精品初三数学锐角三角函数的简单应用教学教案
九年级数学锐角三角函数教案

一、教学目标:1.知识与技能目标:(1)了解什么是锐角三角函数;(2)掌握正弦、余弦和正切在锐角范围内的性质和计算方法;(3)能够运用锐角三角函数解决相关实际问题。
2.过程与方法目标:(1)运用课堂讲解、练习、小组合作和课堂展示相结合的方式,培养学生的学习兴趣;(2)通过解决实际问题的方式,培养学生的分析和解决问题的能力;(3)通过小组合作的方式,培养学生的合作和交流能力。
3.情感、态度与价值观目标:(1)通过展示数学的应用场景,培养学生对数学的兴趣和好奇心;(2)通过小组合作和课堂展示的方式,培养学生的合作和交流能力;(3)通过解决实际问题的方式,培养学生的分析和解决问题的能力。
二、教学重点和难点1.教学重点(1)正弦、余弦和正切的定义和性质;(2)正弦、余弦和正切的计算方法;(3)运用锐角三角函数解决相关实际问题。
2.教学难点(1)运用锐角三角函数解决实际问题的能力;(2)理解正弦、余弦和正切的定义和性质。
三、教学过程安排第一课时:1.导入(10分钟)让学生回顾之前学过的角度、弧度和三角比的相关知识,引出锐角三角函数的概念,并介绍本节课的学习内容和目标。
2.讲解(20分钟)(1)通过幻灯片和板书,讲解正弦、余弦和正切的定义和性质。
(2)讲解正弦、余弦和正切的计算方法,并解答学生提出的疑问。
3.练习(15分钟)(1)在黑板上出示锐角三角函数的计算练习题,让学生在纸上计算并互相讨论答案。
(2)随机抽选几位学生上台讲解解题过程,并进行讲解和点评。
4.小组合作(10分钟)(1)将学生分成小组,每个小组由3-4人组成,让他们一起解决一个实际问题。
(2)每个小组将解决过程和结果展示给全班,并进行评价和讨论。
5.总结(5分钟)(1)对本节课的内容进行总结概括。
(2)布置课后作业,让学生复习和巩固锐角三角函数的内容。
第二课时:1.复习(10分钟)让学生回顾之前学过的锐角三角函数的知识点,并进行简单的小测验。
苏科版数学九年级下册7.6《锐角三角函数的简单应用》教学设计

苏科版数学九年级下册7.6《锐角三角函数的简单应用》教学设计一. 教材分析苏科版数学九年级下册7.6《锐角三角函数的简单应用》这一节主要讲述了锐角三角函数的概念以及在实际问题中的应用。
通过本节课的学习,学生能够掌握锐角三角函数的定义,了解其在实际问题中的应用,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了锐角三角函数的定义,对锐角三角函数有一定的了解。
但如何在实际问题中应用锐角三角函数,解决实际问题,是学生需要进一步掌握的内容。
三. 教学目标1.理解锐角三角函数的定义,掌握锐角三角函数的基本性质。
2.学会将实际问题转化为锐角三角函数问题,提高解决实际问题的能力。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.重点:锐角三角函数的定义,锐角三角函数在实际问题中的应用。
2.难点:如何将实际问题转化为锐角三角函数问题,解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生主动探究,提高学生的动手实践能力和团队协作能力。
六. 教学准备1.准备相关的实际问题,用于引导学生应用锐角三角函数解决问题。
2.准备多媒体教学设备,用于展示实际问题和教学案例。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如测量金字塔的高度、计算电视屏幕的面积等,引导学生思考如何利用锐角三角函数解决这些问题。
2.呈现(10分钟)讲解锐角三角函数的定义,通过示例让学生理解并掌握锐角三角函数的基本性质。
3.操练(10分钟)让学生分组讨论,如何将导入环节中的实际问题转化为锐角三角函数问题,并尝试解决问题。
教师巡回指导,为学生提供帮助。
4.巩固(10分钟)选取一些典型的实际问题,让学生独立解决,巩固所学知识。
教师选取学生解答中的典型错误进行讲解,提高学生的解题能力。
5.拓展(10分钟)让学生思考如何将锐角三角函数应用到生活中,举例说明。
教师引导学生进行思考,分享自己的经验。
九年级数学下册《锐角三角函数》教案、教学设计

2.教学方法:
采用讲解法、示例教学法,结合几何画板演示,帮助学生形象地理解锐角三角函数的定义和性质。
3.教学过程:
(1)通过回顾勾股定理,引导学生发现锐角三角函数的定义。
(2)利用几何画板,动态演示锐角三角函数随角度变化的规律,帮助学生理解其性质。
(4)注重情感教育,关注学生的学习情感,激发学生的学习兴趣和内在动力。
4.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决等方面,全面评价学生的学习过程。
(2)终结性评价:通过测试、作业等方式,评价学生对本章知识的掌握程度。
(3)增值性评价:关注学生的进步,鼓励学生自我评价,激发学生的学习潜能。
九年级数学下册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及其相互关系。
2.学会使用计算器或手工计算方法,解决直角三角形中锐角三角函数值的问题。
3.掌握用锐角三角函数解决实际问题的方法,如测量物体的高度、计算物体之间的距离等。
4.能够运用锐角三角函数的性质,解决一些简单的几何问题,如求角的度数、证明线段相等等。
3.利用计算器、几何画板等教学辅助工具,帮助学生直观地理解锐角三角函数的图像和变化规律,提高学生的数学思维能力。
4.设计丰富的例题和练习题,巩固学生对锐角三角函数知识的掌握,培养学生分析问题、解决问题的能力。
5.通过课堂小结,引导学生总结本章所学内容,形成知识体系,提高学生的概括和表达能力。
(三)情感态度与价值观
3.思考题:
(1)思考锐角三角函数的定义在解决实际问题中的作用,举例说明。
苏科版数学九年级下册7.6《锐角三角函数的简单应用》讲教学设计

苏科版数学九年级下册7.6《锐角三角函数的简单应用》讲教学设计一. 教材分析苏科版数学九年级下册7.6《锐角三角函数的简单应用》这一节主要介绍了锐角三角函数的概念和简单应用。
学生通过学习这一节内容,可以进一步理解锐角三角函数的定义和性质,并能运用到实际问题中。
教材通过例题和练习题的形式,帮助学生掌握锐角三角函数的应用方法。
二. 学情分析学生在学习这一节内容前,已经学习了锐角三角函数的定义和性质,但对函数的应用可能还不够熟悉。
因此,在教学过程中,需要帮助学生理解和掌握锐角三角函数的应用方法,并能够将其运用到实际问题中。
三. 教学目标1.知识与技能:学生能够理解锐角三角函数的概念,掌握其应用方法,并能够解决实际问题。
2.过程与方法:学生通过观察、分析和实践,培养解决问题的能力。
3.情感态度价值观:学生能够积极参与学习,增强对数学的兴趣和信心。
四. 教学重难点1.重点:学生能够理解锐角三角函数的概念,掌握其应用方法。
2.难点:学生能够将锐角三角函数运用到实际问题中,解决问题。
五. 教学方法1.情境教学法:通过设置实际问题情境,激发学生的学习兴趣,引导学生主动参与学习。
2.案例教学法:通过分析例题和练习题,让学生掌握锐角三角函数的应用方法。
3.小组合作学习:通过小组讨论和合作,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教具准备:准备多媒体教学设备,如投影仪和计算机等。
2.教学资源:准备相关的例题和练习题,以及教学PPT。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑工人测量高度等,引入锐角三角函数的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示锐角三角函数的定义和性质,引导学生观察和分析。
3.操练(10分钟)让学生独立完成教材中的例题,教师进行个别指导,帮助学生理解和掌握锐角三角函数的应用方法。
4.巩固(10分钟)学生分组讨论,共同完成教材中的练习题,教师巡回指导,巩固学生对锐角三角函数应用的理解和掌握。
(完整word版)初三数学锐角三角函数教案

一.教学目标:1.通过实例认识直角三角形的边角关系,即锐角三角函数(sinA ,cosA ,tanA ),记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角;2.会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角.3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.5.能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题.二、教学重难点:1.重点:(1)锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值也很重要,应该牢牢记住. (2)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题. 2.难点 :(1)锐角三角函数的概念.(2)经历探索30°,45°,60°角的三角函数值的过程,锻炼学生观察、分析,解决问题的能力.三、知识点梳理知识点1.课题 锐角三角函数学生姓名年级 初三日期正弦:如图所示,在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即 ;可得a= ;c=余弦:如图所示,在Rt △ABC 中,∠C=90°,我们把锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即 ,可得b= ;c=正切:如图所示,在Rt △ABC 中,∠C=90°,我们把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA , 即 ,可得a= ;b=特殊角的锐角三角函数角度 函数0° 30° 37° 45° 53° 60° 90°sinαcos αtan α锐角三角函数值的变化情况 : (1)锐角三角函数值都是正值(2)正弦、余弦的增减性: 当0°≤α≤90°时,sin α ,cos α0°≤∠A≤90°间变化时, 0≤sinα≤1, 0≤cosA≤1(3)正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
九年级数学锐角三角函数教案

九年级数学锐角三角函数教案1.锐角三角函数第一课时 锐角三角函数(一)教学目标使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义。
并能应用这些概念解决一些实际问题。
教学过程一、复习由上节课例题若加改变得,若AC =160cm ,∠C =31°,那么,AB 的长度为多少呢?同学们现在或许不能解决上述问题,但是通过这节课的学习,以上问题自然很容易得到解决。
二、新课1.明确直角三角形边角关系的名称。
直角三角形ABC 可以简记为Rt △ABC ,我们已经知道∠C 所对的边AB 称为斜边,用c 表示,另两条直角边分别为∠A 的对边与邻边,用a 、b 表示。
如右图,在Rt △EFG 中,请同学们分别写出∠E 、∠F的对边和邻边。
2.在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。
问题1如右图,△ABC 和△A 1B 1C 1中,若∠C =∠C 1=∠90°, ∠A =∠A 1,那么△ABC 和△A 1B 1C 1相似吗?与相等吗? BC AB 和B 1C 1A 1B 1相等吗? 显然△ABC ∽△A 1B l C l ,BC AB =B 1C 1A 1B 1,这说明在Rt △ABC 中,只要一个锐角的大小不变,那么不管这个直角三角形大小如何,该锐角的对边与斜边的比值是一个固定值。
这说明,在直角三角形中,一个锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。
3.锐角三角函数的概念。
Rt △ABC 中(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA = ∠A 的对边斜边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边同学们想一想,在Rt△ABC中,∠B的正弦、余弦、正切、余切是哪一边与那一边的比值。
初中数学《锐角三角函数的应用》教案

初中数学《锐角三角函数的应用》教案教案:锐角三角函数的应用一、教学目标1.知识与技能目标:(1)理解锐角三角函数的定义及其性质。
(2)学会利用锐角三角函数计算实际问题。
2.过程与方法目标:(1)培养学生的观察能力和应用能力。
(2)通过实际问题的讨论,提高学生的合作能力和创新思维。
二、教学重点与难点1.教学重点:(1)锐角三角函数的定义及其性质。
(2)利用锐角三角函数计算实际问题。
2.教学难点:锐角三角函数的应用及解题方法。
三、教学过程1.导入活动(10分钟)(1)利用图片展示一个矩形房间的平面图。
(2)引导学生思考:如何测量矩形房间的对角线长度?(3)引导学生利用勾股定理,解答该问题。
2.学习新知(30分钟)(1)通过示意图,引入锐角三角函数的概念。
(2)分别介绍正弦函数、余弦函数、正切函数以及它们的定义。
(3)通过讲解示例题,帮助学生理解锐角三角函数的性质。
3.问题解决(40分钟)(1)分组研究讨论:利用锐角三角函数计算实际问题。
(2)学生自主提出问题,并利用所学知识进行解答。
(3)学生展示解题思路和解题方法。
(4)教师点评和补充。
4.小结归纳(10分钟)(1)教师对学生的表现进行总结评价。
(2)引导学生对今天的学习内容进行归纳。
5.课后拓展(20分钟)(1)学生复习所学知识,完成相应的练习题。
(2)学生可以根据自己的兴趣,进行更多的实际问题探究。
1.教学资源:(1)PPT课件。
(2)图片资源。
(1)《初中数学(新)》人民教育出版社。
(2)《数学课程标准》人民教育出版社。
五、教学评价1.教师评价:(1)观察学生在课堂中的参与度,包括提问、回答等。
(2)针对学生的解题思路和解题方法,给予评价和指导。
(3)对学生的课堂表现进行总结和评价。
2.学生评价:(1)学生可以通过小组讨论、展示等方式展示自己的成果。
(2)学生可以通过解答问题的准确性和速度来评价自己的学习效果。
(3)学生可以通过课后练习的结果来评价自己的掌握程度。
九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。
从图形可以看出ACBCCACB'''',即tanA l>tanA。
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
新授:坡度的概念,坡度与坡角的关系。
如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。
坡面与水平面的夹角叫做坡角。
从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。
和坝底宽AD。
(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。
坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学锐角三角函数的简单应用教学教案
这篇关于初三数学锐角三角函数的简单应用教学教案的文章,是老师特地为大家整理的,希望对大家有所帮助!
一、复习巩固:
1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。
2、在△ABC中,∠C=90°。
(1)已知∠A=30°,BC=8cm,(2)已知∠A=60°,AC= cm,求:AB与AC的长;求:AB与BC的长。
二、例题学习:
问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场
的大型摩天轮的半径为20m,旋转1周需要12min。
小明乘坐
最底部的车厢(离地面约0.5m)开始1周的观光,2min后小
明离地面的高度是多少(精确到0.1m)?
拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将
首次到达10m?
2、小明将有多长时间连续保持在离地面20m以上的空中?
思考与探索1:如图,东西两炮台A、B相距2000米,同时发
现敌舰C,炮台A测得敌舰C在它的南偏东60°的方向,炮台
B测得敌舰C在它的正南方,试求敌舰与两炮台的距离。
概念:仰角、俯角的定义
如右图,从下往上看,视线与水平线的夹角叫仰角,
从上往下看,视线与水平线的夹角叫做俯角。
右图中的∠1就是仰角,∠2就是俯角。
问题2:为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为30°,然后他向气球方向前进了50m,此时观测气球,测得仰角为45°。
若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?
思考与探索(2):
大海中某小岛的周围10km范围内有暗礁。
一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km后到达该岛的南偏西25°方向的另一处。
如果该海轮继续向东行驶,会有触礁的危险吗?
三、板演练习
1、如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?
2、飞机在一定高度上飞行,先测得正前方某小岛的俯角为30°,飞行10km后,测得该小岛的俯角为60°,求飞机的高度。
四、小结
五、课堂作业(见作业纸57)
班级__________姓名___________学号_________得分
_________
1、(09年益阳市)如图3,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()
A. B. C. D.
第1题第3题第4题第5题
2.(09甘肃定西)某人想沿着梯子爬上高4米的房顶,梯子的
倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为()
A.8米 B.米 C.米 D.米
3.(09潍坊)如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公
路l的距离为()米.
A.25 B. C. D.
4.已知跷跷板长4m,当跷跷板的一端碰到地面时,另一端离
地面2m。
时跷跷板与地面的夹角为_________。
5.(09仙桃)如图所示,小华同学在距离某建筑物6米的点
A处测得广告牌B点.C点的仰角分别为52°和35°,则广告牌的高度BC为_____________米(精确到0.1
米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;
sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)
6.(09年济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点处安置测倾器,测得风筝的仰角;
(2)根据手中剩余线的长度出风筝线的长度为70米;
(3)量出测倾器的高度米.
根据测量数据,计算出风筝的高度约为米.(精确到0.1米,)
7.如图,秋千链子的长度为3m,当秋千向两边摆动时,两边
摆动的角度均为30°.求它摆动到位置与最低位置的高度之差。
8.(2009眉山)海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时
灯塔B到C处的距离.
9.(2009年哈尔滨)如图,一艘轮船以每小时20海里的速
度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,
轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果保留根号)
10.(09年济宁市)坐落在山东省汶上县宝相寺内的太子灵踪
塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式
建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.
(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高
的示意图.她先在塔前的平地上选择一点,用测角仪测出看塔顶的仰角,在点和塔之间选择一点,测出看塔顶的仰角,然后用皮尺量出.两点的距离为 m,自身的高度为 m.请你利用上述数据帮助小华计算出塔的高度(,结果保留整数).
(2)如果你是活动小组的一员,正准备测量塔高,而此时塔
影的长为 m(如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:
①在你设计的测量方案中,选用的测量工具是: ;
②要计算出塔的高,你还需要测量哪些数据?。