b 2+b 2对m ∈R 恒成立.当m ∈R 时,a 2b 2m 2最小值为0,所以a 2- a 2b 2+b 2<0. a 2<a 2b 2- b 2, a 2<( a 2-1)b 2= b 4,因为a >0,b >0,所以a <b 2,即a 2-a -1>0, 解得a 15+或a 15-(舍去),即a 15+, 综合(i )(ii),a 的取值范围为(152+,+∞). 解法二:(Ⅰ)同解法一, (Ⅱ)解:(i )当直线l 垂直于x 轴时,x =1代入22222221(1)1,A y b a y a b a -+===1.因为恒有|OA |2+|OB |2<|AB |2,2(1+y A 2)<4 y A 2,y A 2>1,即21a a->1,解得a 15+或a 15-(舍去),即a 15+. (ii )当直线l 不垂直于x 轴时,设A (x 1,y 1), B (x 2,y 2).设直线AB 的方程为y =k (x -1)代入22221,x y a b+=得(b 2+a 2k 2)x 2-2a 2k 2x + a 2k 2- a 2b 2=0,故x 1+x 2=222222222222222,.a k a k a b x x b a k b a k -=++因为恒有|OA |2+|OB |2<|AB |2, 所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 2=(1+k 2)2222222222222222222222222()a k a b a k a a b b k a b k k b a k b a k b a k--+--+=+++. 由题意得(a 2- a 2 b 2+b 2)k 2- a 2 b 2<0对k ∈R 恒成立.②当a 2- a 2b 2+b 2=0时,a =152+; ③当a 2- a 2b 2+b 2<0时,a 2- a 2(a 2-1)+ (a 2-1)<0,a 4- 3a 2+1>0, 解得a 235+a 235-,a >152,因此a ≥152+. 综合(i )(ii ),a 的取值范围为(152+,+∞). (22)本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分. 解法一:(I )因为f(x)=ln(1+x )-x ,所以函数定义域为(-1,+∞),且f 〃(x)=11x +-1=1x x-+. 由f 〃(x )>0得-1<x <0,f (x )的单调递增区间为(-1,0); 由f 〃(x )<0得x >0,f (x )的单调递增区间为(0,+∞). (II)因为f (x )在[0,n]上是减函数,所以b n =f (n )=ln(1+n )-n , 则a n =ln(1+n )-b n =ln(1+n )-ln(1+n )+n =n . (i)222(2(2)22n n n a a a n n n n n n++=++=+++221.22n n n +=+++又2(2)12112x n n n n ++==+-+,因此c <1,即实数c 的取值范围是(-∞,1). (II )由(i 212 1.21n n n <+-+因为[135(21)246(2)n n ⋅⋅⋅⋅-⋅⋅⋅⋅⋅]2=3222133557(21)(21)11,246(2)2121n n n n n ⋅⋅⋅-+=⋅⋅⋅⋅⋅++< 所以135(21)246(2)21n n n -+<2121n n -(n ∈N *),则113135(21)224246(2)n n -+++<1313211222423153212121 1.n nna n n a a a a a a a a a a a a -++-=++++即<211(n a n +∈N *)解法二:(Ⅰ)同解法一.(Ⅱ)因为f (x )在[]0,n 上是减函数,所以()ln(1),n b f n n n ==+- 则ln(1)ln(1)ln(1).n n a n b n n n n =+-=+-++= (i 22n n n a a a ++-n ∈N*恒成立.22n n n +-+n ∈N*恒成立.则222cn n n +-+n ∈N*恒成立.设2()22,g n n n n =++ n ∈N*,则c <g (n )对n ∈N*恒成立. 考虑[)2()22,1,.g x x x x x =++∈+∞因为122211()1(2)?(22)11212x g x x x x x x x-+=-++=-++′=0, 所以[)()1,g x +∞在内是减函数;则当n ∈N*时,g (n )随n 的增大而减小,又因为2242lim ()lim(22)limlim222211x x x x ng n n n n n n nn n→∞→∞→∞→∞+=+-+==++++++ 1.所以对一切*N ,() 1.n g n ∈>因此c ≤1,即实数c 的取值范围是(-∞,1]. (ⅱ) 由(ⅰ)212 1.21n n n <+-+ 下面用数学归纳法证明不等式135(21)N ).246(2)21n n n n +-<∈+①当n =1时,左边=123,左边<右边.不等式成立. ②假设当n=k 时,不等式成立.即135(21)k -<当n=k +1时,32122321222122212121)22(2642)12(12531++++=++=++++⋯+⋯••••••k k k k k k k k k k k k k <)()-(=,1)1(2132132148243824++=++++++•k k k k k k k <即n =k +1时,不等式成立综合①、②得,不等式*)N (121)2(642)12(531∈+⋯-⋯••••••••n n n n <成立.所以1212)2(642)12(531--+⋯-⋯••••••••n n n n <)2(642)12(531423121n n ••••••••••⋯-⋯⋯+++.112123513-+=-⋯n n +=-+-< 即*)N (1212421231423121∈-⋯⋯⋯+++-n a a a a a a a a a a a a a n nn <+.08福建高考数学试卷(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56(4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.22 B.2 C.2 D.1(7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 A.-sin x B.sin x C.-cos x D.cos x (8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 23ac ,则角B 的值为A.6π B.3π C.6π或56π D.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f (x )的图象如右图,那么导函数y=f (x )的图象可能是(12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 2的系数是 .(用数字作答) (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (15)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、ab∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域.(18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.(19)(本小题满分12分) 如图,在四棱锥P —ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD 2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离.(20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11,n n a a +)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1.(21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称. (Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值.(22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N , 直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.【数学试题(文史类)参考答案】一、选择题:本大题考查基本概念和基本运算.每小题5分,满分60分. (1)A (2)C (3)C (4)B (5)C (6)D (7)A (8)A (9)A (10)D (11)A (12)B 二、填空题:本大题考查基础知识和基本运算,每小题4分,满分16分. (13)84(14)(,0)(10,)-∞⋃+∞ (15)9π (16)①④三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17)本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力,满分12分. 解:(Ⅰ)由题意得 m ·n =sin A -2cos A =0,因为cos A ≠0,所以tan A =2. (Ⅱ)由(Ⅰ)知tan A =2得2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x x x =+=-+=--+因为x ∈R,所以[]sin 1,1x ∈-. 当1sin 2x =时,f (x )有最大值32, 当sin x =-1时,f (x )有最小值-3, 所以所求函数f (x )的值域是33,.2⎡⎤-⎢⎥⎣⎦(18)本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题、解决问题的能力.满分12分. 解:记“第i 个人破译出密码”为事件A 1(i =1,2,3),依题意有123111(),(),(),54.3P A P A P A ===且A 1,A 2,A 3相互独立.(Ⅰ)设“恰好二人破译出密码”为事件B ,则有B =A 1·A 2·3A ·A 1·2A ·A 3+1A ·A 2·A 3且A 1·A 2·3A ,A 1·2A ·A 3,1A ·A 2·A 3彼此互斥于是P (B )=P (A 1·A 2·3A )+P (A 1·2A ·A 3)+P (1A ·A 2·A 3)=314154314351324151⨯⨯+⨯⨯+⨯⨯ =203.答:恰好二人破译出密码的概率为203.(Ⅱ)设“密码被破译”为事件C ,“密码未被破译”为事件D .D =1A ·2A ·3A ,且1A ,2A ,3A 互相独立,则有 P (D )=P (1A )·P (2A )·P (3A )=324354⨯⨯=52.而P (C )=1-P (D )=53,故P (C )>P (D ). 答:密码被破译的概率比密码未被破译的概率大.(19)本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力,逻辑思维能力和运算能力.满分12分. 解法一:(Ⅰ)证明:在△PAD 卡中PA =PD ,O 为AD 中点,所以PO ⊥AD . 又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD.(Ⅱ)连结BO ,在直角梯形ABCD 中,BC ∥AD ,AD =2AB =2BC , 有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC.由(Ⅰ)知PO ⊥OB ,∠PBO 为锐角,所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB =2, 在Rt △POA 中,因为AP =2,AO =1,所以OP =1, 在Rt △PBO 中,PB =322=+OB OP , cos ∠PBO =3632==PB OB , 所以异面直线PB 与CD 所成的角的余弦值为36. (Ⅲ)由(Ⅱ)得CD =OB =2, 在Rt △POC 中,PC =222=+OP OC ,所以PC =CD =DP ,S △PCD =43·2=23. 又S △=,121=•AB AD 设点A 到平面PCD 的距离h , 由V P-ACD =V A-PCD , 得31S △ACD ·OP =31S △PCD ·h , 即31×1×1=31×23×h ,解得h =332.(Ⅱ)以O 为坐标原点,OP OD OC 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz . 则A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1). 所以CD =(-1,1,0),PB =(t ,-1,-1), ∞〈PB 、CD 〉362311-•--==CDPB CD PB , 所以异面直线PB 与CD 所成的角的余弦值为36, (Ⅲ)设平面PCD 的法向量为n =(x 0,y 0,x 0), 由(Ⅱ)知CP =(-1,0,1),CD =(-1,1,0), 则 n ·CP =0,所以 -x 0+ x 0=0,n ·CD =0, -x 0+ y 0=0,即x 0=y 0=x 0,取x 0=1,得平面的一个法向量为n =(1,1,1). 又AC =(1,1,0).从而点A 到平面PCD 的距离d .33232==•nnAC (20)本小题主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.满分12分. 解法一:(Ⅰ)由已知得a n +1=a n +1、即a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,公差为1的等差数列. 故a n =1+(a -1)×1=n.(Ⅱ)由(Ⅰ)知:a n =n 从而b n +1-b n =2n. b n =(b n -b n -1)+(b n -1-b n -2)+···+(b 2-b 1)+b 1=2n -1+2n -2+···+2+1=2121--n =2n -1. 因为b n ·b n +2-b 21+n =(2n -1)(2n +2-1)-(2n -1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2-2n +1-1)=-5·2n +4·2n=-2n<0,所以b n ·b n +2<b 21+n ,(Ⅱ)因为b 2=1,b n ·b n +2- b 21+n =(b n +1-2n )(b n +1+2n +1)- b 21+n=2n +1·b n -1-2n ·b n +1-2n ·2n +1=2n (b n +1-2n +1) =2n (b n +2n -2n +1) =2n (b n -2n) = (2)(b 1-2)=-2n〈0, 所以b n -b n +2<b 2n +1(21)本小题主要考察函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分. 解:(1)由函数f (x )图象过点(-1,-6),得m -n =-3, ……①由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n ,则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n ; 而g (x )图象关于y 轴对称,所以-3262⨯+m =0,所以m =-3, 代入①得n =0.于是f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )>得x>2或x <0,故f (x )的单调递增区间是(-∞,0),(2,+∞); 由f ′(x )<0得0<x <2,故f (x )的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f ′(x )=3x (x -2), 令f ′(x )=0得x =0或x=2.当变化时,()、()的变化情况如下表:X(-∞.0) 0 (0,2) 2 (2,+ ∞) f ′(x ) + 0 - 0 + f (x )极大值极小值由此可得:当0<a <1时,f (x )在(a -1,a +1)内有极大值f (O )=-2,无极小值; 当a =1时,f (x )在(a -1,a +1)内无极值;当1<a <3时,f (x )在(a -1,a +1)内有极小值f (2)=-6,无极大值; 当a ≥3时,f (x )在(a -1,a +1)内无极值.综上得:当0<a <1时,f (x )有极大值-2,无极小值,当1<a <3时,f (x )有极小值-6,无极大值;当a=1或a ≥3时,f (x )无极值.(22)本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力,满分14分, 解法一:(Ⅰ)由题设a =2,c =1,从而b 2=a 2-c 2=3,所以椭圆C 前方程为122=+y x .(Ⅱ)(i)由题意得F (1,0),N (4,0).设A (m,n ),则B (m ,-n )(n ≠0),3422n m +=1. ……① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, n (x -4)-(m -4)y =0.设M (x 0,y 0),则有 n (x 0-1)-(m -1)y 0=0, ……②n (x 0-4)+(m -4)y 0=0, ……③由②,③得x 0=523,52850-=--m ny m m .所以点M 恒在椭圆G 上.(ⅱ)设AM 的方程为x =xy +1,代入3422y x +=1得(3t 2+4)y 2+6ty -9=0.设A (x 1,y 1),M (x 2,y 2),则有:y 1+y 2=.439,4362212+-=+-t y y x x |y 1-y 2|=.4333·344)(2221221++=-+t t y y y y 令3t 2+4=λ(λ≥4),则 |y 1-y 2|=,+)--(=+)-(=- 412113411341·3432λλλλλ 因为λ≥4,0<时,,=,即=所以当04411,41≤1=t λλλ |y 1-y 2|有最大值3,此时AM 过点F . △AMN 的面积S △AMN=.292323y ·212121有最大值y y y y y FN -=-=- 解法二:(Ⅰ)问解法一: (Ⅱ)(ⅰ)由题意得F (1,0),N (4,0).设A (m ,n ),则B (m ,-n )(n ≠0), .13422=+n m ……① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, ……②n (x -4)-(m -4)y =0, ……③由②,③得:当≠523,528525-=--=x yn x x m 时,. ……④ 1)52(4936)85()52(412)85()52(3)52(4)85()52(3)52(4)85(34222222222222222020=--+-=-+-=-+--=-+--=+m m m m n m m n m m m n m m y x 由于由④代入①,得3422y x +=1(y ≠0). 当x=52时,由②,③得:3(1)023(4)0,2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩解得0,0,n y =⎧⎨=⎩与a ≠0矛盾. 所以点M 的轨迹方程为221(0),43x x y +=≠即点M 恒在锥圆C 上. (Ⅱ)同解法一.2009年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)一、选择题:本小题共10小题,每小题5分,共50分。

2008年高考文科数学试卷及答案-全国2

2008年高考文科数学试卷及答案-全国2

E
D
C
A
B
(Ⅰ)若 x 2 是函数 y f (x) 的极值点,求 a 的值;
(Ⅱ)若函数 g(x) f (x) f (x),x [0,2] ,在 x 0 处取得最大值,求 a 的取值范围.
22.(本小题满分 12 分)
第 4 页 共 10 页
关注“福州学大教育”第一时间获取独家资料!
设椭圆中心在坐标原点, A(2,0),B(0,1) 是它的两个顶点,直线 y kx(k 0) 与 AB 相交
A 表示在一轮比赛中甲击中的环数多于乙击中的环数, B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数, C1,C2 分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.
(Ⅰ) A A1 B1 A2 B1 A2 B2 , ··························································2 分
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦
干净后,再选涂其它答案标号.不能答在试题卷上.
3.本卷共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合
题目要求的.
参考公式:
如果事件 A,B 互斥,那么
球的表面积公式
P(A B) P(A) P(B)
当 d 1时, a1 a4 3d 10 31 7 ,
于是 S20
20a1
2019 d 2
207 190 330 .·············································12 分
19.解:
记 A1,A2 分别表示甲击中 9 环,10 环,

2008年高考数学试卷(福建.文)含详解

2008年高考数学试卷(福建.文)含详解

数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56 (4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.223 B.23 C.24 D.13(7)函数y =cos x (x ∈R)的图象向左平移2个单位后,得到函数y=g(x )的图象,则g(x )的解析式为A.-sin xB.sin xC.-cos xD.cos x(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 3,则角B 的值为A.6πB.3πC.6π或56πD.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x、y满足10,0,2,x yxx-+≤⎧⎪⎨⎪≤⎩则yx的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f(x)的图象如右图,那么导函数y=f(x)的图象可能是(12)双曲线22221x ya b-=(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PE2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(13)(x+1x)9展开式中x2的系数是.(用数字作答)(14)若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是 . (153,则其外接球的表面积是.(16)设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、ab∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD 2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. (20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11,n n a a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. (22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N , 直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为B.23D.13解:连11A C ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.112AB BC AC AC ==⇒==11AA = 1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x 解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若222a cb +-=,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π解:由222a +c -b得222(a +c -b )2ac即cos =2B ,6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)AA解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。

高中数学2008年普通高等学校招生全国统一考试(福建卷)(文科)试题

高中数学2008年普通高等学校招生全国统一考试(福建卷)(文科)试题

高中数学2008年普通高等学校招生全国统一考试(福建卷)(文科) 试题 2019.091,已知函数321()23f x x x =+-.(Ⅰ)设}{n a 是正数组成的数列,前n 项和为n S ,其中13a =.若点211(,2)n n n a a a ++-(n ∈N*)在函数'()y f x =的图象上,求证:点(,)n n S 也在'()y f x =的图象上;(Ⅱ)求函数()f x 在区间(1,)a a -内的极值.2,某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。

现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ.3,如图、椭圆22221(0)x y a b a b +=>>的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,值有222OA OB AB+<,求a 的取值范围.4,已知函数()ln(1)f x x x =+- (Ⅰ)求()f x 的单调区间;(Ⅱ)记()f x 在区间[]0,n (n ∈N*)上的最小值为n b 令ln(1)n n a n b =+-①如果对一切n ,<恒成立,求实数c 的取值范围;②求证:13132******** 1.n n a a a a a a a a a a a a -+++<5,若集合A={x|x 2-x <0},B={x|0<x <3},则A ∩B 等于 A.{x|0<x <1}B.{x|0<x <3}C.{x|1<x <3}D.∅6,“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7,设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.568,函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-29,某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是A.12125B.16125C.48125 D.9612510,如图,在长方体ABCD-A 1B 1C 1D 1中, AB=BC=2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3B.23C.4D.1311,函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x12,在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若222a cb +-=,则角B 的值为A.6πB.3πC.6π或56πD.3π或23π13,某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.4814,若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则yx 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) 15,如果函数y=f(x)的图象如右图,那么导函数y=f(x)的图象可能是16,双曲线22221x y a b -=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为 A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞17,(x+1x )9展开式中x 2的系数是 .(用数字作答)18,若直线340x y m ++==0与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是 .19,面积是 .20,设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、ab ∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题:①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M,则M 必为数域; ④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)试题答案1, 解:(Ⅰ)证明:因为321()2,3f x x x =+-所以'2()2f x x x =+,由点211(,2)(N )n n n a a a n +++-∈在函数'()y f x =的图象上,221122n n n n a a a a ++-=+ 111()()2()n n n n n n a a a a a a ++++-=+,又0(N ),n a n +>∈所以12n n a a +-=,}{n a 是13,2a d ==的等差数列 所以2(1)32=22n n n S n n n -=+⨯+,又因为'2()2f n n n =+,所以()n S f n '=, 故点(,)n n S 也在函数'()y f x =的图象上. (Ⅱ)解:2()2(2)f x x x x x '=+=+,令()0,f x '=得02x x ==-或. 当x 变化时,()f x '﹑()f x 的变化情况如下表:注意到(1)12a a --=<,从而 ①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值;②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.2, 解:设“科目A 第一次考试合格”为事件1A ,“科目A 补考合格”为事件2A ;“科目B 第一次考试合格”为事件1B ,“科目B 补考合格”为事件2B (Ⅰ)不需要补考就获得证书的事件为11A B ,注意到1A 与1B 相互独立,则1111211()()()323P A B P A P B =⨯=⨯=. 答:该考生不需要补考就获得证书的概率为13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得1112(2)()()P P A B P A A ξ==+ 2111114.3233399=⨯+⨯=+=112112122(3)()()()P P A B B P A B B P A A B ξ==++ 2112111211114,3223223326693=⨯⨯+⨯⨯+⨯⨯=++= 12221212(4)()()P P A A B B P A A B B ξ==+ 12111211111,3322332218189=⨯⨯⨯+⨯⨯⨯=+=故4418234.9993E ξ=⨯+⨯+⨯= 答:该考生参加考试次数的数学期望为83.3, 解:(Ⅰ)设M ,N 为短轴的两个三等分点, 因为△MNF 为正三角形,所以OF =,21,3b b =解得2214,a b =+=因此,椭圆方程为221.43x y +=(Ⅱ) 设1122(,),(,).A x y B x y(ⅰ)当直线 AB 与x 轴重合时,2222222222,4(1),.OA OB a AB a a OA OB AB +==>+<因此,恒有(ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:22221,1,x y x my a b =++=代入整理得22222222()20,a b m y b my b a b +++-= 所以222212122222222,b m b a b y y y y a b m a b m -+=-=++ 因为恒有222OA OB AB+<,所以∠AOB 恒为钝角.即11221212(,)(,)0OA OB x y x y x x y y ==+<恒成立.2121212121212(1)(1)(1)()1x x y y my my y y m y y m y y +=+++=++++2222222222222222222222(1)()210.m b a b b ma b m a b m m a b b a b a a b m +-=-+++-+-+=<+又2220a b m +>,所以22222220m a b b a b a -+-+<对m R ∈恒成立, 即2222222m a b a b a b >+-对m R ∈恒成立,当m R ∈时,222m a b 最小值为0,所以22220a b a b +-<, 2224(1)a b a b <-=, 因为220,0,1a b a b a >><=-∵∴,即210a a -->, 解得12a+>或12a <(舍去),即12a >,综合(i )(ii),a 的取值范围为)+∞.4, 解:(I )因为()ln(1)f x x x =+-,所以函数定义域为(1,)-+∞,且'1()111x f x x x -=-=++。

高考试卷 全国普通高校招生统一考试数学(福建卷 文科)(附答案 全字版)

高考试卷 全国普通高校招生统一考试数学(福建卷 文科)(附答案 全字版)

高考试卷全国普通高校招生统一考试数学(福建卷文科)(附答案全字版)自己整理的高考试卷全国普通高校招生统一考试数学(福建卷文科)(附答案全字版)相关文档,希望能对大家有所帮助,谢谢阅读!2008年全国普通高校招生统一考试(文史)(福建卷)卷一(选择题60分)1.选择题:共12个分题,每个分题5分,共60分。

在每个子问题中给出的四个选项中,只有一个符合主题的要求。

(1)如果设置a={x | x2-xB.(0,2)C.(2,)d[2,) (11)如果函数y=f(x)的像如右图所示,那么导函数y=f(x)的像可能是(12)双曲线(a > 0,b > 0)的两个焦点是F1和F2,如果p是它的上点,并且B.(1,3)C.(3, )D.[3,]卷二(非选择题90分)二、填空:这个大题有4个小题,每题4分,共16分,填在答题卡的相应位置。

(13)(x)9展开式中x2的系数为。

(用数字回答)(14)如果直线3x 4y m=0与圆x2 y2-2x 4y 4=0之间没有公共点,则实数m的取值范围为。

(15)如果三棱锥的三个侧边相互垂直,并且侧边的长度都相同,则外切球面的表面积为。

(16)设p为一个数字集,至少包含两个数字。

如果有的话,(1)数字字段必须包含两个数字,0和1;整数集是一个数域;如果有理数集QM,那么数集M一定是数域;(4)数域必须是无限集合。

正确命题的序号是。

(填写你认为正确的命题序号)三、答题:这个大题有6个小题,共74分。

答案应写书面说明,证明过程或计算步骤。

(17)(这个小问题满分12分)向量已知,且(I)求tanA的值;()求函数r)的值域。

(18)(本项满分12分)三个人独立破译同一个密码。

已知三个人破译密码的概率分别为,是否破译密码互不影响。

()找到恰好两个人破译密码的概率;(二)“密码破解”和“密码未破解”的概率是多少?说明理由。

(19)(这个小问题满分12分)如图所示,在金字塔P-ABCD中,侧边PAD是底部ABCD,侧边PA=PD=,底部ABCD是直角梯形,其中BCAD,AB ADAMN面积最大值。

【历年高考经典】2008年文科数学试题及答案-福建卷

【历年高考经典】2008年文科数学试题及答案-福建卷

2008年普通高等学校招生全国统一考试(福建卷)文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|0A x x x =-<,{}|03B x x =<<,则AB 等于( )A.{}|01x x << B.{}|03x x << C.{}|13x x <<D.∅2.a=1”是“直线0x y +=和直线0x ay -=互相垂直”的( )条件A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项和为( )A.128B.80C.64D.564.函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为( )A.3B.0 C.-1D.-25.某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( )A.12125B.16125 C.48125 D.961256.如图,在长方体1111ABCD A BC D -中,2AB BC ==分别为11AA =,则1AC 与平面1111A B C D 所成的角的正弦值为( )A.3B.23C.4D.137.函数cos ()y x x R =∈的图像向左平移2π个单位后,得到函数()y g x =的图像,则()g x 的解析式为( )A.sin x - B.sin xC.cos x -D.cos x8.在△ABC 中,角A,B,C 的对应边分别为a,b,c,若222a cb +-=,则角B 的值为( )A.6πB.3π C.6π或56πD.3π或23π9.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.14 B.24 C.28 D.4810.若实数x,y 满足{02x y x y -+≤>≤,则yx的取值范围是( ) A.(0,2)B.(0,2] C.(2,)+∞D.[2,)+∞11.如果函数()y f x =的图像如右图,那么导函数'()y f x =的图像可能是( )12.双曲线22221(0,0)x y a b a b-=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )A.(1,3)B.(1,3]C.(3,)+∞D.[3,)+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13. 91()x x+展开式中3x 的系数是 (用数字作答)14.若直线340x y m ++=与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是15.,则其外接球的表面积是 16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有,,,aa b a b ab P b+-∈(除数0b ≠),则称P 是一个数域。

2008年高考文科数学(福建)卷试题及其参考答案

2008年高考文科数学(福建)卷试题及其参考答案

2008年福建卷省高考数学(文科)试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|0A x x x =-<,{}|03B x x =<<,则A B 等于A.{}|01x x << B.{}|03x x << C.{}|13x x <<D.∅2.a=1”是“直线0x y +=和直线0x ay -=互相垂直”的A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项和为 A.128B.80C.64 D.564.函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3B.0 C.-1D.-25.某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125B.16125 C.48125D.961256.如图,在长方体1111ABCD A B C D -中,2AB BC ==分别为11AA =,则1AC 与平面1111A B C D 所成的角的正弦值为A.3 B.23D.137.函数cos ()y x x R =∈的图像向左平移2π个单位后,得到函数()y g x =的图像,则()g x的解析式为 A.sin x -B.sin x C.cos x -D.cos x8.在△ABC 中,角A,B,C 的对应边分别为a,b,c,若222a cb +-=,则角B 的值为 A.6π B.3π C.6π或56πD.3π或23π9.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14 B.24 C.28 D.48A.(0,2)B.(0,2] C.(2,)+∞D.[2,)+∞11.如果函数()y f x =的图像如右图,那么导函数'()y f x =的图像可能是12.双曲线22221(0,0)x y a b a b -=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为A.(1,3)B.(1,3]C.(3,)+∞D.[3,)+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. 13. 91()x x+展开式中3x 的系数是 (用数字作答)14.若直线340x y m ++=与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是15.,则其外接球的表面积是 16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有,,,aa b a b ab P b+-∈(除数0b ≠),则称P 是一个数域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3B.23C.4D.13A解:连11A C ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.112AB BC AC AC ==⇒==,又11AA =1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x 解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若222a cb +-=,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π解:由222a +c -b得222(a +c -b )= 2ac即cos =B 6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48 解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) 解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。

(11)如果函数y=f (x )的图象如右图,那么导函数y=f (x )的图象可能是A解:由原函数的单调性可以得到导函数的正负情况依次是正→负→正→负,只有答案A 满足.(12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为 A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞解:如图,设2PF m =,12(0)F PF θθπ∠=<≤,当P 在右顶点处θπ=,22ce a ===∵1cos 1θ-<≤,∴(]1,3e ∈另外也可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线. 也可用焦半径公式确定a 与c 的关系。

第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 2的系数是 .(用数字作答) 解:992991rr rr r C xC x x --⎛⎫= ⎪⎝⎭,令9233r r -==得,3984C ∴= (14)若直线340x y m ++==0与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是 .解:圆心为(1,2)-,要没有公共点,根据圆心到直线的距离大于半径可得1d r =>=,即55m ->,m ∈∞∞ (-,0)(10,+)(15,则其外接球的表面积是 . 解:依题可以构造一个正方体,其体对角线就是外接球的直径.23r == ,249S r ππ==(16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、a b∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题:①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M ,则M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上) 解:①数集P 有两个元素,a b , ,则一定有0,1aa a a-==(设0a ≠),正确; ②整数集不是数域,11,2,2Z Z Z ∈∈∉但是;③令数集M Q = ,则1M④数域有1,一定有1+1=2,1+2=3,推下去必然包含整数集,因而为无限集。

三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域.解:本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力,满分12分. 解:(Ⅰ)由题意得 m ·n =sin A -2cos A =0,因为cos A ≠0,所以tan A =2. (Ⅱ)由(Ⅰ)知tan A =2得2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x x x =+=-+=--+因为x ∈R,所以[]sin 1,1x ∈-. 当1sin 2x =时,f (x )有最大值32, 当sin x =-1时,f (x )有最小值-3, 所以所求函数f (x )的值域是33,.2⎡⎤-⎢⎥⎣⎦(18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. 解:本小题考查概率的基本知识与分类思想,考查运用数学知识分析问题、解决问题的能力..记“第i 个人破译出密码”为事件A 1(i =1,2,3),依题意有123111(),(),(),54.3P A P A P A ===且A 1,A 2,A 3相互独立.(Ⅰ)设“恰好二人破译出密码”为事件B ,则有B =A 1·A 2·3A ·A 1·2A ·A 3+1A ·A 2·A 3且A 1·A 2·3A ,A 1·2A ·A 3,1A ·A 2·A 3 彼此互斥于是P (B )=P (A 1·A 2·3A )+P (A 1·2A ·A 3)+P (1A ·A 2·A 3)=314154314351324151⨯⨯+⨯⨯+⨯⨯ =203.答:恰好二人破译出密码的概率为203.(Ⅱ)设“密码被破译”为事件C ,“密码未被破译”为事件D . D =1A ·2A ·3A ,且1A ,2A ,3A 互相独立,则有 P (D )=P (1A )·P (2A )·P (3A )=324354⨯⨯=52. 而P (C )=1-P (D )=53,故P (C )>P (D ). 答:密码被破译的概率比密码未被破译的概率大.(19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. 解:本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力,逻辑思维能力和运算能力.. 解法一:(Ⅰ)证明:在△P AD 卡中P A =PD ,O 为AD 中点,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD.(Ⅱ)连结BO ,在直角梯形ABCD 中,BC ∥AD ,AD =2AB =2BC , 有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC.由(Ⅰ)知PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB =2, 在Rt △POA 中,因为AP =2,AO =1,所以OP =1,在Rt △PBO 中,PB =322=+OB OP ,cos ∠PBO =3632==PBOB, 所以异面直线PB 与CD 所成的角的余弦值为36. (Ⅲ)由(Ⅱ)得CD =OB =2, 在Rt △POC 中,PC =222=+OP OC ,所以PC =CD =DP ,S △PCD =43·2=23. 又S △=,121=∙AB AD 设点A 到平面PCD 的距离h , 由V P-ACD =V A-PCD , 得31S △ACD ·OP =31S △PCD ·h , 即31×1×1=31×23×h ,解得h =332. 解法二:(Ⅰ)同解法一,(Ⅱ)以O 为坐标原点,OP OD OC 、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz .则A (0,-1,0),B (1,-1,0),C (1,0,0), D (0,1,0),P (0,0,1).所以(1,1,0)CD =- (1,1,1)PB =--,cos ,PB CD PB CD PB CD∙<>=所以异面直线PB 与CD 所成的角的余弦值为36, (Ⅲ)设平面PCD 的法向量为n =(x 0,y 0,x 0),由(Ⅱ)知=(-1,0,1),=(-1,1,0), 则n ·CP =0,所以 -x 0+ x 0=0,n ·CD =0, -x 0+ y 0=0,即x 0=y 0=x 0,取x 0=1,得平面的一个法向量为n =(1,1,1). 又=(1,1,0).从而点A 到平面PCD 的距离d .33232==(20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11n a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1.解:本小题考查等差数列、等比数列等基本知识,考查转化与化归思想,推理与运算能力.解法一:(Ⅰ)由已知得a n +1=a n +1、即a n +1-a n =1,又a 1=1, 所以数列{a n }是以1为首项,公差为1的等差数列. 故a n =1+(a -1)×1=n.(Ⅱ)由(Ⅰ)知:a n =n 从而b n +1-b n =2n . b n =(b n -b n -1)+(b n -1-b n -2)+···+(b 2-b 1)+b 1 =2n -1+2n -2+···+2+1=2121--n =2n -1. 因为b n ·b n +2-b 21+n =(2n -1)(2n +2-1)-(2n -1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2-2n +1-1) =-5·2n +4·2n =-2n <0,所以b n ·b n +2<b 21+n , 解法二:(Ⅰ)同解法一. (Ⅱ)因为b 2=1,b n ·b n +2- b 21+n =(b n +1-2n )(b n +1+2n +1)- b 21+n =2n +1·b n -1-2n ·b n +1-2n ·2n +1=2n (b n +1-2n +1) =2n (b n +2n -2n +1) =2n (b n -2n ) =…=2n (b 1-2) =-2n 〈0,所以b n -b n +2<b 2n +1(21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. 解:(21)本小题主要考察函数的奇偶性、单调性、极值、导数、不等式等基础知识,考查运用导数研究函数性质的方法,以及分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分. 解:(1)由函数f (x )图象过点(-1,-6),得m -n =-3, ……① 由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n , 则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n ; 而g (x )图象关于y 轴对称,所以-3262⨯+m =0,所以m =-3, 代入①得n =0.于是f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )>得x>2或x <0,故f (x )的单调递增区间是(-∞,0),(2,+∞); 由f ′(x )<0得0<x <2,故f (x )的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f ′(x )=3x (x -2), 令f ′(x )=0得x =0或x=2.由此可得:当0<a <1时,f (x )在(a -1,a +1)内有极大值f (O )=-2,无极小值; 当a =1时,f (x )在(a -1,a +1)内无极值;当1<a <3时,f (x )在(a -1,a +1)内有极小值f (2)=-6,无极大值; 当a ≥3时,f (x )在(a -1,a +1)内无极值.综上得:当0<a <1时,f (x )有极大值-2,无极小值,当1<a <3时,f (x )有极小值-6,无极大值;当a=1或a ≥3时,f (x )无极值.(22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.解:)本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力。

相关文档
最新文档