黑龙江省齐齐哈尔市2013年中考数学试题(word版,含答案)
2013年黑龙江中考题

2013-2014学年度黑龙江试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.下列运算结果正确的是A a =B .236a a a ⋅=C .235a a a ⋅=D .236a a a += 2.若实数a 满足a ﹣|a|=2a ,则A .a >0B .a <0C .a≥0D .a≤03.已知两圆的半径分别是3和6,若两圆相交,则两圆的圆心距可以是 A .2 B .5 C .9 D .10 4.对于函数y=﹣3x+1,下列结论正确的是A .它的图象必经过点(﹣1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大5.若不等式组2x a 1>02x a 1<0+-⎧⎨--⎩的解集为0<x <1,则a 的值为A .1B .2C .3D .46.已知梯形的面积一定,它的高为h ,中位线的长为x ,则h 与x 的函数关系大致是A .B .C .D .7.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是 A .4- B .0 C .2 D .38.图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是A .B .C .D .9.正三角形△ABC 的边长为3,依次在边AB 、BC 、CA 上取点A 1、B 1、C 1,使AA 1=BB 1=CC 1=1,则△A 1B 1C 1的面积是A B .94D 10.已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论正确的是 A .当AC=BD 时,四边形ABCD 是矩形B .当AB=AD ,CB=CD 时,四边形ABCD 是菱形C .当AB=AD=BC 时,四边形ABCD 是菱形D .当AC=BD ,AD=AB 时,四边形ABCD 是正方形第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)11.计算:sin 60°+cos60°﹣tan45°= .12.在函数y =x 的取值范围是 .13.地球的赤道半径约为6 370 000米,用科学记数法记为 米.14.圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为 . 15.某品牌手机降价20%后,又降低了100元,此时售价为1100元,则该手机的原价为 元.16.袋中装有4个完全相同的球,分别标有数字1、2、3、4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为 . 17.已知11111323⎛⎫=⨯- ⎪⨯⎝⎭,111135235⎛⎫=⨯- ⎪⨯⎝⎭,111157257⎛⎫=⨯- ⎪⨯⎝⎭,… 依据上述规律,计算11111335571113+++⋅⋅⋅+⨯⨯⨯⨯的结果为 (写成一个分数的形式)18.如图,三角形ABC 是边长为1的正三角形, AB与 AC 所对的圆心角均为120°,则图中阴影部分的面积为 .三、计算题(题型注释)19()10132π-⎛⎫+- ⎪⎝⎭.四、解答题(题型注释)20.已知ab=﹣3,a+b=2.求代数式a 3b+ab 3的值.21.如图,已知一次函数y=k 1x+b (k 1≠0)的图象分别与x 轴,y 轴交于A ,B 两点,且与反比例函数2k y x(k 2≠0)的图象在第一象限的交点为C ,过点C 作x 轴的垂线,垂足为D ,若OA=OB=OD=2.(1)求一次函数的解析式; (2)求反比例函数的解析式.22.某班同学在一次综合实践活动中,对本县居民参加“全民医保”情况进行了调查,同学们利用节假日随机调查了3000人,对调查结果进行了统计分析,绘制出两幅不完整的统计图:[注:图中A 表示城镇职工基本医疗保险;B 表示城镇居民基本医疗保险;C 表示“新型农村合作医疗”;D 表示其他情况] (1)补全条形统计图;(2)在本次调查中,B 类人数占被调查人数的百分比为 ;扇形统计图中D 区域所对应的圆心角的大小为 .(3)据了解,国家对B 类人员每人每年补助210元.已知该县人口数约为100万,请估计该县B 类人员每年享受国家补助共多少元?23.如图,把一个直角三角形ACB (∠ACB=90°)绕着顶点B 顺时针旋转60°,使得点C 旋转到AB 边上的一点D ,点A 旋转到点E 的位置.F ,G 分别是BD ,BE 上的点,BF=BG ,延长CF 与DG 交于点H .(1)求证:CF=DG ;(2)求出∠FHG 的度数.24.如图,平面直角坐标系中,以点C (22为半径的圆与x 轴交于A ,B 两点.(1)求A ,B 两点的坐标;(2)若二次函数y=x 2+bx+c 的图象经过点A ,B ,试确定此二次函数的解析式.25.如图所示,AB 是半圆O 的直径,AB=8,以AB 为一直角边的直角三角形ABC 中,∠CAB=30°,AC 与半圆交于点D ,过点D 作BC 的垂线DE ,垂足为E .(1)求DE 的长;(2)过点C 作AB 的平行线l ,l 与BD 的延长线交于点F ,求FD DB的值.26.随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程2bax 3x 04++=有实数根的概率. 27.对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.28.如图所示,在直角梯形ABCD中,AB为垂直于底边的腰,AD=1,BC=2,AB=3,点E 为CD上异于C,D的一个动点,过点E作AB的垂线,垂足为F,△ADE,△AEB,△BCE 的面积分别为S1,S2,S3.(1)设AF=x,试用x表示S1与S3的乘积S1S3,并求S1S3的最大值;(2)设AFFB=t,试用t表示EF的长;(3)在(2)的条件下,当t为何值时,S22=4S1S3.五、判断题(题型注释)参考答案1.C 【解析】试题分析:根据二次根式的性质与化简,同底数幂的乘法,合并同类项运算法则逐一计算作出判断:Aa =,故本选项错误;B 、23235a a a a +⋅==,故本选项错误;C 、23235a a a a +⋅==,故本选项错误;D 、a 2和a 3不是同类项,不能合并,故本选项错误。
历年黑龙江省齐齐哈尔市中考数学试题(含答案)

2016年黑龙江省齐齐哈尔市中考数学试卷一、单项选择题:每小题3分,共30分1.(3分)(2016•齐齐哈尔)﹣1是1的()A.倒数 B.相反数C.绝对值D.立方根2.(3分)(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)(2016•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差D.中位数和极差4.(3分)(2016•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.5.(3分)(2016•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个6.(3分)(2016•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.7.(3分)(2016•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,38.(3分)(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或59.(3分)(2016•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个10.(3分)(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题:每小题3分,共27分11.(3分)(2016•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为.12.(3分)(2016•齐齐哈尔)在函数y=中,自变量x的取值范围是.13.(3分)(2016•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可).14.(3分)(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm.15.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=度.16.(3分)(2016•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=.17.(3分)(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.18.(3分)(2016•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD 边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB 于点N,则线段EC的长为.19.(3分)(2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为.三、解答题:共63分20.(7分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.21.(8分)(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.22.(8分)(2016•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A 和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)(2016•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.24.(10分)(2016•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.25.(10分)(2016•齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.26.(12分)(2016•齐齐哈尔)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2016年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分1.(3分)(2016•齐齐哈尔)﹣1是1的()A.倒数 B.相反数C.绝对值D.立方根【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.即a的相反数是﹣a.【解答】解:﹣1是1的相反数.故选B.【点评】主要考查相反数的概念:只有符号不同的两个数互为相反数,0的相反数是0.同时涉及倒数的定义,绝对值的性质,立方根的定义的知识点.2.(3分)(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2016•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差D.中位数和极差【分析】根据众数和极差的概念进行判断即可.【解答】解:一班同学投中次数为6个的最多反映出的统计量是众数,二班同学投中次数最多与最少的相差6个能反映出的统计量极差,故选:B.【点评】本题考查的是统计量的选择,平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大.4.(3分)(2016•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【分析】分别利用二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算法则、合并同类项法则进行判断,再利用概率公式求出答案.【解答】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=2016,错误;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:,故选:A.【点评】此题主要考查了二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算、合并同类项、概率公式等知识,正确掌握相关运算法则是解题关键.5.(3分)(2016•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【分析】根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.【解答】解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2016•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6﹣x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=×4×(6﹣x)=12﹣2x(0<x<6),∴C符合.故选C.【点评】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.7.(3分)(2016•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,3【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程=2﹣的解为正数,得m=1,m=3,故选:C.【点评】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.8.(3分)(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.【点评】本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.9.(3分)(2016•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行1个小正方体,第一列第二行2个小正方体,第二列第三行2个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:1+2+2=5个.故选A.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.(3分)(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每小题3分,共27分11.(3分)(2016•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为 6.9×10﹣7.【分析】对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000069=6.9×10﹣7.故答案为:6.9×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2016•齐齐哈尔)在函数y=中,自变量x的取值范围是x≥﹣,且x≠2.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得3x+1≥0且x﹣2≠0,解得x≥﹣,且x≠2,故答案为:x≥﹣,且x≠2.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式是解题关键.13.(3分)(2016•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AC⊥BD或∠AOB=90°或AB=BC使其成为菱形(只填一个即可).【分析】利用菱形的判定方法确定出适当的条件即可.【解答】解:如图,平行四边形ABCD的对角线AC,BD相交于点O,添加一个适当的条件为:AC⊥BD或∠AOB=90°或AB=BC使其成为菱形.故答案为:AC⊥BD或∠AOB=90°或AB=BC【点评】此题考查了菱形的判定,以及平行四边形的性质,熟练掌握菱形的判定方法是解本题的关键.14.(3分)(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为4cm.【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出2r=l,代入S侧=πrl,求出r,l,从而求得圆锥的高.【解答】解:设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴2r=l,∴侧面积S侧=πrl=πr2=16πcm2,解得r=4,l=4,∴圆锥的高h=4cm,故答案为:4.【点评】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式,难度不大.15.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=45度.【分析】连接OD,只要证明△AOD是等腰直角三角形即可推出∠A=45°,再根据平行四边形的对角相等即可解决问题.【解答】解;连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.【点评】本题考查平行四边形的性质、切线的性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.16.(3分)(2016•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y 轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=6.【分析】根据点P(6,3),可得点A的横坐标为6,点B的纵坐标为3,代入函数解析式分别求出点A的纵坐标和点B的横坐标,然后根据四边形OAPB的面积为12,列出方程求出k的值.【解答】解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y=得,点A的纵坐标为,点B的横坐标为,即AM=,NB=,∵S四边形OAPB=12,即S矩形OMPN﹣S△OAM﹣S△NBO=12,6×3﹣×6×﹣×3×=12,解得:k=6.故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.17.(3分)(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20.【分析】分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.【解答】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.【点评】本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.18.(3分)(2016•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD 边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB 于点N,则线段EC的长为﹣1.【分析】过点M作MF⊥DC于点F,根据在边长为2的菱形ABCD中,∠A=60°,M为AD中点,得到2MD=AD=CD=2,从而得到∠FDM=60°,∠FMD=30°,进而利用锐角三角函数关系求出EC的长即可.【解答】解:如图所示:过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴EC=MC﹣ME=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,解题的关键是从题目中抽象出直角三角形,难度不大.19.(3分)(2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为(﹣,).【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OC n B n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).【点评】本题考查的是矩形的性质、位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.三、解答题:共63分20.(7分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【分析】先算括号里面的,再算除法,最后算减法,根据x2+2x﹣15=0得出x2+2x=15,代入代数式进行计算即可.【解答】解:原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.(8分)(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.【分析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.【解答】解:(1)如图所示,△A1B1C1为所求做的三角形;(2)如图所示,△A2B2O为所求做的三角形;(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),∴A2A3所在直线的解析式为:y=﹣5x+16,令y=0,则x=,∴P点的坐标(,0).【点评】本题考查了利用旋转和平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(8分)(2016•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A 和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)利用对称轴方程可求得b,把点A的坐标代入可求得c,可求得抛物线的解析式;(2)根据A、B关于对称轴对称可求得点B的坐标,利用抛物线的解析式可求得B点坐标;(3)根据B、C坐标可求得BC长度,由条件可知BC为过O、B、C三点的圆的直径,可求得圆的面积.【解答】解:(1)由A(﹣1,0),对称轴为x=2,可得,解得,∴抛物线解析式为y=x2﹣4x﹣5;(2)由A点坐标为(﹣1,0),且对称轴方程为x=2,可知AB=6,∴OB=5,∴B点坐标为(5,0),∵y=x2﹣4x﹣5,∴C点坐标为(0,﹣5);(3)如图,连接BC,则△OBC是直角三角形,∴过O、B、C三点的圆的直径是线段BC的长度,在Rt△OBC中,OB=OC=5,∴BC=5,∴圆的半径为,∴圆的面积为π()2=π.【点评】本题为二次函数的综合应用,涉及知识点有二次函数的性质、待定系数法、勾股定理、圆周角定理等.在(3)中确定出圆的半径是解题的关键.本题属于基础性的题目,难度不大.23.(8分)(2016•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.【分析】(1)由∠C+∠DBF=90°,∠C+∠DAC=90°,推出∠DBF=∠DAC,由此即可证明.(2)先证明AD=BD,由△ACD∽△BFD,得==1,即可解决问题.【解答】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴==1,∴BF=AC=3.【点评】本题考查相似三角形的判定和性质、三角函数等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.24.(10分)(2016•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,。
2013年齐齐哈尔市中考模拟考试数学试卷

2013年齐齐哈尔市中考模拟考试数学试卷命题人:郭福伟考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分题号一二三总分核分人2122232425262728得分一、填空题(每题3分,满分30分)1、上海世博会场是当今世界最大的太阳能应用场所,装有460000亿瓦的太阳能光伏并网发电装置,460000亿瓦用科学记数法表示为亿瓦.2、在函数y=x 的取值范围是.3、如图.点D、E 在△ABC 的边BC 上,AB=AC,AD=AE.请写出图中的全等三角形(写出一对即可).4、因式分解:-3x 2+6xy-3y 2=。
5、同时投掷两个骰子,点数和为5的概率是.6、将一个半径为6cm,母线长为15cm 的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.7、一元二次方程a 2﹣4a﹣7=0的解为.8、⊙O 的半径为5cm,弦AB∥CD,且AB=8cm,CD=6cm,则AB 与CD 的距离为9、某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.10、如图,△ABC 是边长为1的等边三角形.取BC 边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB,E 1F 1∥EF,得到四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,则S 2013.二、单项选择题(每题3分,满分30分)11、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣④x 2+x 2=2x 2;⑤-(3-5)+(-2)4÷8×(-1)=0,其中正确的是()A、①②③B、①③④C、②③⑤D、②④⑤12、在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A B C D13、已知等腰三角形周长为20,则底边长y 关于腰长x 的函数图象是().14、三角形两边长是3和8,第三边是方程211280x x −+=的解,则这个三角形的周长是()A.15B.18C.15或18D.不能确定15、扇形的半径为30cm,圆心角为120°,此扇形的弧长是()A、10cmB、20cmC、10πcmD、20πcm16、下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A、B、C、D、17、a 是方程210x x +−=的根,则式子3222009a a ++的值为()A.2007B .2008 C.2009 D.201018、关于x 的分式方程15mx =−,下列说法正确的是()A.方程的解是5x m =+B.5m >−时,方程的解是正数C.5m <−时,方程的解为负数D.无法确定19、二次函数y=ax 2+bx+c(a≠0)的图象如图所示,现有下列结论:①b 2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个20、如图,菱形ABCD 中,AB=AC,点E、F 分别为边AB、BC 上的点,且AE=BF,连接CE、AF 交于点H,连接DH 交AC 于点O.则下列结论①△ABF≌△CAE,②∠AHC=1200,③AH+CH=DH,④AD 2=OD·DH 中,正确的是()A.①②④B.①②③C.②③④D.①②③④三、解答题(满分60分)21、(本小题满分6分)先化简,再求值:(1﹣)÷,其中a=sin60°.如图,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC 向右平移3个单位长度,画出平移后的△A 1B 1C 1.(2)将△ABC 绕点O 旋转180°,画出旋转后的△A 2B 2C 2.(3)画出一条直线将△AC 1A 2的面积分成相等的两部分.23、(本小题满分6分)如图,抛物线y=x 2+bx+c 经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若与x 轴的两个交点为A,B,与y 轴交于点C.在该抛物线上是否存在点D,使得△ABC 与△ABD 全等?若存在,求出D 点的坐标;若不存在,请说明理由某校为庆祝中国共产党90周年,组织全校1800名学生进行党史知识竞赛.为了解本次知识竞赛成绩的分布情况,从中随机抽取了部分学生的成绩进行统计分析,得到如下统计表:根据统计表提供的信息,回答下列问题:(1)a=_______,b=_______,c=________;(2)上述学生成绩的中位数落在_______组范围内;(3)如果用扇形统计图表示这次抽样成绩,那么成绩在89.5~100.5范围内的扇形的圆心角为___度;(4)若竞赛成绩80分(含80分)以上的为优秀,请你估计该校本次竞赛成绩优秀的学生有_人.25、(本小题满分8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)的函数图象如图所示.(1)求甲组加工零件的数量y 与时间x 之间的函数关系式.(2分)(2)求乙组加工零件总量a 的值.(2分)(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(4分)分组频数频率59.5~69.530.0569.5~79.512a 79.5~89.5b 0.4089.5~100.5210.35合计c1在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠ABC的角平分线时,在AB 上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2分)(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.(6分)某电器城经销A、B两种型号彩电,今年四月份每台A型彩电售价为2000元,每台B型彩电售价为1800元,已知A型彩电每台进货价为1800元,B型彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台。
黑龙江省哈尔滨市2013年中考数学试卷(解析版)

省市2013年中考数学试卷一、选择题1.(2013)13-的倒数是( ).(A)3 (B)一3 (C)13- (D)13考点:倒数.分析:一个数的倒数就是把这个数的分子、分母颠倒位置即可得到.解答:13-的倒数是331-=-.故选B.2.(2013)下列计算正确的是( )..(A)a3+a2=a5 (B)a3·a2=a6 (C)(a2)3=a6 (D)22 ()22 a a=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。
分析:分别根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可解答:解:A、a2和a3不是同类项,不能合并,故此选项错误;B、a3a2=a3+2=a5,故此选项错误;C、(a2)3=a6,故此选项正确;D、22()24a a=故此选项错误;故选:C.3.(2013)下列图形中,既是轴对称图形又是中心对称图形的是( ).考点:轴对称图形与中心对称图形.分析:题考查了中心对称图形.掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.解答: A.是轴对称图形,不是中心对称图形;B. 是中心对称图形,不是轴对称图形.;C.是轴对称图形,不是中心对称图形;D. 是轴对称图形,又是中心对称图形;故选D.4.(2013)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( ).考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体.故选A.5.(2013)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x2+2 (D)y=x2-2考点:抛物线的平移分析:根据平移概念,图形平移变换,图形上每一点移动规律都是一样的,也可用抛物线顶点移动.即(-1,0)—→(0,-2).解答:根据点的坐标是平面直角坐标系中的平移规律:“左加右减,上加下减.”故选D.6.(2013)反比例函数12kyx-=的图象经过点(-2,3),则k的值为( ).(A)6 (B)-6 (C) 72(D)72-考点:反比例函数的图象上的点的坐标.分析:点在曲线上,则点的坐标满足曲线解析式,反之亦然解答:反比例函数12kyx-=的图象经过点(-2,3),表明在解析式12kyx-=,当x=-2时,y=3,所以1-2k=xy=3×(-2)=-6.,解得k=7 2故选C7.(2013)如图,在ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( ).(A)4 (B)3 (C) 52(D)2考点:平行四边形的性质及等腰三角形判定.分析:本题主要考查了平行四边形的性质:平边四边形的对边平行且相等;等腰三角形判定,两直线平行错角相等;综合运用这三个性质是解题的关键解答:根据CECE平分∠BCD得∠BCE=∠ECD,AD∥BC得∠BCE=∠DEC从而△DCE 为等腰三角形,ED=DC=AB,2AB=AD=AE+ED=3+AB,解得AB=3故选B8.(2013)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).(A)116(B)18(C)14(D)12考点:求概率,列表法与树状图法。
2013学年黑龙江省哈尔滨中考数学年试题

2.【答案】C【解析】解答:A .2a 和3a 不是同类项,不能合并,故此选项错误;B .32325a a a a +==,故此选项错误;C .236()a a =,故此选项正确;D .224a a ⎛⎫ ⎪⎝⎭=故此选项错误;故选:C . 【提示】分别根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可 【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法3.【答案】D【解析】解答:A .是轴对称图形,不是中心对称图形;B .是中心对称图形,不是轴对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,又是中心对称图形;故选D .【提示】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合【考点】轴对称图形与中心对称图形4.【答案】A【解析】解:从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体,故选A【提示】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可【考点】简单组合体的三视图5.【答案】D【解析】解:抛物线2(1)y x =+的顶点坐标为(1,0)-,∵向下平移2个单位,∴纵坐标变为2-,∵向右平移1个单位,∴横坐标变为110-+=,∴平移后的抛物线顶点坐标为(0,2)-,∴所得到的抛物线是22y x =-.故选D .【提示】先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可【考点】二次函数图象,几何变换【提示】点在曲线上,则点的坐标满足曲线解析式,反之亦然【考点】反比例函数的图象上的点的坐标特征7.【答案】B【解析】∵四边形ABCD 是平行四边形,∴AB DC =,AD C B ∥,∴DEC BCE ∠=∠,∵CE 平分DCB ∠,∴DCE BCE ∠=∠,∴DEC BCE ∠=∠,∴DE DC AB ==,∵22AD AB CD ==,CD DE =,∴2AD DE =,∴3AE DE ==,∴3DC AB DE ===,故选B .【提示】平边四边形的对边平行且相等,等腰三角形判定,两直线平行内错角相等,综合运用这三个性质是解题的关键【考点】平行四边形的性质及等腰三角形判定与性质【提示】概率的计算一般是利用树状图或列表把所有等可能性的情况列出,然后再计算某一事件的概率,其关键是找出所有的等可能性的结果【考点】求概率,列表法与树状图法故选B .【提示】利用相似三角形的判定和性质是解题的关键【考点】相似三角形的判定与性质;三角形中位线定理10.【答案】D【解析】解答:由010x ≤≤时,付款5y x =相应千克数,得数量不超过10千克时,销售价格为5元/千克①是正确;当30x =代入 2.525y x =+,100y =,故②是正确;由(2)10x >时,付款 2.525y x =+相应千克数,得每千克2.5元,故③是正确;当40x =代入 2.525y x =+,125y =,当20x =代入 2.52575y x =+=,两次共150元,两种相差25元,故④是正确;四个选项都正确,故选D .【提示】得到超过10千克的费用的计算方式是解决本题的关键点,010x ≤≤时,付款5y x =相应千克数;数量不超过10千克时,销售价格为5元/千克;(2)10x >时,付款 2.525y x =+相应千克数,超过10千克的那部分种子的价格 【考点】一次函数的应用第Ⅱ卷二、填空题11.【答案】49.810⨯【解析】将98000用科学记数法表示为49.810⨯故答案为:49.810⨯【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数【考点】科学记数法——表示较大的数12.【答案】3x ≠-【解析】式子3x y x =+在实数范围内有意义,∴30x +≠,解得3x ≠- 【提示】根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可【考点】分式意义的条件13.【解析】原式==【提示】先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变【考点】二次根式的运算 14.【答案】21x -≤<【解析】解:312x -<①由①得,1x <,31x +≥②得2x ≥-故此不等式组的解集为:21x -≤<.故答案为:21x -≤< 【提示】熟知同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解答此题的关键,分别求出各不等式的解集,再求出其公共解集.【考点】解一元一次不等式组15.【答案】(2)(2)a x y x y +-【解析】22224(4)(2)(2)ax ay a x y a x y x y -=-=+-【提示】先提取公因式法然后考虑应用公式法来因式分解【考点】提取公因式法和应用公式法因式分解16.【答案】6【解析】设底面半径为cm r ,36ππ12r =⨯,解得3cm r =底面圆的直径为2236cm r =⨯=,故答案为:6.【提示】根据题意作出辅助线,构造出直角三角形是解答此题的关键【考点】垂径定理,勾股定理,切线的性质18.【答案】20%【解析】设平均每次降价的百分率为x ,根据题意得:2125(1)80x -=,解得10.120%x ==,2 1.8x =-(不合题意,舍去).故答案为:20%【提示】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解.【考点】一元二次方程的应用19.【解析】当点D 与C 在AB 同侧,BD AB ==,作CE BD ⊥于E ,CD BD ==,ED由勾股定理CD =D 与C 在AB 异侧,BD AB ==135∠=︒BDC ,作DE BC ⊥于E ,2BE ED ==,3EC =,由勾股定理CD 【提示】双解问题,画等腰直角三角形ABD ,使90∠︒=ABD ,分两种情况,点D 与C 在AB 同侧,点D 与C 在AB 异侧,考虑要全面【考点】解直角三角形,钝角三角形的高20.【答案】3【提示】本题利用三角形的面积计算此题考查了矩形的性质、垂直平分线的性质以及勾股定理及解直角三角形,注意数形结合思想的应用,此题综合性较强,难度较大.2(1)12a a -+=223-=∴原式12a + 【提示】利用除式的分子利用完全平方公式分解因式,除法变乘法的法则,同分母分式的减法法则计算,再利用特殊角的三角函数值求出a 的值代入进行计算即可,考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键【考点】①分式的通分,分式的约分,除法变乘法的法则,完全平方公式,特殊角22.【答案】(1)【解析】(1)正确画图【提示】根据轴对称图形的性质,利用轴对称的作图方法来作图,利用勾股定理求出AB 、BC 、CD 、AD 四条线段的长度,然后求和即可最【考点】轴对称图形,勾股定理,网格作图23.【答案】(1)5名(2)264名【解析】(1)解:()11(18161%5)100++÷-=(名).501118165---=(名)∴在这次调查中,最喜欢新闻类电视节目的学生有5名补全条形图如图所示11【考点】条形统计图,用样本估计总体24.【答案】(1)14a = 21511154224OB DF OB CE +=⨯⨯【提示】首先得出B 点的坐标,进而利用待定系数法求出a 继而得二次函数解析式,首先得出C 点的坐标,再由对称性得D 点的坐标,由 BCD BOD BOC S S S =+△△△求出【考点】二次函数综合题25.【答案】(1)证明:连接CD 、BE ∵BC 为半圆O 的直径.∴10AB =∴6AD AB BD =-=【提示】连接CD 、BE ,利用直径所对圆周角90︒、证明ADC AEB △≌△得AB AC =,利用OBD ABC △∽△得BD BO BC AB=得4BC =再求10AB =从而6AD AB BD =-=此题利用相似三角形的判定与性质、全等三角形的判定与性质以及直角三角形的性质等知识.此题综合性较强,难度适中,注意数形结合思想的应用【考点】圆周角定理,全等三角形的性质,相似三角形的判定26.【答案】(1)甲队单独完成此项任务需30天,乙队单独完成此项任务需20天【考点】分式方程的应用,一元一次不等式的应用.27.【答案】(1)BC=(2)13m t=+,(03)t<<''∠BE F ∴GE GA '=QE BE '=QE GA '=∴12∠=∠∵EF OC ∥BF BE BC BO =,333BF m =,3332BF m ==+,313322BC CF -=-,CP 3133322633t CF t CP CB CA --=== ∵FCP BCA ∠=∠∴FCP BCA △∽△PF CP AB CA =,32t PF -=∵2BQ PF QG -= ∴33312332322t t t -⎛⎫-=⨯- ⎪⎝⎭∴t ∴当1t =时,332BQ PF QG -= 30=∠=︒OBC 由此CO OB AB ===【考点】等边三角形判定与性质,相似三角形判定与性质,直角三角形的判定,三角形内角和,等腰三角形判定,一元一次方程28.【答案】(1)证明:如图1连接FE、FC∵点F在线段EC的垂直平分线上【考点】三角形全等的判断和性质,相似三角形的判断和性质,平行线分线段成比例定理,轴对称性质,三角形四边形内角和,线段的垂直平分线性质。
黑龙江省齐齐哈尔市中考数学真题试题(扫描版,含答案)

黑龙江省黑河市、齐齐哈尔市、大兴安岭2015年中考数学真题试题一、单项选择题:每小题3分,共30分2015年齐齐哈尔市初中毕业考试数学试卷1.(3分)(2015•齐齐哈尔)下列各式正确的是()A.﹣22=4 B. 20=0 C.=±2 D. |﹣|=2.(3分)(2015•齐齐哈尔)下列汉字或字母中既是中心对称图形又是轴对称图形的是() A. B. C. D.3.(3分)(2015•齐齐哈尔)下列是某校教学活动小组学生的年龄情况:13,15,15,16,13,15,14,15(单位:岁).这组数据的中位数和极差分别是()A. 15,3 B. 14,15 C. 16,16 D. 14,34.(3分)(2015•齐齐哈尔)如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A. B. C. D.5.(3分)(2015•齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A. 5或6或7 B. 6或7 C. 6或7或8 D. 7或8或96.(3分)(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10 B. 8<AB≤10 C.4≤AB≤5 D. 4<AB≤57.(3分)(2015•齐齐哈尔)关于x的分式方程=有解,则字母a的取值范围是() A. a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠08.(3分)(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A. 1种 B. 2种 C. 3种 D. 4种9.(3分)(2015•齐齐哈尔)抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个10.(3分)(2015•齐齐哈尔)如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN=S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题:每小题3分,共30分11.(3分)(2015•齐齐哈尔)日前从省教育厅获悉,为改善农村义务教育办学条件,促进教育公平,去年我省共接收163400名随迁子女就学,将163400用科学记数法表示为.12.(3分)(2015•齐齐哈尔)在函数y=+中,自变量x的取值范围是.13.(3分)(2015•齐齐哈尔)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)14.(3分)(2015•齐齐哈尔)△ABC的两边长分别为2和3,第三边的长是方程x2﹣8x+15=0的根,则△ABC的周长是.15.(3分)(2015•齐齐哈尔)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为.16.(3分)(2015•齐齐哈尔)底面周长为10πcm,高为12cm的圆锥的侧面积为.17.(3分)(2015•齐齐哈尔)从点A(﹣2,3)、B(1,﹣6)、C(﹣2,﹣4)中任取一个点,在y=﹣的图象上的概率是.18.(3分)(2015•齐齐哈尔)菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为.19.(3分)(2015•齐齐哈尔)BD为等腰△ABC的腰AC上的高,BD=1,tan∠ABD=,则CD 的长为.20.(3分)(2015•齐齐哈尔)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3D4,…,依此规律,则A2014A2015= .三、解答题:满分60分21.(5分)(2015•齐齐哈尔)先化简,再求值:÷(+1),其中x是的整数部分.22.(6分)(2015•齐齐哈尔)如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.23.(6分)(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.24.(7分)(2015•齐齐哈尔)4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年(1)班有名学生;(2)补全直方图;(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?25.(8分)(2015•齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.26.(8分)(2015•齐齐哈尔)如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G 在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥F M(无需写证明过程)(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.27.(10分)(2015•齐齐哈尔)母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?28.(10分)(2015•齐齐哈尔)如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2015年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分2015年齐齐哈尔市初中毕业考试数学试卷1.(3分)(2015•齐齐哈尔)下列各式正确的是()A.﹣22=4 B. 20=0 C.=±2 D. |﹣|=考点:算术平方根;有理数的乘方;实数的性质;零指数幂.分析:根据有理数的乘方,任何非零数的零次幂等于1,算术平方根的定义,绝对值的性质对各选项分析判断即可得解.解答:解:A、﹣22=﹣4,故本选项错误;B、20=1,故本选项错误;C、=2,故本选项错误;D、|﹣|=,故本选项正确.故选D.点评:本题考查了算术平方根的定义,有理数的乘方,实数的性质,零指数幂的定义,是基础题,熟记概念与性质是解题的关键.2.(3分)(2015•齐齐哈尔)下列汉字或字母中既是中心对称图形又是轴对称图形的是() A. B. C. D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2015•齐齐哈尔)下列是某校教学活动小组学生的年龄情况:13,15,15,16,13,15,14,15(单位:岁).这组数据的中位数和极差分别是()A. 15,3 B. 14,15 C. 16,16 D. 14,3考点:极差;中位数.分析:根据中位数与极差的定义分别求出即可解答.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;极差就是这组数中最大值与最小值的差.解答:解:按从小到大的顺序排列为:13,13,14,15,15,15,15,16,故中位数为(15+15)÷2=15,极差为16﹣13=3.故选A.点评:本题为统计题,考查中位数与极差的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.极差是指一组数据中最大数据与最小数据的差.极差=最大值﹣最小值.4.(3分)(2015•齐齐哈尔)如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A. B. C. D.考点:函数的图象.分析:由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.解答:解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.点评:此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.(3分)(2015•齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A. 5或6或7 B. 6或7 C. 6或7或8 D. 7或8或9考点:由三视图判断几何体.分析:首先根据几何体的左视图,可得这个几何体共有3层;然后从俯视图中可以看出最底层小正方体的个数及形状;最后从左视图判断出第一层、第二层的个数,进而求出组成这个几何体的小正方体的个数是多少即可.解答:解:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.故选:C.点评:此题主要考查了由三视图判断几何体,考查了空间想象能力,要熟练掌握,解答此题的关键是要明确:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10 B. 8<AB≤10 C.4≤AB≤5 D. 4<AB≤5考点:直线与圆的位置关系;勾股定理;垂径定理.分析:此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有公共点,即相切或相交,此时AB≥8;又因为大圆最长的弦是直径10,则8≤AB≤10.解答:解:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8.∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选:A.点评:本题综合考查了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析有公共点时的弦长.7.(3分)(2015•齐齐哈尔)关于x的分式方程=有解,则字母a的取值范围是() A. a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠0考点:分式方程的解.分析:先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程=有解”,即x≠0且x≠2建立不等式即可求a的取值范围.解答:解:=,去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程=有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程=有解,则字母a的取值范围是a≠5,a≠0,故选:D.点评:此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.8.(3分)(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A. 1种 B. 2种 C. 3种 D. 4种考点:二元一次方程的应用.分析:设毽子能买x个,跳绳能买y根,依据“某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元”列出方程,并解答.解答:解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7﹣x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.点评:此题主要考查了二元一次方程的应用,根据题意得出正确等量关系是解题关键.9.(3分)(2015•齐齐哈尔)抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个考点:二次函数图象与系数的关系.分析:根据函数与x中轴的交点的个数,以及对称轴的解析式,函数值的符号的确定即可作出判断.解答:解:函数与x轴有两个交点,则b2﹣4ac>0,即4ac﹣b2<0,故①正确;函数的对称轴是x=﹣1,即﹣=﹣1,则b=2a,2a﹣b=0,故②正确;当x=1时,函数对应的点在x轴下方,则a+b+c<0,则③正确;则y1和y2的大小无法判断,则④错误.故选C.点评:本题考查了二次函数的性质,主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子.10.(3分)(2015•齐齐哈尔)如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN=S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个考点:全等三角形的判定与性质;等腰直角三角形;三角形中位线定理.分析:①首先根据D是BC中点,N是AC中点N,可得DN是△ABC的中位线,判断出DN=;然后判断出EM=,即可判断出EM=DN;②首先根据DN∥AB,可得△CDN∽ABC;然后根据DN=,可得S△CDN=S△ABC,所以S△CDN=S 四边形ABDN,据此判断即可.③首先连接MD、FN,判断出DM=FN,∠EMD=∠DNF,然后根据全等三角形判定的方法,判断出△EMD≌△DNF,即可判断出DE=DF.④首先判断出,DM=FA,∠EMD=∠EAF,根据相似计三角形判定的方法,判断出△EMD∽△∠EAF,即可判断出∠MED=∠AEF,然后根据∠MED+∠AED=45°,判断出∠DEF=45°,再根据DE=DF,判断出∠DFE=45°,∠EDF=90°,即可判断出DE⊥DF.解答:解:∵D是BC中点,N是AC中点,∴DN是△ABC的中位线,∴DN∥AB,且DN=;∵三角形ABE是等腰直角三角形,EM平分∠AEB交AB于点M,∴M是AB的中点,∴EM=,又∵DN=,∴EM=DN,∴结论①正确;∵DN∥AB,∴△CDN∽ABC,∵DN=,∴S△CDN=S△ABC,∴S△CDN=S四边形ABDN,∴结论②正确;如图1,连接MD、FN,,∵D是BC中点,M是AB中点,∴DM是△ABC的中位线,∴DM∥AC,且DM=;∵三角形ACF是等腰直角三角形,N是AC的中点,∴FN=,又∵DM=,∴DM=FN,∵DM∥AC,DN∥AB,∴四边形AMDN是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF,在△EMD和△DNF中,,∴△EMD≌△DNF,∴DE=DF,∴结论③正确;如图2,连接MD,EF,NF,,∵三角形ABE是等腰直角三角形,EM平分∠AEB,∴M是AB的中点,EM⊥AB,∴EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,∴,∵D是BC中点,M是AB中点,∴DM是△ABC的中位线,∴DM∥AC,且DM=;∵三角形ACF是等腰直角三角形,N是AC的中点,∴FN=,∠FNA=90°,∠FAN=∠AFN=45°,又∵DM=,∴DM=FN=FA,∵∠EMD=∠EMA+∠AM D=90°+∠AMD,∠EAF=360°﹣∠EAM﹣∠FAN﹣∠BAC=360°﹣45°﹣45°﹣(180°﹣∠AMD)=90°+∠AMD∴∠EMD=∠EAF,在△EMD和△∠EAF中,∴△EMD∽△∠EAF,∴∠MED=∠AEF,∵∠MED+∠AED=45°,∴∠AED+∠AEF=45°,即∠DEF=45°,又∵DE=DF,∴∠DFE=45°,∴∠EDF=180°﹣45°﹣45°=90°,∴DE⊥DF,∴结论④正确.∴正确的结论有4个:①②③④.故选:D.点评:(1)此题主要考查了全等三角形的判定和性质的应用,以及相似三角形的判定和性质的应用,要熟练掌握.(2)此题还考查了等腰直角三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径.(3)此题还考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题:每小题3分,共30分11.(3分)(2015•齐齐哈尔)日前从省教育厅获悉,为改善农村义务教育办学条件,促进教育公平,去年我省共接收163400名随迁子女就学,将163400用科学记数法表示为1.634×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将163400用科学记数法表示为1.634×105,故答案为:1.634×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2015•齐齐哈尔)在函数y=+中,自变量x的取值范围是x≥﹣3,且x≠0.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:由题意得,x+3>0,x2≠0,解得:x≥﹣3,且x≠0.故答案为:x≥﹣3,且x≠0.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(3分)(2015•齐齐哈尔)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF .(只填一个即可)考点:全等三角形的判定.专题:开放型.分析: BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.解答:解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:BC=EF或∠BAC=∠EDF点评:此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.14.(3分)(2015•齐齐哈尔)△ABC的两边长分别为2和3,第三边的长是方程x2﹣8x+15=0的根,则△ABC的周长是8 .考点:解一元二次方程-因式分解法;三角形三边关系.分析:先求得方程的根,再根据三角形三边关系判断出第三边的长,可求得三角形的周长.解答:解:解方程x2﹣8x+15=0可得x=3或x=5,∴△ABC的第三边为3或5,但当第三边为5时,2+3=5,不满足三角形三边关系,∴△ABC的第三边长为3,∴△ABC的周长为2+3+3=8,故答案为:8.点评:本题主要考查三角形三边关系和一元二次方程的解法,利用三角形三边关系进行验证是解题的关键.15.(3分)(2015•齐齐哈尔)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为y=﹣.考点:反比例函数系数k的几何意义.分析:过A点向x轴作垂线,与坐标轴围成的四边形的面积是定值|k|,由此可得出答案.解答:解:过A点向x轴作垂线,如图:根据反比例函数的几何意义可得:四边形ABCD的面积为3,即|k|=3,又∵函数图象在二、四象限,∴k=﹣3,即函数解析式为:y=﹣.故答案为:y=﹣.点评:此题考查了反比例函数的几何意义,解答本题关键是掌握在反比例函数中k所代表的几何意义,属于基础题,难度一般.16.(3分)(2015•齐齐哈尔)底面周长为10πcm,高为12cm的圆锥的侧面积为65πcm2.考点:圆锥的计算.分析:根据圆锥的侧面积公式:S=al,直接代入数据求出即可.解答:解:设圆锥的底面半径为r,母线为a,∴r==5,∴a==13,∴圆锥的侧面积=×10π×13=65π,故答案为:65πcm2.点评:此题主要考查了圆锥侧面积公式,熟练地应用圆锥侧面积公式求出是解决问题的关键.17.(3分)(2015•齐齐哈尔)从点A(﹣2,3)、B(1,﹣6)、C(﹣2,﹣4)中任取一个点,在y=﹣的图象上的概率是.考点:概率公式;反比例函数图象上点的坐标特征.分析:先把三点分别代入反比例函数解析式,求出在此函数图象上的点,再利用概率公式解答即可.解答:解:∵A、B、C三个点,在函数y=﹣2x的图象上的点有A和B点,∴随机抽取一张,该点在y=﹣的图象上的概率是.故答案为:.点评:本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比;点在函数解析式上,点的横纵坐标适合函数解析式.18.(3分)(2015•齐齐哈尔)菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为5cm或cm .考点:菱形的性质;正方形的性质.专题:分类讨论.分析:作出图形,根据菱形的对角线互相垂直平分求出AO、BO,然后分正方形在AC的两边两种情况补成以BF为斜边的Rt△BGF,然后求出BG、FG,再利用勾股定理列式计算即可得解.解答:解:∵AC=6cm,BD=4cm,∴AO=AC=×6=3cm,BO=BD=×4=2m,如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,BG=AO=3cm,FG=AF+AG=6+2=8cm,在Rt△BFG中,BF===cm,如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,BG=AO=3cm,FG=AF﹣AG=6﹣2=4cm,在Rt△BFG中,BF===5cm,综上所述,BF长为5cm或cm.故答案为:5cm或cm.点评:本题考查了菱形的性质,正方形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,难点在于分情况讨论并作辅助线构造出直角三角形,作出图形更形象直观.19.(3分)(2015•齐齐哈尔)BD为等腰△ABC的腰AC上的高,BD=1,tan∠ABD=,则CD 的长为2或2﹣或.考点:解直角三角形;等腰三角形的性质;勾股定理.分析:分三种情况:①如图1,∠A为钝角,AB=AC,在R t△ABD中,根据锐角三角函数的定义即可得到结果;②如图2,∠A为锐角,AB=AC,在R t△ABD中根据锐角三角函数的定义即可得到结果,③如图3,根据等腰三角形的性质和锐角三角函数的定义即可得到结果.解答:解:分三种情况:①如图1,∠A为钝角,AB=AC,在R t△ABD中,∵BD=1,tan∠ABD=,∴AD=,AB=2,∴AC=2,∴CD=2+,②如图2,∠A为锐角,AB=AC,在R t△ABD中,∵BD=1,tan∠ABD=,∴AD=,AB=2,∴AC=2,∴CD=2﹣,③如图3,BA=BC,∵BD⊥AC,∴AD=CD,在R t△ABD中,∵BD=1,tan∠ABD=,∴AD=,∴CD=,综上所述;CD的长为:2或2﹣或,故答案为:2或2﹣或.点评:本题考查了等腰三角形的性质,解直角三角形,难点在于要分情况讨论.20.(3分)(2015•齐齐哈尔)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3D4,…,依此规律,则A2014A2015= 2()2014.考点:相似三角形的判定与性质;正方形的性质.专题:规律型.分析:由四边形ABCB1是正方形,得到AB=AB1,AB∥CB1,于是得到AB∥A1C,根据平行线的性质得到∠CA1A=30°,解直角三角形得到A1B1=,AA1=2,同理:A2A3=2()2,A3A4=2()3,找出规律A n A n+1=2()n,答案即可求出.解答:解:∵四边形ABCB1是正方形,∴AB=AB1,AB∥CB1,∴AB∥A1C,∴∠CA1A=30°,∴A1B1=,AA1=2,∴A1B2=A1B1=,∴A1A2=2,同理:A2A3=2()2,A3A4=2()3,…∴A n A n+1=2()n,∴A2014A2015=2()2014,故答案为:2()2014.点评:本题考查了正方形的性质,含30°直角三角形的性质,平行线的性质,熟记各性质并求出后一个正方形的边长是前一个正方形的边长的倍是解题的关键.三、解答题:满分60分21.(5分)(2015•齐齐哈尔)先化简,再求值:÷(+1),其中x是的整数部分.考点:分式的化简求值;估算无理数的大小.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.解答:解:原式=÷=•=,∵x是的整数部分,∴x=2,则原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(6分)(2015•齐齐哈尔)如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.考点:作图-位似变换;作图-平移变换.分析:(1)根据平移的性质画出图形即可;(2)根据位似的性质画出图形即可;(3)根据三角形的面积公式求出即可.解答:解:(1)如图所示:。
2013数学中考真题

黑龙江省龙东地区2013年初中毕业学业统一考试数学试题考生注意:1、考试时间120分钟题号一二三总分核分人21 22 23 24 25 26 27 28得分一、填空题(每小题3分,满分30分)1.“大美大爱”的龙江人勤劳智慧,2012年全省粮食总产量达到1152亿斤,夺得全国粮食总产第一,广袤的黑土地正成为保障国家粮食安全的大粮仓,1152亿斤用科学记数法表示为斤.2.在函数y=√x+1x中,自变量x的取值范围是.3.如图所示,平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:,使得平行四边形ABCD为菱形.4.风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为.5.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n= .6.二次函数y=﹣2(x−5)2+3的顶点坐标是.7.将半径为4cm的半圆围成一个圆锥,这个圆锥的高为cm.8.李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.9.梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若AFBF=2,则AEEC= .10.已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边三角形AB1C1,再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边三角形AB2C2,再以等边三角形AB2C2的边B2C2边上的高AB3为边作等边三角形,得到第三个等边AB3C3;…,如此下去,这样得到的第n个等边三角形A B n C n的面积为.(第3题图)(第10题图)本考场试卷序号(由监考填写)得分评卷人二、选择题(每题3分,满分30分)11.下列运算中,计算正确的是 ( ) A .(x 3)2= x 5 B .x 2+ x 2=2 x 4 C .(﹣2)-1=﹣12 D .(a ﹣b )2 = a 2﹣b 212.下列汽车标志中,既是轴对称图形又是中心对称图形的是 ( )A .B .C .D .13.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有 ( )(第13题图)A . 4B . 5C . 6D . 7 14根据表中提供的信息,这43名同学右眼视力的众数和中位数分别是 ( ) A . 4.9,4.6 B . 4.9,4.7 C . 4.9,4.65 D . 5.0,4.65 15.如图,爸爸从家(点O )出发,沿着扇形AOB 上OA →→BO 的路径去匀速散步,设爸爸距家(点O )的距离为S ,散步的时间为t ,则下列图形中能大致刻画S 与t 之间函数关系的图象是 ( )A .B .C .D . 16.已知关于x 的分式方程a+2x+1= 1的解是非正数,则a 的取值范围是 ()A . a ≤﹣1B . a ≤﹣1且a ≠﹣2C . a ≤1且 a ≠﹣2D . a ≤117.如图,△ABC 内接于△O ,AB=BC ,△ABC=120°,AD 为△O 的直径,AD=6,那么AB 的值 ( )A . 3B . 2√3C . 3√3D . 218.如图,Rt △ABC 的顶点A 在双曲线y = k x的图象上,直角边BC 在x 轴上,△ABC=90°,△ACB=30°,OC=4,连接OA ,∠AOB =60°,则k 的值是 ( ) A.4√3 B . −4√3 C .2√3 D .−2√319.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本 的方案共有( ) A . 3种 B . 4种 C . 5种 D . 6种20.如图,在直角梯形ABCD 中,AD △BC ,∠BCD =90°,△ABC=45°,AD =CD ,CE 平分∠ACB 交AB 于点E ,在BC 上截取BF =AE ,连接AF 交CE 于点G ,连接DG 交AC 于点H ,过点A 作AN ⊥BC ,垂足为N , AN 交CE 于点M .则下列结论;①CM =AF ;②CE ⊥AF ;③△ABF ∽△DAH ;④GD 平分∠AGC ,其中 正确的个 ( )A .1B .2C .3D .4(第17题图) (第18题图) (第20题图)三、简答题(满分60分)21.(本题满分5分)先化简,再求值(1−xx+1)÷x 2−1x +2x+1= 1,其中 x =2sin45°+1.22.(本题满分6分)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示. (1)将△ABC 向上平移3个单位后,得到△A 1B 1C 1,请画出△A 1B 1C 1,并直接写出点A 1的坐标.(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的△A 2B 2C 2,并求点B 所经过的路径长(结果保留x )(第22题图)如图,抛物线 y =x 2+bx +c 与x 轴交于A (﹣1,0)和B (3,0)两点,交y 轴于点E . (1)求此抛物线的解析式.(2)若直线y =x +1与抛物线交于A 、D 两点,与y 轴交于点F ,连接DE ,求△DEF 的面积.(第23题图)24.(本题满分7分)在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同 学1分钟跳绳次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题(1) 本次共抽查了多少名学生? (2) 请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x <155所在扇形圆心角的度数.(3) 若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?(4) 请你根据以上信息,对我市开展的学生跳绳活动谈谈自己的看法或建议.(第24题图)2012年秋季,某省部分地区遭受严重的雨雪自然灾害,兴化农场34800亩的农作物面临着收割困难的局面.兴华农场积极想办法,决定采取机械收割和人工收割两种方式同时进行抢收,工作了4天,由于雨雪过大,机械收割被迫停止,此时,人工收割的工作效率也减少到原来的23,第8天时,雨雪停止附近的胜利农场前来支援,合作6天,完成了兴化农场所有的收割任务.图1是机械收割的亩数y 1(亩)和人工收割的亩数y 2(亩)与时间x (天)之间的函数图象.图2是剩余的农作物的亩数w (亩)与时间x 天之间的函数图象,请结合图象回答下列问题:(1)请直接写出:A 点的纵坐标 . (2)求直线BC 的解析式.(3)第几天时,机械收割的总量是人工收割总量的10倍?(第25题图)26.(本题满分8分)正方形ABCD 的顶点A 在直线MN 上,点O 是对角线AC 、BD 的交点,过点O 作OE △MN 于点E ,过点B 作BF ⊥MN 于点F .(1)如图1,当O 、B 两点均在直线MN 上方时,易证:AF +BF =2OE (不需证明)(2)当正方形ABCD 绕点A 顺时针旋转至图2、图3的位置时,线段AF 、BF 、OE 之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.(图1) (图2) (图3)(第26题图)为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.(1)请问有几种开发建设方案?(2)哪种建设方案投入资金最少?最少资金是多少万元?(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.28.(本题满分10分)如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在x 轴上,点C 在y 轴上,∠ACB =90°,OA 、OB 的长分别是一元二次方程x 2﹣25x +144=0的两个根(OA <OB ),点D 是线段BC 上的一个动点(不与点B 、C 重合),过点D 作直线DE ⊥OB ,垂足为E . (1)求点C 的坐标.(2)连接AD ,当AD 平分∠CAB 时,求直线AD 的解析式.(3)若点N 在直线DE 上,在坐标系平面内,是否存在这样的点M ,使得C 、B 、N 、M 为顶点的四边形是正方形?若存在,请直接写出点M 的坐标;若不存在,说明理由.(第28题图)。
历年黑龙江省齐齐哈尔市中考试题(含答案)

2016年黑龙江省齐齐哈尔市中考数学试卷一、单项选择题:每小题3分,共30分1.(3分)(2016•齐齐哈尔)﹣1是1的()A.倒数 B.相反数C.绝对值D.立方根2.(3分)(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)(2016•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差D.中位数和极差4.(3分)(2016•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.5.(3分)(2016•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个6.(3分)(2016•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.7.(3分)(2016•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,38.(3分)(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或59.(3分)(2016•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个10.(3分)(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题:每小题3分,共27分11.(3分)(2016•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为.12.(3分)(2016•齐齐哈尔)在函数y=中,自变量x的取值范围是.13.(3分)(2016•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可).14.(3分)(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm.15.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=度.16.(3分)(2016•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y 轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=.17.(3分)(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.18.(3分)(2016•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD 边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB 于点N,则线段EC的长为.19.(3分)(2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为.三、解答题:共63分20.(7分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.21.(8分)(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.22.(8分)(2016•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A 和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)(2016•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.24.(10分)(2016•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.25.(10分)(2016•齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.26.(12分)(2016•齐齐哈尔)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2016年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分1.(3分)(2016•齐齐哈尔)﹣1是1的()A.倒数 B.相反数C.绝对值D.立方根【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.即a的相反数是﹣a.【解答】解:﹣1是1的相反数.故选B.【点评】主要考查相反数的概念:只有符号不同的两个数互为相反数,0的相反数是0.同时涉及倒数的定义,绝对值的性质,立方根的定义的知识点.2.(3分)(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2016•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差D.中位数和极差【分析】根据众数和极差的概念进行判断即可.【解答】解:一班同学投中次数为6个的最多反映出的统计量是众数,二班同学投中次数最多与最少的相差6个能反映出的统计量极差,故选:B.【点评】本题考查的是统计量的选择,平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大.4.(3分)(2016•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【分析】分别利用二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算法则、合并同类项法则进行判断,再利用概率公式求出答案.【解答】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=2016,错误;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:,故选:A.【点评】此题主要考查了二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算、合并同类项、概率公式等知识,正确掌握相关运算法则是解题关键.5.(3分)(2016•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【分析】根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.【解答】解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2016•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6﹣x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=×4×(6﹣x)=12﹣2x(0<x<6),∴C符合.故选C.【点评】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.7.(3分)(2016•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,3【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程=2﹣的解为正数,得m=1,m=3,故选:C.【点评】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.8.(3分)(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.【点评】本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.9.(3分)(2016•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行1个小正方体,第一列第二行2个小正方体,第二列第三行2个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:1+2+2=5个.故选A.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.(3分)(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每小题3分,共27分11.(3分)(2016•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为 6.9×10﹣7.【分析】对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000069=6.9×10﹣7.故答案为:6.9×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2016•齐齐哈尔)在函数y=中,自变量x的取值范围是x≥﹣,且x≠2.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得3x+1≥0且x﹣2≠0,解得x≥﹣,且x≠2,故答案为:x≥﹣,且x≠2.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式是解题关键.13.(3分)(2016•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AC⊥BD或∠AOB=90°或AB=BC使其成为菱形(只填一个即可).【分析】利用菱形的判定方法确定出适当的条件即可.【解答】解:如图,平行四边形ABCD的对角线AC,BD相交于点O,添加一个适当的条件为:AC⊥BD或∠AOB=90°或AB=BC使其成为菱形.故答案为:AC⊥BD或∠AOB=90°或AB=BC【点评】此题考查了菱形的判定,以及平行四边形的性质,熟练掌握菱形的判定方法是解本题的关键.14.(3分)(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为4cm.【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出2r=l,代入S侧=πrl,求出r,l,从而求得圆锥的高.【解答】解:设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴2r=l,∴侧面积S侧=πrl=πr2=16πcm2,解得r=4,l=4,∴圆锥的高h=4cm,故答案为:4.【点评】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式,难度不大.15.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=45度.【分析】连接OD,只要证明△AOD是等腰直角三角形即可推出∠A=45°,再根据平行四边形的对角相等即可解决问题.【解答】解;连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.【点评】本题考查平行四边形的性质、切线的性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.16.(3分)(2016•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y 轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=6.【分析】根据点P(6,3),可得点A的横坐标为6,点B的纵坐标为3,代入函数解析式分别求出点A的纵坐标和点B的横坐标,然后根据四边形OAPB的面积为12,列出方程求出k的值.【解答】解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y=得,点A的纵坐标为,点B的横坐标为,即AM=,NB=,∵S四边形OAPB=12,即S矩形OMPN﹣S△OAM﹣S△NBO=12,6×3﹣×6×﹣×3×=12,解得:k=6.故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.17.(3分)(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20.【分析】分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.【解答】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.【点评】本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.18.(3分)(2016•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD 边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB 于点N,则线段EC的长为﹣1.【分析】过点M作MF⊥DC于点F,根据在边长为2的菱形ABCD中,∠A=60°,M为AD中点,得到2MD=AD=CD=2,从而得到∠FDM=60°,∠FMD=30°,进而利用锐角三角函数关系求出EC的长即可.【解答】解:如图所示:过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴EC=MC﹣ME=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,解题的关键是从题目中抽象出直角三角形,难度不大.19.(3分)(2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为(﹣,).【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OC n B n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).【点评】本题考查的是矩形的性质、位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.三、解答题:共63分20.(7分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【分析】先算括号里面的,再算除法,最后算减法,根据x2+2x﹣15=0得出x2+2x=15,代入代数式进行计算即可.【解答】解:原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.(8分)(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.【分析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.【解答】解:(1)如图所示,△A1B1C1为所求做的三角形;(2)如图所示,△A2B2O为所求做的三角形;(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),∴A2A3所在直线的解析式为:y=﹣5x+16,令y=0,则x=,∴P点的坐标(,0).【点评】本题考查了利用旋转和平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(8分)(2016•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A 和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)利用对称轴方程可求得b,把点A的坐标代入可求得c,可求得抛物线的解析式;(2)根据A、B关于对称轴对称可求得点B的坐标,利用抛物线的解析式可求得B点坐标;(3)根据B、C坐标可求得BC长度,由条件可知BC为过O、B、C三点的圆的直径,可求得圆的面积.【解答】解:(1)由A(﹣1,0),对称轴为x=2,可得,解得,∴抛物线解析式为y=x2﹣4x﹣5;(2)由A点坐标为(﹣1,0),且对称轴方程为x=2,可知AB=6,∴OB=5,∴B点坐标为(5,0),∵y=x2﹣4x﹣5,∴C点坐标为(0,﹣5);(3)如图,连接BC,则△OBC是直角三角形,∴过O、B、C三点的圆的直径是线段BC的长度,在Rt△OBC中,OB=OC=5,∴BC=5,∴圆的半径为,∴圆的面积为π()2=π.【点评】本题为二次函数的综合应用,涉及知识点有二次函数的性质、待定系数法、勾股定理、圆周角定理等.在(3)中确定出圆的半径是解题的关键.本题属于基础性的题目,难度不大.23.(8分)(2016•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.【分析】(1)由∠C+∠DBF=90°,∠C+∠DAC=90°,推出∠DBF=∠DAC,由此即可证明.(2)先证明AD=BD,由△ACD∽△BFD,得==1,即可解决问题.【解答】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴==1,∴BF=AC=3.【点评】本题考查相似三角形的判定和性质、三角函数等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.24.(10分)(2016•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年湖北省恩施州中考数学试卷锦元数学工作室编辑一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是满足题目要求的,请将正确选项填涂在答题卷的相应位置).1、(湖北恩施3分)-2的倒数是A、2B、12C、-12D、不存在【答案】C。
【考点】【分析】根据两个数乘积是1的数互为倒数的定义,直接得出结果:∵(-2)×(-12)=1,∴-2的倒数是-12。
故选C.2、(湖北恩施3分)下列运算正确的是A、a6÷a2=a3B、a5﹣a3=a2C、(3a3)2=6a9D、2(a3b)2﹣3(a3b)2=﹣a6b2【答案】D。
【考点】同底数幂的除法,合并同类项,幂的乘方与积的乘方。
【分析】根据同底数幂的除法,合并同类项,幂的乘方与积的乘方和运算法则,对各选项计算后利用排除法求解:A、a6÷a2=a4,故本选项错误;B、不是同类项,不能合并,故本选项错误;C、(3a3)2=9a6,故本选项错误;D、2(a3b)2﹣3(a3b)2=﹣a6b2,故本选项正确。
故选D。
3、(湖北恩施3分)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是A、43°B、47°C、30°D、60°【答案】B。
【考点】平行线的性质,对顶角的性质,三角形内角和定理。
【分析】如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC。
又∠CED=∠α=43°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣43°=47°。
故选B。
4、(湖北恩施3分)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,即x ﹣1=1,解得x=2;当y=4时,即x ﹣1=4,解得x=5,所以原方程的解为:x 1=2,x 2=5.则利用这种方法求得方程 (2x+5)2﹣4(2x+5)+3=0的解为A 、x 1=1,x 2=3B 、x 1=﹣2,x 2=3C 、x 1=﹣3,x 2=﹣1D 、x 1=﹣1,x 2=﹣2【答案】D 。
【考点】换元法解一元二次方程。
【分析】设y=2x+5,方程可以变为 y 2﹣4y+3=0,∴y 1=1,y 2=3。
当y=1时,即2x+5=1,解得x=﹣2;当y=3时,即2x+5=3,解得x=﹣1,所以原方程的解为:x 1=﹣2,x 2=﹣1。
故选D 。
5、(湖北恩施3分)一次函数y 1=k 1x+b 和反比例函数22k y x=(k 1∙k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是A 、﹣2<x <0或x >1B 、﹣2<x <1C 、x <﹣2或x >1D 、x <﹣2或0<x <1 【答案】A 。
【考点】反比例函数与一次函数的交点问题。
【分析】如图,依题意得一次函数y 1=k 1x+b 和反比例函数22k y x=(k 1∙k 2≠0)的图象的交点的横坐标分别为x=﹣2或x=1,若y 1>y 2,则y 1的图象在y 2的上面,x 的取值范围是﹣2<x <0或x >1.故选A 。
6、(湖北恩施3分)某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是A 、200﹣60xB 、140﹣15xC 、200﹣15xD 、140﹣60x【答案】C 。
【考点】列代数式,整式的加减。
【分析】∵学校租用45座的客车x 辆,则余下20人无座位,∴师生的总人数为45x+20;又∵租用60座的客车则可少租用2辆,∴乘坐最后一辆60座客车的人数为:45x+20﹣60(x﹣3)=45x+20﹣60x+180=200﹣15x。
故选C。
7、(湖北恩施3分)如图,直线AB、AD与⊙O相切于点B、D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是A、70°B、105°C、100°D、110°【答案】C。
【考点】圆内接四边形的性质,圆周角定理,切线的性质,多边形内角和定理。
【分析】如图,过点B作直径BE,连接OD、DE。
∵B、C、D、E共圆,∠BCD=140°,∴∠E=180°﹣140°=40°。
∴∠BOD=80°。
∵AB、AD与⊙O相切于点B、D,∴∠OBA=∠ODA=90°。
∴∠A=360°﹣90°﹣90°﹣80°=100°。
故选C。
8、(湖北恩施3分)一个几何体的三视图如图所示,根据图中的相关数据求得该几何体的侧面积为A、πB、2πC、3πD、4π【答案】B。
【考点】由三视图判断几何体,勾股定理,圆锥的计算。
【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥。
从而得出圆锥的高以及母线长和底面圆的半径,再利用圆锥侧面积公式求出即可:依题意知圆锥的底面半径r=1,高为3,根据勾股定理得母线l=2。
则由圆锥的侧面积公式得S=πrl=π×1×2=2π。
故选B。
9、(湖北恩施3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为A、11B、5.5C、7D、3.5【答案】B。
【考点】角平分线的性质;全等三角形的判定和性质。
【分析】作DM=DE交AC于M,作DN⊥AC,∵DE=DG,∴DM=DE。
∵AD是△ABC的角平分线,DF⊥AB,∴DE=DN。
∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△AMG=590﹣39=11。
S△DNM=S△DEF=12S△MDG=12×11=5.5。
故选B。
10、(湖北恩施3分)小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:00 13:00 14:30碑上的数是一个两位数,数字之和为6十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0则12:00时看到的两位数是A、24B、42C、51D、15【答案】D。
【考点】二元一次方程组的应用(数字问题)。
【分析】设小明12时看到的两位数,十位数为x,个位数为y,即为10x+y,则13时看到的两位数为x+10y,12~13时行驶的里程数为:(10y+x)﹣(10x+y),14:30时看到的数为100x+y,14:30~13时行驶的里程数为:(100x+y)﹣(10y+x)。
由题意列方程组得:x y6100x y10y x10y x10x y1.5+=⎧⎪++⎨=++⎪⎩()-()()-(),解得:x1y5=⎧⎨=⎩,所以12:00时看到的两位数是15。
故选D。
二、填空题(本大题共6小题,每小题3分,共18分.请将答案填写在答题卷对应题号的位置上,填错位置,书写不清,模棱两可,答案不全等均不得分).11、(湖北恩施3分)到2010年底,恩施州户籍总人口约为404.085万人,用科学记数法表示为▲ 人(保留两个有效数字).【答案】4.0×106。
【考点】科学记数法,有效数字。
【分析】根据科学记数法的定义,科学记数法的表示形式为1010n a a <⨯≤,其中1,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
404.085万=4040850一共7位,从而404.085万=4.04085×106。
有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字。
所以404.085万≈4.0×106。
12、(湖北恩施3分)分解因式:﹣x 3y+2x 2y ﹣xy= ▲ .【答案】﹣xy (x ﹣1)2。
【考点】提取公因式和应用公式因式分解。
【分析】﹣x 3y+2x 2y ﹣xy=﹣xy (x 2﹣2x+1)(提取公因式)=﹣xy (x ﹣1)2(完全平方公式)。
13、(湖北恩施3分)如图,△AOB 的顶点O 在原点,点A 在第一象限,点B 在x 轴的正半轴上,且AB=6,∠AOB=60°,反比例函数k y x=(k >0)的图象经过点A ,将△AOB 绕点O 顺时针旋转120°,顶点B 恰好落在k y x=的图象上,则k 的值为 ▲ . 【答案】93。
; -【考点】反比例函数综合题,坐标与图形旋转变化,旋转和性质,等边三角形的判定和性质,解直角三角形,特殊角的三角函数值。
【分析】过A 点作AC ⊥x 轴,垂足为C ,设旋转后点B 的对应点为B′,则∠AOB′=∠AOB+∠BOB′=60°+120°=180°。
∵双曲线是中心对称图形,∴OA=OB′,即OA=OB 。
又∵∠AOB=60°,∴△AOB 为等边三角形。
∴OA=AB=6。
在Rt △AOC 中,OC=OA×cos60°=3,AC=OA×sin60°=33,∴k=OC×AC=93。
14、(湖北恩施3分)若不等式x<a只有4个正整数解,则a的取值范围是▲ .【答案】4<a≤5。
【考点】一元一次不等式的整数解。
【分析】∵不等式x<a只有四个正整数解,∴四个正整数解为:1,2,3,4,∴4<a≤5。
15、(湖北恩施3分)形状大小一样、背面相同的四张卡片,其中三张卡片正面分别标有数字“2”“3”“4”,小明和小亮各抽一张,前一个人随机抽一张记下数字后放回,混合均匀,后一个人再随机抽一张记下数字算一次,如果两人抽一次的数字之和是8的概率为316,则第四张卡片正面标的数字是▲ .【答案】5或6。
【考点】列表法或树状图法,概率。
【分析】设第四张卡片正面标的数字是x,则画树状图:从图可知,2,3,4,x在2次实验中等可能出现的结果共有16种,∴要使两人抽一次的数字之和是8的概率为316即要两次抽取的卡片上的数字之和等于8的情况可能有且只有3种。
因此x只能取5或6。
16、(湖北恩施3分)2002年在北京召开的世界数学大会会标图案是由四个全等的直角三角形围成的一个大正方形,中间的阴影部分是一个小正方形的“赵爽弦图”.若这四个全等的直角三角形有一个角为30°,顶点B1、B2、B3、…、B n和C1、C2、C3、…、C n分别在直线1y x312=-++和x轴上,则第n个阴影正方形的面积为▲ .【答案】2n 23⎛⎫ ⎪⎝⎭。