第二十八章锐角三角函数-教案全章 (1)
第二十八章锐角三角函数-教案全章(1)

【锐角三角函数全章教案】锐角三角函数(第一课时)教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA、cosA、tanA表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三•情感目标:提高学生对几何图形美的认识。
教材分析:1. 教学重点:正弦,余弦,正切概念2 .教学难点:用含有几个字母的符号组siaA、cosA、tanA表示正弦,余弦,正切教学程序:一.探究活动1 .课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2. 归纳三角函数定义。
Z A的对边N A的邻边N A的对边siaA= ,cosA= ,ta nA=-斜边斜边N A的邻边3例1.求如图所示的Rt " ABC中的siaA,cosA,tanA 的值。
二.探究活动二1.让学生画30° 45° 60°的直角三角形,分别求sia 30 ° cos45 ° tan60归纳结果30 °45°60°siaAcosAta nA2.求下列各式的值三. 拓展提高 P82例4.(略)73厂1.如图在"ABC 中,/ A=30° ,tan B= ,AC=23 ,2求AB四•小结 五.作业课本 p85— 86 2,3,6,7,8,10解直角三角形应用(一)一•教学三维目标(一) 知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余 及锐角三角函数解直角三角形.(二) 能力训练点通过综合运用勾股定理, 直角三角形的两个锐角互余及锐角三角函数解直角三角形, 逐步培养学生分析问题、解决问题的能力.(三) 情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、 教学重点、难点和疑点1. 重点:直角三角形的解法.2. 难点:三角函数在解直角三角形中的灵活运用.3•疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、 教学过程(一)知识回顾1. 在三角形中共有几个元素?2. 直角三角形 ABC 中,/ C=90° , a 、b 、c 、/ A 、/ B 这五个元素间有哪些等量关系呢?(1) sia 30 ° +cos30 °( 2) , 2 sia 45-—cos30cos30sia45°+ta60-tan30aba(1)边角之间关系si nA= cosA= tan A=-c c b⑵三边之间关系a2 +b2 =c2(勾股定理)⑶锐角之间关系/ A+ / B=90° .以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)探究活动1•我们已掌握Rt△ ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素•这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2. 教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3•例题评析例1在厶ABC中,/ C为直角,/ A、/ B、/ C所对的边分别为a、b、c,且b= 2 a—. 6,解这个三角形.例2在厶ABC 中,/ C为直角,/ A、/ B、/ C所对的边分别为a、b、c,且b= 20 .B=35°,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用•因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边•计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt△ ABC中,a=104.0, b=20.49,解这个三角形.(三)巩固练习在厶ABC中,/ C为直角,AC=6 , - BAC的平分线AD=4 . 3,解此直角三角形。
锐角三角函数的教案

锐角三角函数的教案【篇一:锐角三角函数教案】第二十八章锐角三角函数【篇二:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
(优质课)锐角三角函数教案

1、小试牛刀
(1)在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的( ).
A.
(2)若sin(65°-∠A)= ,则∠A=
(3)如图:在Rt△ABC中,∠C=90°,AB=10,sinB=,BC的长是.
(4)如图,P是平面直角坐标系上的一点,点P的坐标为(3,4),则sin=
BC=,由勾股定理得:A
因此CB
即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于
从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°
当∠A=30°时,∠A的对边与斜边的比都等于 ,是个固定值;
当∠A=45°时,∠A的对边与斜边的比都等于 ,也是一个固定值.
【这一环节的教学,教师要强调前提条件是:“在直角三角形中”,正弦函数值是边的比值,没有单位,并且让学生明确什么是“对边”和“斜边”】单独写出符号sin是没有意义的。
当∠A=30°时,
当∠A=45°时,
当∠A=60°时,
3、概念强化训练:
判断对错:
(1)如图(1)sinA=( ) B
10m
(2)sinB=( ) 6m
教学重点:
理解正弦(sinA)概念,掌握当直角三角形的锐角固定时,它的对边与斜边的比值是固定值.
教学难点:
在直角三角形中当锐角固定时,它的对边与斜边的比值是固定值的事实。
二、教学过程:
1、创设情景,提出问题:(PPT演示)
在唐僧师徒取经的路上,遇到了一座山,这座山有多高呢?这可难住了唐僧。大徒弟孙悟空目测山的顶部,视线与水平线的夹角为30度,然后从地面飞到山顶,路程是1000米。
(3)sinA=0.6m( ) A C
人教版数学九年级下册第28章《锐角三角函数》课堂教学设计

人教版数学九年级下册第28章《锐角三角函数》课堂教学设计一. 教材分析人教版数学九年级下册第28章《锐角三角函数》是初中数学的重要内容,主要介绍了锐角三角函数的定义、性质和应用。
本章内容为学生提供了研究角度和三角函数的基本工具,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
二. 学情分析学生在学习本章内容前,已经掌握了锐角的概念、三角函数的定义等基础知识,具备了一定的观察、实验、推理的能力。
但部分学生对于抽象的三角函数概念和性质的理解仍有困难,需要通过具体例子和实际应用来加深理解。
三. 教学目标1.理解锐角三角函数的定义和性质;2.学会用锐角三角函数解决实际问题;3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.重点:锐角三角函数的定义和性质;2.难点:用锐角三角函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念和性质,激发学生的学习兴趣;2.引导发现法:引导学生通过观察、实验、推理等方法发现锐角三角函数的性质;3.实践锻炼法:通过解决实际问题,培养学生的应用能力和解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示锐角三角函数的定义、性质和应用;2.实例材料:准备一些实际问题,用于引导学生应用锐角三角函数解决问题;3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如建筑物的倾斜角度、运动员投篮的抛物线等,引导学生思考这些实例与数学的关系,从而引出锐角三角函数的概念。
2.呈现(15分钟)讲解锐角三角函数的定义和性质,让学生通过观察、实验、推理等方法发现锐角三角函数的性质。
3.操练(15分钟)让学生分组讨论,运用锐角三角函数解决实际问题,如测量建筑物的高度、计算运动员投篮的得分等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些练习题,巩固所学知识。
教师选取部分题目进行讲解,总结解题方法。
锐角三角函数(1)教学设计

《锐角三角函数》教学设计一.教材分析:本节教材是人教版初中数学新教材九年级下第28章第一节内容,是初中数学的重要内容之一。
一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,也是高中进一步研究三角函数、反三角函数、三角方程的工具性内容。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
新课标对本节课的要求是:.理解正弦函数的概念,能够正确的运用sina表示直角三角形两边的比,并且熟记30°、45°正弦值。
因此本节课的教学重点是:理解锐角正弦的概念,掌握其表示方法。
难点是:理解正弦的大小只与角的大小有关,与角所在的直角三角形的大小无关。
二、设计思想促进学生的主体性的发展是数学教学的一项重要任务,因此,根据教材编排特点和所教学生的认知水平,本节课的教学基本思路是:在激趣定标中导入新知,在自学互动中探索新知,在课堂检测中巩固新知。
为了体现这一思路,完成教学任务,教学时以“引探教学法”为主,坚持启发式教学。
在选择教学方法时,体现让学生自主探索,争取自己解决问题,以提高学习能力,同时通过小组合作学习,个人展示等方法,既培养学生的团队精神与竞争意识,也充分发挥学生的主体作用,提高学习效率。
三、教学过程设计(一)出示学习目标1、理解正弦函数的意义,掌握正弦函数的表示方法。
2、能根据正弦函数的定义计算直角三角形中一个锐角的正弦函数值。
3、通过经历正弦函数概念的形成过程,培养从特殊到一般及数形结合的思想方法。
重点:对正弦函数定义的理解及根据定义计算锐角的正弦函数值。
难点正弦函数概念的形成。
设计意图:明确本节课的学习目标,学生的学习有的放矢。
(二)新课导入:1.激趣定标利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用已知条件求出斜塔的倾斜角吗”我们通过本章的学习就可以解决这个问题了。
最新人教版初三下册数学第二十八章 锐角三角函数 教案

.
在Rt△ABC中,∠C=90°,我们把 锐 角 A 的 对 边 与 斜 边 的 比 叫 做 ∠ A• 的 ,•记作 ,
教 学 流 程 图 教学 设计 评价
2
课
堂
教
学
设
计
课题:28.1 锐角三角函数(2)——余弦、正切 授课时数: 1 设计 设 计 内 容 要素 教学 余弦、正切仍然是直角三角形的边角关系,学习了正弦概念,余弦、正切的 内容 概念是容易掌握的。在此基础上得出锐角三角函数的概念。 分析 1、感知当直角三角形的锐角固定时,它的邻边与斜边、对边与 知识 邻边的比值也都固定这一事实。 与技能 教 2、能根据余弦、正切的概念,正确进行计算 学 过程 目 逐步培养学生观察、比较、分析、概括的思维能力。 与方法 标 情感态度 引导学生结合图形,探索数量关系,培养学习数学的兴趣,进 价值观 一步领会数形结合的思想方法。 学情 在第一课时的基础上,学生对锐角三角函数有了一定的认识,学习余弦、正 分析 切的概念,问题不会大。 教学 理解余弦、正切的概念 教 重点 学 难点 熟练运用锐角三角函数的概念进行有关计算。 分 教学 解决 析 难点 数形结合,理解概念,总结规律 办法 教学 仔细观察、认真比较 策略 教学 教材 教师教学用书 中学教材全解 与教材配套的练习册 资源 28.1锐角三角函数(2) ——余弦、正切 一、正弦的概念: 在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦, A的对边 a 记作sinA,即sinA= A的斜边 c 二、余弦、正切 在 Rt△ABC 中,∠C=90°,我们把∠A 的邻边与斜边的比叫做∠A 的余弦,记作
课
堂
教
学
设
计
课题:28.1 锐角三角函数(1) ——正弦 授课时数: 1 设计 设 计 内 容 要素 教学 教科书首先设置了一个实际问题,把这个实际问题抽象成数学问题,通过 内容 思考、探究,得到“在直角三角形中,当锐角的度数一定时,不管三角形的大 分析 小如何,这个角的对边与斜边的比是一个固定值” 。由此引出正弦函数的概念。 1、经历当直角三角形的锐角固定时,它的对边与斜边的比值都固 知识 定(即正弦值不变)这一事实,从而理解正弦的概念。 与技能 教 2、能根据正弦概念正确进行计算 学 过程 通过思考和探究, 让学生发现 “这个角的对边与斜边的比是一个固 目 与方法 定值”的过程。 标 情感态度 引导学生通过探索数量的比值关系, 发现规律, 从而培养学习数学 价值观 的兴趣。 学情 学生初次接触“正弦”的概念, 是很难理解的, 注意加强对数量关系的比较、 分析 分析。 教学 理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对 重点 边与斜边的比值是固定值 教 学 当直角三角形的锐角固定时,它的对边与斜边的比值是固定值 难点 分 的事实。 教学 析 难点 解决 结合图形,从实际例子入手,引导学生仔细观察、比较、分析, 办法 总结规律。 教学 谈话,讨论,交流,仔细比较,认真分析 策略 教学 教材 教师教学用书 中学教材全解 与教材配套的练习册 资源 28.1锐角三角函数(1) ——正弦 一、讨论交流: 结论:①直角三角形中,30°角的对边与斜边的比值 ②直角三角形中,45°角的对边与斜边的比值 ③在直角三角形中,当锐角 A 的度数一定时,不管三角形的大小如 板 书 何,•∠A 的对边与斜边的比 设 二、正弦函数概念: 计 规定:在 Rt△ABC 中,∠C=90,∠A 的对边记作 a,∠B 的对边记作 b, ∠C 的对边记作 c. 在 Rt△ABC 中,∠C=90°,我们把锐角 A 的对边与斜边的比叫做∠A 的正
第28章-锐角三角函数-全章教案

====Word 行业资料分享--可编辑版本--双击可删====
一、在 Rt△ABC 中,∠C =90°: B
a 对边
c 斜边
视,对学习基 A 的对边与斜边的比;
础 较 弱 的 学 求 sinB 就是要确定∠B
生 及 时 给 予 的对边与斜边的比.
指点.
教师引导学
生作知识总
结,不断扩充
培养学生概括的能
学 生 的 知 识 力,使知识形成体系,
结构,学习新 并渗透数学思想方法。
的解题方法.
Cb
A
五、体验 收获
即
sin
A
A的对边 斜边
a c
.
同样 sinB= B的对边 斜边
b c
当∠A=300 时,sinA=? 当∠A=450 时,sinA=? 当∠A=600 时,sinA=?
也随之确
定”.但是怎
样证明这个
C
A C1
A!
命题呢?学
生这时的思
经过学生的实验和证明,得出:
维很活跃.对
于这个问题,
在 Rt△ABC 中,∠C=90°,我们把锐
部分学生可
角 A 的对边与斜边的比叫做∠A 的正弦
能能解决
(sine),记作:sinA,
它.因此教师
此时应让学
B
生展开讨论,
独立完成.
a 对边
长 50m,那么斜坡与水平面所成角的度数是多少
呢?
二、探究 1.请每一位同学拿出自己的三角板,分别测量并 教 师 提 出 问 在培养学生动手能力的
====Word 行业资料分享--可编辑版本--双击可删====
说理
三、感悟 深化
2018年最新人教版九年级数学下册第二十八章28.1锐角三角函数(教案)

-锐角三角函数变化规律的理解,学生可能难以直观把握函数随角度变化的趋势。
-将锐角三角函数应用于实际问题的能力,学生可能不知道如何将实际问题转化为数学模型。
举例:针对正弦、余弦、正切的记忆难点,可以通过制作记忆卡片、绘制图形、编写记忆口诀等方法帮助学生记忆。对于锐角三角函数的应用,可以通过具体的案例分析,如计算建筑物的高度、确定太阳的角度等,让学生了解如何将理论应用到实际情境中。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切的概念和特殊角的函数值。对于难点部分,我会通过实际图形和具体数值来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与锐角三角函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用三角板和尺子来测量角度,并计算边长。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是描述直角三角形中角度与边长关系的数学工具。它们在解决实际问题,如测量、建筑等领域有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们想要测量一座山的高度,我们可以如何使用锐角三角函数来帮助我们解决这个问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【锐角三角函数全章教案】 锐角三角函数(第一课时)教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)04530cos sia +ta60°-tan30° 三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结五.作业课本p85-86 2,3,6,7,8,10解直角三角形应用(一)一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. (二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)探究活动1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 2 a=6,解这个三角形.例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b= 20 ∠=350,解这个三角形(精确到0.1).B解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例3在Rt△ABC中,a=104.0,b=20.49,解这个三角形.(三) 巩固练习∠的平分线AD=43,解此直角三角形。
在△ABC中,∠C为直角,AC=6,BAC解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.(四)总结与扩展请学生小结:1在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2解决问题要结合图形。
四、布置作业.p96 第1,2题解直三角形应用(二)一.教学三维目标 (一)、知识目标使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题. (二)、能力目标逐步培养分析问题、解决问题的能力. 二、教学重点、难点和疑点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题. 三、教学过程 (一)回忆知识1.解直角三角形指什么? 2.解直角三角形主要依据什么? (1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系: tanA=(二)新授概念 1.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义. 2.例1如图(6-16),某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 距离(精确到1米)解:在Rt △ABC 中sinB=AB AC ∴AB=B AC sin =2843.01200=4221(米)答:飞机A 到控制点B 的距离约为4221米.例2.2003年10月15日“神州”5号载人航天飞船发射成功。
当飞船完成变轨后,就在离地形表面350km 的圆形轨道上运行。
如图,当飞船运行到地球表面上P 点的正上方时,从的邻边的对边A A ∠∠飞船上能直接看到地球上最远的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6400km ,结果精确到0.1km )分析:从飞船上能看到的地球上最远的点,应是视线与地球相切时的切点。
将问题放到直角三角形FOQ 中解决。
.解决此问题的关键是在于把它转化为数学问题,利用解直角三角形知识来解决,在此之前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重请学生画几何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角α得出Rt △ABC 中的∠ABC ,进而利用解直角三角形的知识就可以解此题了.例1小结:本章引言中的例子和例1正好属于应用同一关系式 sinA=斜边的对边A ∠ 来解决的两个实际问题即已知α∠和斜边,求∠α的对边;以及已知∠α和对边,求斜边. (三).巩固练习1.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋楼底部的俯角为600,热气球与高楼的水平距离为120m ,这栋高楼有多高(结果精确到0.1`m )2.如图6-17,某海岛上的观察所A 发现海上某船只B 并测得其俯角α=80°14′.已知观察所A 的标高(当水位为0m 时的高度)为43.74m ,当时水位为+2.63m ,求观察所A 到船只B 的水平距离BC(精确到1m) 教师在学生充分地思考后,应引导学生分析:(1).谁能将实物图形抽象为几何图形?请一名同学上黑板画出来. (2).请学生结合图形独立完成。
3 如图6-19,已知A 、B 两点间的距离是160F米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.此题在例1的基础上,又加深了一步,须由A作一条平行于CD的直线交BD于E,构造出Rt△ABE,然后进一步求出AE、BE,进而求出BD与CD.设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度为1.72米,求树高(精确到0.01米).要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.(四)总结与扩展请学生总结:本节课通过两个例题的讲解,要求同学们会将某些实际问题转化为解直角三角形问题去解决;今后,我们要善于用数学知识解决实际问题.四、布置作业1.课本p96 第3,.4,.6题解直三角形应用(三)(一)教学三维目标(一)知识目标使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.(二)能力目标逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识.二、教学重点、难点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决.三、教学过程1.导入新课上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决.2.例题分析例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°, 求中柱BC(C 为底边中点)和上弦AB 的长(精确到0.01米).分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?由题意知,△ABC 为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解Rt △ABC 的方法求出BC 和AB .学生在把实际问题转化为数学问题后,大部分学生可自行完成例题小结:求出中柱BC 的长为2.44米后,我们也可以利用正弦计算上弦AB 的长。
如果在引导学生讨论后小结,效果会更好,不仅使学生掌握选何关系式,更重要的是知道为什么选这个关系式,以培养学生分析问题、解决问题的能力及计算能力,形成良好的学习习惯.另外,本题是把解等腰三角形的问题转化为直角三角形的问题,渗透了转化的数学思想. 例2.如图,一艘海轮位于灯塔P 的北偏东650方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南东340方向上的B 处。