(11)归纳规律结论题(含答案)

合集下载

四年级数学专题讲义第十五讲 规律与归纳

四年级数学专题讲义第十五讲 规律与归纳

第十五讲规律与归纳无论是在奥数的学习中,还是在日常生活中,我们都会发现很多很多规律,它可以帮助我们更好的认识问题.特别是在奥数学习中,一些数列、数阵的排列,图形周长、面积的变化、庞大数字的计算等等都有一定的规律.只有经过观察、思考和试算,发现数与数、图形与图形相互之间的关系,才能得到题目的答案. 同学们,通过学习,希望你在平时多积累,多归纳,善于发现、总结一些规律,因为学会发现往往比学会几道题目重要得多.〖经典例题〗例1、流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次是5红、4黄、3绿、2黑、1白……如此继续涂下去,到第1993个小球该涂什么颜色?在前1993个小球中,涂黑色的小球有多少个?分析:根据题意,小木球涂色的次序是:“5红、4黄、3绿、2黑、1白”,也就是每涂过“5红、4黄、3绿、2黑、1白”循环一次.这里,给小木球涂色的周期是:5+4+3+2+1=15.1993÷15=132……13,第1993个小球出现在上面所列一个周期中第13个,所以第1993个小球是涂黑色。

每个周期黑球共有2个,则一共有2×132+1=265(个).例2、右图的图案表示一个花圃的设计方案,汉字表示每盆花的颜色,请问第7行第5盆花的颜色?第20行第5盆花的颜色? (从左往右计数)分析:从上往下,从左至右,排列周期是:红、蓝、白、黄;第7行第5盆花的颜色:1+2+3+4+5+6+5=26(盆),26÷4=6……2,所以是蓝色;第20行第5盆花的颜色:1+2+……+19+5=195,195÷4=48……3,所以是白色的.例3、在下图所示的表中,将每列上、下两个字组成一组,例如第一组为(共社),第二组为(产会).那么,第340组是什么?分析:因为“共产党好”有4个字,“社会主义好”有5个字,4与5的最小的公共倍数是20,所以再连续写完5个“共产党好”与4个“社会主义好”之和,将重头写起,出现周期循环,而且每个周期是20组数.而340÷20=17,所以第340组正好写完第17个周期,第340组是(好,好).〖巩固练习〗练习1:1991年1月1日是星期二,(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?分析:(1)一个星期是7天,因此,7天为一个循环,这类题在计算天数时,可以采用“算尾不算头”的方法。

数字规律

数字规律

专题:有关找规律问题近年来,在新课标理念的指导下,参照课程标准的培养目标,各地中考命题在理念上发生了许多变化,以创新精神和实践能力为重点,相继推出了许多题意新颖、构思巧妙、具有相当深度和明确导向的题型,使中考试卷充满了活力,不再像以前那样枯燥乏味。

探索规律型试题体现了数学中的归纳、猜想的思维方法和转化的数学思想.根据给定的信息,结合自已掌握的知识,做出一种可能存在的规律性的结论推断,这就是归纳、猜想的过程.解决这类问题的思路是从简单的、局部的、特殊的情形出发,经过提炼、归纳、猜想,寻找一般规律,其方法与步骤是:(1)认真观察、分析几个特殊情形,寻找规律,加以归纳;(2)大胆猜想出一般性的结论;(3)合理验证结论的正确性。

探索规律问题几乎是各地中考试题中必考题型之一,它比较系统的考查学生的逻辑推理能力,归纳猜想能力,以及运用所学知识和方法分析、解决数学问题的能力。

规律探索问题由于具备题目的视角比较新颖、综合性较强、结构较独特等特点,解决此类问题有一定的难度。

因此更好地解决规律探索型问题已成为众多学生的学习目标。

下面就近几年北京市各城区模拟试题及中考试题的规律探索型问题,谈谈其基本的呈现形式和解决方法。

第一类:数字规律一、a n n a与例题:(10西城二模)一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n个整数为____ (n为正整数)。

解析:根据所给的具体数值发现规律,3251+=,3272+=,32113+=,32194+=即第几个数即为2的几次方加上3.解答:解:∵3251+=,3272+=,32113+=,32194+=∴第6个整数是67326=+,第n 个整数是32+n (n 为正整数).点评:此类题能够根据所给的具体数值发现共同特征,运用代数式表示这一特征. 练习:1、(10怀柔二模)按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .答案:1125,122+n n2、(09东城一模)按一定规律排列的一列数依次为:21,31,101,151,261,351…,按此规律排列下去,这列数中的第9个数是________. 答案:12)1(1+-+n n二、有限项的规律例题:(10通州一模)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )照这样下去,第8年老芽数与总芽数的比值为 .解析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a ,新芽数是13a ,总芽数是34a ,则比值为3421. 解答:解:第8年的老芽数是21a ,新芽数是13a ,总芽数是34a ,则比值为3421. 点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和. 练习:1、(08石景山一模)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数从小到大的顺序排列为:1,1,2,3,5,8……,则这列数的第8个数是 . 答案:212、(09房山二模)填在下面三个田字格内的数有相同的规律,根据此规律,请填出图4中的数字. 答案:7,9,11,176三、正负相间问题(n )1(-与1)1(+-n )例题:(09通州二模)12. 观察并分析下列数据,寻找规律: 0,3,-6,3,-23,15,-32,……那么第10个数据是 ;第n 个数据是 .解析:观察分析可得:各个式子正负相间,且第n 个式子的被开方数为(3n-3).那么第10个数据是33,第n 个数据是33)1(1--+n n .解答:解:∵各个式子正负相间,且第n 个式子的被开方数为(3n-3)∴第10个数据是33 ,第n 个数据是33)1(1--+n n .点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是寻得数据规律为各个式子正负相间,且第n 个式子的被开方数为(3n-3)。

初一找规律经典题型(含部分答案)

初一找规律经典题型(含部分答案)

精心整理图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。

通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。

初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:n 个n 位的例:4=6n -2例1(1(2例2共有(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n 位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n 位的增幅;2、求出第1位到第第n 位的总增幅;3、数列的第1位数加上总增幅即是第n 位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

例1.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。

妙题赏析:规律类的中考试题,无论在素材的选取、文字的表述、题型的设计等方面都别具一格,令人耳目一新,其目的是继续考察学生的创新意识与实践能力,在往年“数字类”、“计算类”、“图形类”的基础上,今年又推陈出新,增加了“设计类”与“动态类”两种新题型,现将历年来中考规律类中考试题分析如下:1、设计类【例1】(2005年大连市中考题)在数学活动中,小明为了求的值(结果用n表示),设计如图a所示的图形。

(1)请你利用这个几何图形求的值为。

(2)请你利用图b,再设计一个能求的值的几何图形。

【例2】(2005年河北省中考题)观察下面的图形(每一个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式。

专题06 规律问题(解析版)

专题06  规律问题(解析版)

专题06 规律问题 2021届中考数学压轴大题专项训练(解析版)1.某种球形病毒的直径约是0.01纳米,一个该种病毒每经过一分钟就能繁殖出9个与自己完全相同的病毒,假如这种病毒在人体内聚集到一定数量,按这样的数量排列成一串,长度达到1分米时,人体就会感到不适.(1米9=10纳米)(1)从感染到第一个病毒开始,经过5分钟,人体内改种病毒的总长度是多少纳米?(2)从感染到第一个病毒开始,经过多少分钟,人体会感到不适?【答案】(1)从感染到第一个病毒开始,经过5分钟,人体内改种病毒的总长度是1000纳米;(2)从感染到第一个病毒开始,经过10分钟,人体会感到不适.【解析】解:(1)由题意可知:经过5分钟,人体内改种病毒的总长度是0.01×1×105=1000(纳米) 答:从感染到第一个病毒开始,经过5分钟,人体内改种病毒的总长度是1000纳米; (2)1分米=110米8=10纳米 而810÷(0.01×1)=1010∴从感染到第一个病毒开始,经过10分钟,人体会感到不适答:从感染到第一个病毒开始,经过10分钟,人体会感到不适.2.你会求()()20182017201621?··1a a a a a a -++++++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-()()23111a a a a -++=-()()324111a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到()()201920182017211a a a a a a -+++⋅⋅⋅+++=_____;(2)利用上面的结论求2019201820172222221++++++的值. (3)求201920182017255554+++⋅⋅⋅++的值【答案】(1)20201a -;(2)202021-;(3)()20201594-. 【解析】(1)由题可以得到()()12211n n n a a a a a a ---++++++11n a +=-()()20192018211a a a a a ∴-+++++20201a =-(2)由结论得:2019201820172222221++++++()()2019201822122221=-⋅+++++ 202021=-(3)201920182017255554+++++()()2019201820172515555+5+1-24-+++=()202015124=-- ()20201594=- 3.计算|1﹣12|+|12﹣13|+|13﹣14|+…+|199﹣1100|. 【答案】99100【解析】解:111111112233499100-+-+-++-111111=1223499100-+--++- 1=1100- 99=100. 4.观察下列等式:第1个等式:11111212a ==-⨯;第2个等式:21112323a ==-⨯; 第3个等式:31113434a ==-⨯;第4个等式:41114545a ==-⨯; ……解答下列问题:(1)按以上规律写出第5个等式:5a =—————— = ——————.(2)求1232020a a a a ++++的值.(3)求111148812121620162020++++⨯⨯⨯⨯的值. 【答案】(1)156⨯,1156-;(2)20202021;(3)631010. 【解析】解:(1)第1个等式:11111212a ==-⨯; 第2个等式:21112323a ==-⨯; 第3个等式:31113434a ==-⨯; 第4个等式:41114545a ==-⨯;…… 第5个等式:51115656a ==-⨯;故答案为:156⨯;1156-; (2)12320201111111112233420202021a a a a ++++=-+-+-++- 112021=- 20202021=; (3)111148812121620162020++++⨯⨯⨯⨯ 812111111144820162020⎛⎫=⨯-+-++- ⎪⎝⎭111442020⎛⎫=⨯- ⎪⎝⎭150442020=⨯ 631010=. 5.阅读材料:求2342015122222+++++⋯+的值.解:设234201420151222222S =+++++⋯++,将等式的两边同乘以2,得234201520162222222S =++++⋯++将下式减去上式得,2016221S S -=-即201621S =-.即2342015201612222221+++++⋯+=-请你仿照此法计算:(1)填空:231222+++= .(2)求2341012222+++++…+2的值.(3)求234111111()()()()33333n +++++⋯+的值.(其中n 为正整数) 【答案】(1)15;(2)2047;(3)311()223n -⨯. 【解析】解:(1)由题意可得,1+2+22+23=24-1=16-1=15,故答案为:15;(2)由题意可得,2341012222+++++…+2 1121=- 20481=- 2047=;(3)设234111111()()()()33333n S =+++++⋯+, 则23411111111()()()()()3333333n n S +=++++⋯++, 1111()33n S S +∴-=-, 1211()33n S +∴=-, 解得,311()223n S =-⨯, 即234111111()()()()33333n +++++⋯+的值是311()223n -⨯. 6.在日历上,我们可以发现其中某些数满足一定的规律,图是2020年1月份的日历,我们用如图所示的四边形框出五个数.2020年1月:(1)将每个四边形框中最中间位置的数去掉后,将相对的两对数分别相减,再相加,例如:(108)(162)16-+-=,(2119)(2713)16-+-=.不难发现,结果都是16.若设中间位置的数为n ,请用含n 的式子表示发现的规律,并写出验证过程.(2)用同样的四边形框再框出5个数,若其中最小数的2倍与最大数的和为56,求出这5个数中的最大数的值.(3)小明说:我用同样的四边形框也框出了5个数,其中最小数与最大数的积是120.请判断他的说法是否正确,并说明理由.【答案】(1)(1)(1)(7)(7)16n n n n +--++--=,见解析;(2)28;(3)正确,见解析【解析】(1)设中间位置的数为n ,左边数为1n -,右边数1n +,上面数7n -,下面数为7n +, 则(1)(1)(7)(7)16n n n n +--++--=(2)2(7)(7)56n n -++=,21n =,21728∴+=.(3)正确(7)(7)120n n -+=,13n ∴=- (舍去)或者13n =,可以存在.7.材料:若一个正整数,它的各个数位上的数字是左右对称的,则称这个正整数是对称数.例如:正整数22是两位对称数;正整数797是三位对称数;正整数4664是四位对称数;正整数12321是五位对称数.根据材料,完成下列问题:(1)最大的两位对称数与最小的三位对称数的和为___________(2)若将任意一个四位对称数拆分为前两位数字顺次表示的两位数和后两位数字顺次表示的两位数,则这两个两位数的差一定能被9整除吗?请说明理由.(3)如果一个四位对称数的个位数字与十位数字的和等于10,并且这个四位对称数能被7整除,请求出满足条件的四位对称数.【答案】(1)200;(2)一定可以,理由见解析;(3)3773【解析】解:(1)最大的两位对称数是99,最小的三位对称数是101,99101200+=,故答案是:200;(2)设个位和千位上的数字是a ,十位和百位上的数字是b ,则这两位数分别是10a b +、10b a +,()101099a b b a a b +-+=-, 它们的差是99a b -,这个数是9的倍数,所以这个数一定可以被9整除;(3)设这个四位数的个位数是x ,则十位数是()10x -,这个数可以表示为()()1010100101000x x x x +-+-+,化简得8911100x +,令1x =,则这个数是1991,令2x =,则这个数是2882,令3x =,则这个数是3773,……令9x =,则这个数是9119,其中只有3773能够被7整除,∴满足条件的四位数是3773.8.用棱长为2cm 的若干小正方体按如所示的规律在地面上搭建若干个几何体.图中每个几何体自上而下分别叫第一层、第二层,,第n 层(n 为正整数)(1)搭建第∴个几何体的小立方体的个数为 .(2)分别求出第∴、∴个几何体的所有露出部分(不含底面)的面积.(3)为了美观,若将几何体的露出部分都涂上油漆(不含底面),已知喷涂21cm 需要油漆0.2克,求喷涂第20个几何体,共需要多少克油漆?【答案】(1)30;(2)第∴个几何体露出部分(不含底面)面积为264cm ,第∴个几何体露出部分(不含底面)面积为2132cm ;(3)992克.【解析】(1)搭建第∴个几何体的小立方体的个数为1,搭建第∴个几何体的小立方体的个数为21412+=+,搭建第∴个几何体的小立方体的个数为22149123++=++,归纳类推得:搭建第∴个几何体的小立方体的个数为22212341491630+++=+++=, 故答案为:30;(2)第∴个几何体的三视图如下:由题意,每个小正方形的面积为2224()cm ⨯=,则第∴个几何体的所有露出部分(不含底面)面积为()232324464()cm ⨯+⨯+⨯=; 第∴个几何体的三视图如下:则第∴个几何体的所有露出部分(不含底面)面积为()2626294132()cm ⨯+⨯+⨯=; (3)第20个几何体从第1层到第20层小立方体的个数依次为221,2,,20,则第20个几何体的所有露出部分(不含底面)面积为()()2221220212202044960()cm ⎡⎤⨯++++⨯++++⨯=⎣⎦, 因此,共需要油漆的克数为49600.2992⨯=(克),答:共需要992克油漆.9. 阅读下列解题过程:=====请回答下列回题:(1)观察上面的解答过程,请写出= ; (2)请你用含n (n 为正整数)的关系式表示上述各式子的变形规律; (3)利用上面的解法,请化简:......【答案】(1)10-(21=-(3)9.【解析】(1===10=-故答案为:10-(21=-(31=- ............=......=1--1+10=9.10.先化简,再求值:(2x+y)2−(2x−y)(2x+y)−5xy,其中x=2019,y=−1.【答案】2021.【解析】原式=4x2+4xy+y2−(4x2−y2)−5xy=4x2+4xy+y2−4x2+y2−5xy,=2y2−xy,当x=2019,y=−1时,原式=2×(−1)2−2019×(−1)=202111.观察下列三行数,回答问题:-1、+3、-5、+7、-9、+11、……-3、+1、-7、+5、-11、+9、……+3、-9、+15、-21、+27、-33、……(1)第∴行第9个数是___________第∴行第9个数是___________第∴行第9个数是___________(2)在第∴行中,是否存在连续的三个数,使其和为83?若存在,求这三个数;若不存在,说明理由.(3)是否存在第m列数(每行取第m个数),这三个数的和正好为-99?若存在,求m;若不存在,说明理由.【答案】(1)-17;-19;51.(2)存在,85,-91,89;(3)第m 列数不存在,理由见解析.【解析】(1)观察到第∴行的规律是()()121n n --,第∴行的规律是将第∴行的数-2,第∴行的规律是()()1163n n +--,因此当n=9时,第∴行的数为-17∴第∴行的数为-17-2=-19,第∴行的数为()17351-⨯-=;(2)设第∴行存在连续的三个数和为83,且第一个数为x ,若0x >,即x 在第∴行中的偶数次列,满足第n 列的数为23n -(其中n 为正偶数),则()()6483x x x +--++=,得85x =,即2385,44n n -==,符合题意,x 在第∴行第44列, 此时,连续的三个数依次为85,-91,89.若0x <,即x 在第∴行中的奇数次列,满足第n 列的数为21n --(其中n 为正奇数),则()()2483x x x +--+-=,得89x =,即2189n --=,45n =-,不符合题意,故舍去,综上所述,存在这样连续的三个数使和为83,依次为85,-91,89.(3)设存在第m 列数使三个数的和为-99,且此列第∴行的数为y ,则第m 列第∴行的数为2y -,第∴行的数为3y ,()2399y y y +-+-=-,得97y ,又第∴行中奇数次列为负,偶数次列为正,()971249+÷=,即97在第∴行第49列,应为负,故假设不成立, 所以,这样的第m 列数不存在.12.回答下列问题:(1)填空:()()a b a b -+=___________________;()()22a b a ab b -++=_____________________;()()3223a b a a b ab b -+++=______________________.(2)猜想:()()1221n n n n a b a a b ab b -----++++=___________________.(其中n 为正整数,且2n ≥); (3)利用(2)猜想的结论计算:∴10987322222222+++++++; ∴10987322222222-+-+-+-.【答案】(1)22a b -;33a b -;44a b -;(2)n n a b -;(3)∴2046;∴682【解析】解:()()22a b a b a b -+=-; ()()22a b a ab b -++322223=++---a a b ab a b ab b()()3223a b a a b ab b -+++4322332234=+++----a a b a b ab a b a b ab b44a b =-;故答案为:22a b -;33a b -;44a b -;(2)根据(1)中的规律,可得猜想:()()1221-----++++=-n n n n n b a b a a b ab b a b (其中n 为正整数,且2n ≥),故答案为:n n a b -; (3)∴10987322222222+++++++1098732222222211=++++++++-10982733728910(21)(22121212121211)1=-+⨯+⨯+⨯++⨯+⨯+⨯+- 11211=--204811=--2046=;∴10987322222222-+-+-+-1098732222222211=-+-+-+-+-109827337289101[2(1)][22(1)2(1)2(1)2(1)2(1)2(1)(1)]13=⨯--+⨯-+⨯-+⨯-++⨯-+⨯-+⨯-+--11111[2(1)]13=⨯--- 1204913=⨯-=.682。

中考数学复习攻略 专题1 规律探索与归纳推理(含答案)

中考数学复习攻略 专题1 规律探索与归纳推理(含答案)

重点专题突破专题一 规律探索与归纳推理中考重难点突破数式规律数式规律类问题通常是先给出一组数或式子,要求通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.常见数列 规律❶2,4,6,8,10,12,… 2n (从2开始的连续偶数) ❷1,3,5,7,9,11,… 2n -1(从1开始的连续奇数)❸1,4,9,16,25,36,… n 2(正整数平方) ❹2,4,8,16,32,64,… 2n (2的整数次幂) ❺-1,1,-1,1,-1,1,…(-1)n (奇负偶正)❻1,-1, 1,-1, 1,-1,… (-1)n +1或(-1)n -1(奇正偶负)【例1】(2021·铜仁中考)观察下列各项:112 ,214 ,318 ,4116 ,…,则第n 项是__n +12n __.【解析】根据已知可得出规律:第一项:112 =1+121 ,第二项:214 =2+122 ,第三项:318 =3+123 ,…,从而可以得出第n 项.本题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键. 【例2】(2020·百色一模)观察下列等式:1-12 =12 ,2-25 =85 ,3-310 =2710 ,4-417 =6417,…,根据你发现的规律,则第20个等式为 __20-20401 =8 000401__ .【解析】根据题意可知,这列等式的左边的被减数是从1开始的连续整数,减数是一个分数,并且分子和被减数相同,分母是被减数的平方加1;右边也是一个分数,分子是被减数的立方,分母和减数的分母相同,由此可写出第20个等式为:20-20202+1 =203202+1 ,最后化简即可.1.按一定规律排列的单项式:a ,-2a ,4a ,-8a ,16a ,-32a ,…,则第n 个单项式是( A )A .(-2)n -1a B .(-2)n aC .2n -1a D .2n a 2.(2020·百色二模)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数:1,1,2,3,5,8,…,则这列数的第8个数是__21__.3.观察下面由※组成的图案和算式,解答问题:1+3=4=22,1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52, ……猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=__(n +2)2__.图形规律图形规律类问题主要涉及图形的组成、分拆等过程,解答此类问题时,要将后一个图形与前一个图形进行比较,明确哪部分发生了变化,哪部分没有发生变化,分析其联系和区别,有时需要多画出几个图形进行观察,有时规律是循环性的,在归纳时要运用对应思想和数形结合思想.【例3】观察下列砌钢管的横截面图:则第n 个图的钢管数是__32 n 2+32 n __(用含n 的式子表示).【解析】本题可先依次列出n =1,2,3,…时的钢管数,再根据规律依次类推,可得出第n 个图的钢管数.第1个图的钢管数为1+2=3=3×1; 第2个图的钢管数为2+3+4=9=3×(1+2); 第3个图的钢管数为3+4+5+6=18=3×(1+2+3);第4个图的钢管数为4+5+6+7+8=30=3×(1+2+3+4);……依次类推,第n 个图的钢管数为3×(1+2+3+4+…+n )=32 n 2+32n .4.(源于沪科七上P83)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n )和芍药的数量规律,那么当n =11时,芍药的数量为( B )A .84株B .88株C .92株D .121株 5.(2021·遂宁中考)下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第__20__个图形共有210个小球.6.下图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第n 个图案中有m 个涂有阴影的小正方形,那么m 与n 的函数关系式为__m =4n +1__.与坐标有关的规律与坐标有关的规律类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比照,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.【例4】如图,直线l 为y =3 x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x轴于点A 3……按此作法进行下去,则点A n 的坐标为(__2n -1,0__).【解析】∵直线l 为y =3 x ,点A 1(1,0),A 1B 1⊥x 轴,∴当x =1时,y =3 ,即B 1(1,3 ).∴tan ∠A 1OB 1=3 .∴∠A 1OB 1=60°,∠A 1B 1O =30°.∴OB 1=2OA 1=2.∵以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2,∴A 2(2,0).同理可得A 3(4,0),A 4(8,0),…,∴A n (2n -1,0).7.如图,在平面直角坐标系中,A (-1,1),B (-1,-2),C (3,-2),D (3,1),一只瓢虫从点A 出发以2个单位长度/秒的速度沿A →B →C →D →A 循环爬行,问第2 021 s 瓢虫所在点的坐标是( A )A .(3,1)B .(-1,-2)C .(1,-2)D .(3,-2)8.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =-13 x +4上,设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2 022=__942 021 __.中考数学专题过关1.如图,第1个图形中有1个正方形,按照如图所示的方式连接对边中点得到第2个图形,图中共有5个正方形;连接第2个图形中右下角正方形的对边中点得到第3个图形,图中共有9个正方形;按照同样的规律得到第4个图形、第5个图形……,则第7个图形中共有正方形( B )A .21个B .25个C .29个D .32个2.如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A (4,0),B (0,3),则点C 100的坐标为( B )A .⎝⎛⎭⎫1 200,125 B .(600,0)C .⎝⎛⎭⎫600,125 D .(1 200,0)3.(2021·百色一模)有一列有序数对:(1,2),(4,5),(9,10),(16,17),…,按此规律,第11对有序数对为 __(121,122)____.4.观察下列一组数:-23 ,69 ,-1227 ,2081 ,-30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是__(-1)n ·n (n +1)3n__.5. (2021·眉山中考)观察下列等式:x 1=1+112+122 =32 =1+11×2 ;x 2=1+122+132 =76 =1+12×3 ;x 3=1+132+142 =1312 =1+13×4;……根据以上规律,计算x 1+x 2+x 3+…+x 2 020-2 021=__-12 021__.6.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……按此规律摆下去,第n 个图案有__(3n +1)__个三角形(用含n 的代数式表示).7.(2021·扬州中考)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为__1__275__.。

六年级数学探索规律试题答案及解析

六年级数学探索规律试题答案及解析

六年级数学探索规律试题答案及解析1.找规律填数。

(1)5,9,14,20,27,()44;(2)7.897,7.892,7.887,()【答案】35 7.882【解析】(1)观察这几个数可以发现5+4=9,9+5=14,14+6=20,20+7=27,所以,下一个数是27+8=35,然后35+9=44;(2)观察这三个数可以发现依次减0.005,因此,第三个数是7.882。

2.一次大型运动会上,工作人员按照3个红气球、2个黄气球、1个绿气球的顺序把气球穿起来装饰运动场,那么第2014个气球是( )色的。

(填“红”、“黄”或“绿”)【答案】黄【解析】本题是一种有规律的排列,找到其中的规律是解本题的关键。

根据题意描述的“3红2黄1绿”,我们就会发现这样的规律:每(3+2+1)个气球即6个气球为1组,要求第2014个气球的颜色,只要确定它是第几组的第几个即可。

因为2014÷6=335……4,所以第2014个气球是第336组的第4个气球,再根据“3红2黄1绿”的顺序可知,它是黄色的。

3.观察下列等式,按以下各式成立的规律,写出第12个等式是()。

9×0+1=01,9×1+2 = 11,9×2 + 3 = 21,9×3 + 4 = 31,9×4 + 5 = 41【答案】9×11+12=111【解析】本题考查的是算式的规律。

应认真观察算式中的特点,从中发现规律,再按要求完成本题。

此类算式的特点是:第一个算式是9乘以0加1;第二个算式是9乘以1加2;第三个算式是9乘以2加3;……,所以第n个算式应该是9乘以(n-1)加n,即9(n-1)+n。

当n=12时,等式是:9×11+12=111。

4.庆祝“六一”,某幼儿园举行用火柴棒摆“金鱼”的比赛,其中摆的1条、2条、3条“金鱼”如下图所示:按照上面的规律,摆100条“金鱼”需用火柴棒的根数为()。

七年级数学找规律题(含答案)

七年级数学找规律题(含答案)

七年级数学找规律题(含答案)1.观察下图,寻找规律,在“?”处填上的数字是( ). A.128 B.136 C.162 D.188 【答案】C2.寻找规律计算1 - 2+3 - 4+5 - 6+…+2015 - 2016等于 ( ) A.0 B.- 1 C.- 1008D.1008【答案】C3.找规律:21-20=20 ;22-21=21 ;23-22=2 2;………利用你的发现,求20+21+22+23+…+22018+22019的值是( ) A .22019 -1 B .22019 +1C .22020 -1D .22020 +1【答案】C4.先找规律,再填数:1111122+-=,111134212+-=,111156330+-=,111178456+-=,…,1120132014+-( )=()12014⨯.【答案】11007,2013. 5.找规律填上合适的数:﹣2,4,﹣8,16, ,64,… 【答案】﹣32.6.寻找规律,根据规律填空:31,152-,353,634-,995, ,…,第n 个数是 . 【答案】1436-14)1(21--+n n n (或:当n 时奇数时,142-n n;当n 时偶数时,142--n n )7.先找规律,再填数: 111111*********1,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】8.找规律填数:﹣1,2,﹣4,8,________ 【答案】﹣169.先找规律,再填数:11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156,12011+12012-________=120112012⨯ 【答案】10.已知C 32=3×21×2=3, C 53=5×4×31×2×3=10,C 64 =6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 85=_____. 【答案】56.11.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .【答案】21012.观察下列各式并找规律,再猜想填空:()()()()223322332248a b a ab b a b x y x xy y x y +-+=++-+=+, ,则()()2223469a b a ab b +-+= ______ .【答案】33827a b + 13.观察下列计算:,,,……从计算结果中找规律,利用规律计算_______________ 【答案】14.已知: 233212C ⨯=⨯=3,35543123C ⨯⨯=⨯⨯=10,3565431234C ⨯⨯⨯=⨯⨯⨯=15,…,观察上面的计算过程,寻找规律并计算:34C =_____. 【答案】4. 15.已知:2332312C ⨯==⨯,3554310123C ⨯⨯==⨯⨯,466543151234⨯⨯⨯==⨯⨯⨯C ,…,观察上面的计算过程,寻找规律并计算C 106=_____. 【答案】21016.找规律:﹣12,2,﹣92,8,﹣252 ,18…,则第7个数为_____;第n 个数为_____(n 为正整数)【答案】﹣492 (﹣1)nn 22.17.观察烟花燃放图形,找规律:依此规律,第n 个图形中共有_________个★. 【答案】2+2n18.找规律,并按规律填上第五个数:,169,87,45,23-- . 【答案】-113219.观察下面的一列数,从中寻找规律,然后按规律填写接下去的3个数.12,34-,56,78-,910,________,________,________,… 【答案】1112-1314 1516- 20.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a b m -+=_____.【答案】4321.观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c 的值为 .【答案】7622.观察下面的一列数,从中寻找规律,然后按规律写出接下去的三个数.12 ,-34 ,56 ,-78 ,910,… ________,…【答案】-1112;1314;−1516. 23.找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有________个.【答案】2n -124.观察下列各组勾股数,并寻找规律:①4,3,5; ②6,8,10; ③8,15,17; ④10,24,26 …… 请根据你发现的规律写出第⑦组勾股数:____________. 【答案】16,63,6525.用火柴棒按以下方式搭“小鱼” .…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为 . 【答案】62 26.观察下列计算111122=-⨯ ,1112323=-⨯,1113434=-⨯,1114545=-⨯,……, (1)第n 个式子是_____________________________________; (2)从计算结果中找规律,利用规律计算:112⨯+123⨯+134⨯+145⨯+…+120092010⨯ 【答案】(1)()11111n n n n =-++;(2)20092010. 27.探究:()21112222122-=⨯-⨯=, () 3222? 2-==, ()4322? 2-==,……(1)请仔细观察,写出第4个等式; (2)请你找规律,写出第n 个等式;(3)计算:012201620172018222222+++⋅⋅⋅⋅⋅⋅++-. 【答案】(1)544442222122-=⨯-⨯=;(2)12222122n n n n n +-=⨯-⨯=;(3)-128.阅读下文,寻找规律:已知1x ≠时, ()()2111x x x -+=-,()()23111x x x x -++=-, ()()234111x x x x x -+++=-……(1)填空: ()1(x - 5)1x =-. (2)观察上式,并猜想:①()()211n x x x x -+++⋅⋅⋅+= . ②()()10911x x x x -++⋅⋅⋅++= . (3)根据你的猜想,计算:①()()234512122222-+++++= . ②23420161+3+3+3+33⋅⋅⋅⋅⋅⋅=_____________________【答案】(1)2341+x x x x +++(2)11n x+-; 111x -(3)612- (或 -63); 20173-1229.小明同学在一次找规律的游戏中发现如下的数字和规律,请你按照所给的式子,解答下列问题:21342+== 213593++== 21357164+++== 213579255++++==()1试猜想:135791129++++++⋯+=①______.()()135********n n ++++++⋯+-++=②______.()2用上述规律计算:2123255759+++⋯++=______.【答案】(1)①225;②(n+1)²(2)80030.找规律并解答问题.(1)按下图方式摆放黑色围棋子,填一填,每个图共需几枚棋子.(2)根据你发现的规律,算一算第13个图,共需要( )枚棋子.【答案】(1)详见解析;(2)40枚.31.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a=,ba+= .表一表二表三【答案】17=a2372=+ba32.细观察,找规律.下列各图中的1MA与nNA平行.()1图①中的12A A∠+∠=______ 度,图②中的123A A A∠+∠+∠=______ 度,图③中的1234A A A A ∠+∠+∠+∠=______ 度, 图④中的12345A A A A A ∠+∠+∠+∠+∠=______ 度,⋯,第⑩个图中的12311A A A A ∠+∠+∠+⋯+∠=______ 度()2第n 个图中的1231n A A A A +∠+∠+∠+⋯+∠=______ ()3请你证明图②的结论.【答案】(1)180;360;540;720;1800;(2)180n °;(3)详见解析. 33.找规律:(1)填空:41=________;42=______;43=______;44=______;45=________;46=________;…(2)你发现4的幂的个位数字有什么规律? (3)4250的个位数是什么数字?为什么?【答案】(1)4, 16, 64,256,1224,4896;(2)是循环数;(3)6. 34.观察等式找规律: ①第1个等式:22﹣1=1×3; ②第2个等式:42﹣1=3×5; ③第3个等式:62﹣1=5×7; ……(1)写出第5个等式: ; 第6个等式: ;(2)写出第n 个等式(用字母n 表示): ; (3)求111113355740254027++++⨯⨯⨯⨯的值.【答案】(1)102﹣1=9×11;122﹣1=11×13;(2)4n 2﹣1=(2n ﹣1)(2n+1);(3)2013402735.观察表l ,寻找规律.表2是从表l 中截取的一部分,其中a ,b ,c 的值分别为( )A.20,25,24B.25,20,24C.18,25,24D.20,30,25【答案】A36.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)= .(2)根据你的猜想,计算:1+3+32+33…+3n= .(其中n是正整数)【答案】(1)1﹣x n+1,(2)﹣.37.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有_____个.【答案】9138.找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。

(完整版)七年级数学找规律题

(完整版)七年级数学找规律题

归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题 1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1 B .2 C .3 D .47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n 4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若…21010 参考答案:一、1、(1)1004的平方(2)n+1的平方2、23 30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题突破(十一)
[归纳规律结论题]
力学
1.[2015·朝阳一模] 小阳通过实验探究某种液体的质量与体积的关系,记录的实验数据如下表所示。

请根据表中数据归纳并写出该液体质量与体积的关系式m=________。

2.[2015·东城一模] 小明利用钩码、弹簧及相关器材进行实验,记录的实验数据如下表所示。

请根据表中数据归纳出弹力F与弹簧伸长量x的关系式为:________________。

0.5
3.[2015·平谷二模] 分析表格中的数据,归纳出拉力与重力的关系,则拉力F与重力G的关系式是:__________________。

4.[2015·通州一模] 如下表所示是在某区域利用气压计测量得到的不同高度的大气压数值(将海平面的高度记为零)。

分析表中数据可知:该地区在海拔高度500 m以下,大气压
5.[2015·西城二模] 下表是小丽在实验中记录的实验数据,请根据表格中的数据归纳出压强p与力F
6.[2015·石景山二模] 小明在研究“压强与压力的关系”时,记录的实验数据如下表所示。

请你对表格中的数据进行分析归纳:当__________不变时,压强p与压力F之间的关系式:p=________。

7.[2015·西城一模] 小华把一圆柱形物体挂在弹簧测力计的挂钩上,将圆柱形物体逐渐浸入某种液体中,观察并记录物体排开液体的体积V和弹簧测力计的示数F,得到如下表所示的实验数据。

请根据表中数据归纳出与V的关系,=____________。

8.[2015·顺义二模] 小红用实验探究串联电路的电压关系时,记录的实验数据如下表所示,请你分析数据归纳出U2与U1的关系式,U2=________________。

9.[2015·平谷一模] 下表是小丽在实验中记录的实验数据,请根据表格中的数据归纳出电功率P和电阻
10.2014·西城一模下表是小华同学在实验中记录的实验数据。

请根据表格中的数据归纳出电功 W和电压U。

11.2014·海淀二模小林利用定值电阻进行实验,记录的实验数据如下表所示。

表中I 为通过电阻R的电流,P为电阻R的电功率。

请根据表中数据归纳电功率P与电流I的关系:在____________。

12.2013·石景山一模小红想探究导体电阻的大小与导体长度的关系。

她选择了粗细均匀、横截面积为1mm2的某种合金丝,利用如图Z11-1所示的电路分别测量了该合金丝不同长度的电阻值,实验数据如下表所示。

请根据表中数据归纳出该合金丝的电阻R与电阻丝长度L的关系:常温时,在______________________的条件下,R=_________________________。

图Z11-1
参考答案
力学
1.0.8 g/cm3·V
2.F=0.25 N/cm·x
3.F=0.5G+0.4 N
[解析] 由表格中数据可知,G每增加1 N,F增加0.5 N,
即F与G成线性关系,设F=kG+b,代入(1,0.9)(2,1.4)得:
0.9 N=k×1 N+b ①
1.4 N=k×2 N+b ②
①②联立可得k=0.5,b=0.4 N,则F=0.5G+0.4 N。

4.p=105Pa-10 Pa/m·h
[解析] 由表格数据可知,高度每升高100 m,大气压减小0.01×105Pa,即高度每升高
1 m ,大气压减小10 Pa ,所以大气压强p 随高度变化的关系式是:
p =105
Pa -10 Pa /m ·h。

5.500 Pa -25 Pa /N ·F
[解析] 分析表格中数据可知:压强p 与力F 的变化符合数学上的一次函数,则p =kF +
p 0,然后将两组数据分别代入上式可得,⎩
⎪⎨⎪
⎧300 Pa =8 N ·k+p 0250 Pa =10 N ·k+p 0,解得k =-25 Pa /N ,p 0=500
Pa 。

则压强p 与力F 的关系是p =500 Pa -25 Pa /N ·F。

6.受力面积S =0.2 m 2
5 Pa /N ·F [解析] 由表知,S 1=10 N 50 Pa =0.2 m 2

S 2=20 N 100 Pa =0.2 m 2

S 6=60 N 300 Pa
=0.2 m 2

通过计算可知受力面积S =0.2 m 2
一定时,p 与F 成正比,比例系数为10.2 m 2,则压强p
与压力F 之间的关系式是p =
1
0.2 m
2×F =5 Pa /N ·F。

7.8.1 N -1.1×104
N /m 3
·V
[解析] 由题意知:F =G -F 浮,F 浮=ρ液g V , 将第一、二组数据代入可得:
7.0 N =G -ρ液g ×1×10-4 m 3

5.9 N =G -ρ液g ×2×10-4 m 3

解得:ρ液=1.1×103 kg /m 3
,G =8.1 N ;
则F =G -F 浮=8.1 N -1.1×103 kg /m 3
×10 N /kg ×V ,
即F =8.1 N -1.1×104 N /m 3
·V。

电学
8.15 V —U 1
[解析] 由表格数据知U 2与U 1成线性关系, 设U 2=kU 1+b ,代入(12,3)(10,5)可得: 3 V =k ×12 V +b ① 5 V =k ×10 V +b ②
①②联立可得k =-1,b =15 V , 则U 2=15 V -U 1。

9.3 W -0.02 W /Ω·R
[解析] 分析表中的数据可知,电阻的电功率随电阻的变化成线性关系, 设P =kR +b ,
当R =5 Ω时,P =2.9 W; 当R =10 Ω时,P =2.8 W , 则2.9 W =k ×5 Ω+b , 2.8 W =k ×10 Ω+b ,
解得:k =-0.02 W /Ω,b =3 W , 所以电功率P 和电阻R 的关系式是:
P=3 W-0.02 W/Ω·R。

10.12 J-2 J/V·U
[解析] 由表格数据可知W与U成线性关系。

设W=kU+b,将(3.9,4.2)(3.8,4.4)代入得:4.2 J=k×3.9 V+b ①
4.4 J=k×3.8 V+b ②
①②联系可得k=-2 J/V,b=12 J。

则W=12 J-2 J/V·U。

11.电阻一定30 W/A2·I2
12.材料和横截面积相同 1.5 Ω/m·L。

相关文档
最新文档